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ABSTRACT This paper aims at developing a novel generalized distance measure of Pythagorean fuzzy (PF)
sets and constructing a distance-based compromise approach for multiple criteria decision analysis (MCDA)
within PF environments. The theory of Pythagorean fuzziness provides a representative model of non-
standard fuzzy sets; it is valuable for representing complex vague or imprecise information in many
practical applications. The distance measure for Pythagorean membership grades is important because it
can effectively quantify the separation between PF information. Based on the essential characteristics of PF
sets (membership, non-membership, strength, and direction), this paper proposes several distance measures,
namely, new Hamming and Euclidean distances and a generalized distance measure that is based on them
for Pythagorean membership grades and for PF sets. Moreover, the useful and desirable properties of the
proposed PF distance measures are investigated to evaluate their advantages and form a solid theoretical
basis. In addition, to evaluate the performance of the proposed distance measures in practice, this paper
establishes a PF-distance-based compromise approach for addressingMCDAproblems that involve PF infor-
mation. The effectiveness and practicability of the developed approach are further evaluated through a case
study on bridge-superstructure construction methods. According to the application results and comparative
analysis, the proposed PF distance measures are accurate and outperform other methods in handling the
inherent uncertainties of evaluation information. Furthermore, the PF-distance-based compromise approach
can accommodate the much higher degrees of uncertainty in real-life decision scenarios and effectively
determine the priority ranking among candidate alternatives for managing complicated MCDA problems.

INDEX TERMS Generalized distance measure, Pythagorean fuzzy set, distance-based compromise
approach, multiple criteria decision analysis, Pythagorean membership grade.

I. INTRODUCTION
Multiple criteria decision analysis (MCDA) involves ranking
the priority orders of alternatives and selecting the optimal
compromise solution among a finite set of candidate alter-
natives based on a finite set of evaluative criteria [1]–[3].
The foundation for the compromise approach is the establish-
ment of an agreement via mutual concessions [2]. Decision
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makers are assumed to prefer alternatives that are closer
to the positive-ideal solution and farther from the negative-
ideal solution. Accordingly, the compromise model attempts
to identify an alternative that is closest to the positive-ideal
solution and farthest from the negative-ideal solution. The
core concepts in classical compromising models are distance
measures and/or similarity measures [4], [5]. Among the
numerous available methods for conflict management and
decision analysis, the most prevalent compromise approach
is the technique for order preference by similarity to ideal
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solutions (TOPSIS) [1]. The compromise methodology con-
stitutes an important branch of MCDAmethods and has been
applied to many real-life problems [3], [6], [7].

However, exact evaluation information is often
unrealistic and inadequate for modeling practical decision
scenarios because decision makers’ assessments and esti-
mations of the performances of competing alternatives are
subject to inherent vagueness and imprecision [4], [8], [9].
Moreover, MCDA models and methods that are based on
ordinary fuzzy sets might be insufficient for modeling prac-
tical scenarios because of the increased complexity of the
decision-making environment [5]. Pythagorean fuzzy (PF)
sets, which were introduced by Yager [10] and later extended
by Yager [11], [12] and Yager and Abbasov [13], are useful
for expressing the incomplete, inexact, and/or ambiguous
information that is contained in human subjective evaluations
and judgments. Since Zhang and Xu [14] provided opera-
tionally mathematical representations of PF sets, the theory
of Pythagorean fuzziness has become increasingly popular in
the field of MCDA [15], [16].

Yager [10]–[12] and Yager and Abbasov [13] intro-
duced a new class of nonstandard membership grades:
Pythagorean membership grades. Pythagorean member-
ship grades are characterized by the membership degree,
the non-membership degree, the indeterminacy degree,
the strength of commitment, and the direction of commit-
ment [11], [13], [17], [18]. PF sets with Pythagoreanmember-
ship grades satisfy the relaxed condition that the square sum
of the membership degree and the non-membership degree is
equal to or less than one [10]–[13], [19], [20]. This relaxed
condition provides an obvious advantage to PF sets, namely,
a wider coverage of the information span [19]. Due to various
information insufficiency issues in practical decision situa-
tions, PF sets have become an important tool because they
can effectively model higher-order fuzziness and uncertainty
in MCDA problems [16], [19], [21]–[24].

Many studies on compromise models and methods have
been developed for solving MCDA problems within PF
uncertain environments, such as a PF TOPSIS method that
is based on the revised closeness [14]; a hybrid TOPSIS
method that uses the PF orderedweighted averagingweighted
average distance operator [25]; an extension of the TOPSIS
model with hesitant PF sets (combinations of PF sets and
hesitant fuzzy sets) [26]; a PF VIKOR (VlseKriterijumska
Optimizacija I Kompromisno Resenje, which translates
to multicriteria optimization and compromise solution)
method [27]; a correlation-based compromise approach that
is based on information energy, correlations, and correlation
coefficients for PF characteristics [28]; an improved risk
assessment approach that uses linguistic terms, TOPSIS, and
PF sets [29]; a three-way method that uses ideal TOPSIS
solutions as PF information [30]; a three-phase method that
is based on the extended TOPSIS via normalized projec-
tions of PF values [6]; a TOPSIS-based Pythagorean normal
cloud approach for group decision making [31]; a Pearson-
like correlation-based PF compromise approach [21]; a PF

TOPSISmethod that uses new PF correlation-based closeness
indices [3]; and a group decision-making sustainable supplier
selection approach that uses an extended TOPSIS approach
that is based on interval-valued PF sets [7].

From both the theoretical and practical perspectives,
the compromise methodology determines the optimal com-
promise solution by explicitly evaluating the candidate alter-
natives over multiple conflicting criteria in practice. Central
to most of the compromise approaches is the concept of
distance measures. A distance measure measures the sep-
aration between uncertain information [9], [32]. Moreover,
distance measures are important concepts when dealing with
applications of mathematical theories [33], [34]. In the PF
context, decision makers require a proper model for repre-
senting uncertain information; moreover, they require an ade-
quate measure for processing such information. PF distance
measures are important tools for identifying the separation
between PF data and for comparing complex PF information.
Several useful distance measures that are based on PF sets
have been introduced by Chen [27], Li and Zeng [17], Peng
and Dai [35], Ren et al. [36], Zeng et al. [18], and Zhang and
Xu [14].

Zhang and Xu [14] proposed the Hamming distance
between PF numbers and applied it to develop an extended
TOPSIS method. Ren et al. [36] presented the Euclidean
distance between PF numbers and constructed an extended
TODIM (an acronym in Portuguese for interactive multiple
criteria decision making) approach. Peng and Dai [35] pro-
posed a distance measure of PF sets for solving stochas-
tic MCDA problems that is based on prospect theory and
regret theory. However, their developed distance measure
yields a PF number, not a scalar. By extending Zhang and
Xu’s Hamming distance and Ren et al.’s Euclidean distance,
Chen [27] introduced the generalized distancemeasure for PF
information and developed a novel remoteness-index-based
VIKOR method. Considering the newly developed distance
measures in the PF context, Li and Zeng [17] proposed
a new distance measure for PF sets that is based on four
fundamental parameters of PF numbers: the membership
degree, the non-membership degree, the strength of commit-
ment about membership, and the direction of commitment.
Furthermore, Zeng et al. [18] considered five fundamental
parameters of PF numbers, namely, the membership degree,
the non-membership degree, the indeterminacy degree, the
strength, and the direction, to define a more comprehensive
distance measure for PF sets.

However, with these PF distance measures, various limi-
tations and difficulties may be encountered. The commonly
used PF distance measures, e.g., the current Hamming and
Euclidean distances, do not incorporate the unique character-
istics of PF sets into the measurement specification. In con-
trast to other nonstandard fuzzy models such as intuitionistic
fuzzy sets, the main features of PF sets are the strength
of commitment and the direction of commitment within
a Pythagorean membership grade [11], [17], [18]. Never-
theless, Peng and Dai [35] only employed the degrees of
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membership and non-membership to compute the PF dis-
tance. Zhang and Xu [14], Ren et al. [36], and Chen [27]
utilized the degrees of membership, non-membership, and
indeterminacy to define their distance measures. These PF
distancemeasures ignore the influences of the unique features
of PF sets; namely, they do not take the strength of commit-
ment and the direction of commitment into consideration.

The unique features of PF sets have been incorporated into
the newly developed distance measures by Li and Zeng [17]
and Zeng et al. [18]. However, in contrast to the widely
used Hamming and Euclidean distances, Li and Zeng’s and
Zeng et al.’s measures do not employ the squared terms of
membership degrees, non-membership degrees, indetermi-
nacy degrees, and strengths of commitment. Additionally,
the normalization approaches that were employed in their
measurements underestimate the maximal values of the nor-
malized distance measures. Moreover, the degree of indeter-
minacy and the strength of commitment are dual concepts.
Hence, Zeng et al.’s measurement would encounter a double
weighting problem in the computation process due to the dual
concepts.

The determination of PF distance measures is a significant
issue in the theory of Pythagorean fuzziness, especially for
the development of distance-based compromise approaches.
Nevertheless, as discussed above, with the existing distance
measures in the PF context, various limitations and difficul-
ties are encountered. Therefore, it is necessary to develop
more suitable distance measures that are based on PF sets to
address the critical issues regarding the lack of consideration
of characteristics of PS sets, the lack of square terms in
Pythagorean membership degrees, the use of unsuitable nor-
malization approaches, and the double weighting problem,
which motivates the research of this paper.

The main objective of this paper is to develop a variety of
novel distance measures that are based on PF sets and pro-
pose a PF-distance-based compromise approach for address-
ing MCDA problems under complex uncertainty regarding
PF information. To avoid the double weighting problem
of the dual concepts (the degree of indeterminacy and the
strength of commitment), this paper incorporates four char-
acteristics, namely, the degree of membership, the degree
of non-membership, the strength of commitment, and the
direction of commitment, into the determination approach
of the proposed PF distance measures. To overcome the
difficulties that are encountered with the current distance
measures, this paper develops several suitable PF distances,
namely, new Hamming and Euclidean distances and their
generalized distance measures, for Pythagorean membership
grades and PF sets. Various useful and desirable properties
of the proposed PF distance measures are also investigated.
The suitability and performance of the proposed measures
are examined via numerical examples and comparisons.
As an application of the proposed distance measures, this
paper further establishes a PF-distance-based compromise
approach for solving MCDA problems within the PF envi-
ronment. Moreover, the performance and practicability of the

proposed methodology is evaluated in a real-world case study
of a selection problem for bridge-superstructure construction
methods. To analyze the influence of the parameter settings,
a sensitivity analysis is conducted to investigate the applica-
tion results that are obtained using various distance measures.
Furthermore, comparative studies are conducted to evaluate
the proposed methodology against the TOPSIS-based com-
promise approach using other distance measures.

Themain contributions of this paper are summarized as fol-
lows: (1) several useful PF distance measures are developed
for overcoming the shortcomings of the current measures;
(2) solid theoretical bases (e.g., properties that are related
to semimetrics and metrics) of the proposed measures are
demonstrated; (3) a novel PF-distance-based compromise
approach is constructed for addressing MCDA problems in
the PF context; (4) the performance and practicability of the
developed methodology are evaluated in practice; and (5) the
application results are evaluated via a sensitivity analysis and
comparative studies.

The remainder of this paper is organized as follows:
Section II introduces basic concepts regarding Pythagorean
membership grades and PF sets. Section III reviews the
available distance measures for Pythagorean membership
grades and discusses the limitations of these distance mea-
sures. Section IV constructs a variety of new distance mea-
sures within PF environments and investigates their useful
and desirable properties. The proposed PF distance mea-
sures are evaluated via numerical comparisons and the
results are discussed. Section V establishes the useful con-
cept of closeness-based precedence indices and develops a
novel PF-distance-based compromise approach for address-
ing MCDA problems that involve PF information. Section VI
applies the proposed methodology to the selection of bridge-
superstructure construction methods to evaluate its feasibil-
ity and practicality. A sensitivity analysis and comparative
studies are also conducted to explore the advantages of the
proposed methodology. Finally, Section VII presents the con-
clusions of this study.

II. BASIC CONCEPT OF PF SETS
This section introduces fundamental concepts that are related
to Pythagorean membership grades and PF sets [10]–[14].

Let X be a finite universe of discourse. Let µP(x), νP(x),
rP(x), and dP(x), which are defined in the unit interval
[0,1], denote the degree of membership, the degree of non-
membership, the strength of commitment, and the direction
of commitment, respectively, regarding the membership of
element x ∈ X in PF set P. Let θP(x) be expressed in
radians in the range [0, π/2]. A Pythagorean membership
grade, which is denoted by p, is expressed as follows:

p = (µP(x), νP(x); rP(x), dP(x)) , (1)

where the relevant parameters are defined as follows:

µP(x) = rP(x) · cos (θP(x)) , (2)

νP(x) = rP(x) · sin (θP(x)) , (3)
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FIGURE 1. Space of a Pythagorean membership grade
p= (µP(x), νP(x);rP(x),dP(x)).

dP(x) =
π − 2 · θP(x)

π
. (4)

A PF set P is characterized by a set of ordered param-
eters, namely, µP(x), νP(x), rP(x), and dP(x), in X , where
µP(x), νP(x), rP(x), dP(x) ∈ [0, 1]; it is defined as follows:

P = {〈x, p〉| x ∈ X}

= {〈x, (µP(x), νP(x); rP(x), dP(x))〉| x ∈ X} , (5)

subject to the following condition:

0 ≤ (µP(x))2 + (νP(x))2 ≤ 1. (6)

A convenient geometrical interpretation of the space of
Pythagorean membership grades is presented in Figure 1.
A Pythagorean membership grade p allows lack of commit-
ment and uncertainty in assigning the degrees of membership
and non-membership. The degree of membership, which is
denoted as µP(x), represents the support for the membership
of element x ∈ X in PF set P, whereas the degree of
non-membership, which is denoted as νP(x), represents the
support against the membership of x in P.
The degrees µP(x) and νP(x) are related via Pythagorean

complements with respect to the strength of commitment
rP(x). According to the Pythagorean Theorem, cos2(θP(x))+
sin2(θP(x)) = 1. Moreover, µP(x) = rP(x) · cos(θP(x)) and
νP(x) = rP(x) · sin(θP(x)), which yield the following result:

(µP(x))2 + (νP(x))2 = (rP(x))2 . (7)

It follows that (µP(x))2 = (rP(x))2 − (νP(x))2 and
(νP(x))2 = (rP(x))2 − (µP(x))2. Therefore, µP(x) and νP(x)
are Pythagorean complements with respect to rP(x). The
complement pc of p is defined as follows:

pc = (µPc (x), νPc (x); rPc (x), dPc (x))

= (νP(x), µP(x); rP(x), 1− dP(x)) , (8)

where µPc (x) = νP(x), νPc (x) = µP(x), rPc (x) = rP(x), and
dPc (x) = 1− dP(x).

Compared with other nonstandard fuzzy sets (e.g., intu-
itionistic fuzzy sets), the strength of commitment and the
direction of commitment within Pythagorean membership
grades are the unique features of PF sets [11], [17], [18].
More fundamentally, a Pythagorean membership grade p =
(µP(x), νP(x); rP(x), dP(x)) can be considered as a point on
a circle of radius rP(x) because of the condition in (7). The
larger the value of rP(x), the stronger the commitment regard-
ing membership at point x, and the lower the uncertainty. The
direction of commitment dP(x) indicates on a scale from 0 to
1 how fully the strength rP(x) is pointing towardmembership.
The direction of rP(x) is completely toward membership if
dP(x) = 1 and non-membership if dP(x) = 0, whereas
intermediate values of dP(x) indicate partial support for mem-
bership and non-membership.
Referring to (2)–(4), angle θP(x) ∈ [0, π/2] can be derived

from dP(x), which can be obtained from µP(x) and rP(x) or
νP(x) and rP(x) as follows:

θP(x) =
π

2
(1− dP(x))

= arc cos
(
µP(x)
rP(x)

)
= arc sin

(
νP(x)
rP(x)

)
. (9)

Furthermore, angle θPc (x), which is associated with the
Pythagorean complement pc, is computed as follows:

θPc (x) = arc cos
(
νP(x)
rP(x)

)
= arc sin

(
µP(x)
rP(x)

)
. (10)

III. DISTANCE MEASURES FOR PYTHAGOREAN
MEMBERSHIP GRADES
This section presents a dual concept of the strength of com-
mitment that is based on PF sets and reviews the exist-
ing distance measures between Pythagorean membership
grades [14], [17], [18], [27], [36].

Zhang and Xu [14] introduced the degree of indeterminacy
of an element x ∈ X to a PF set P, which is denoted as
τP(x), where τP(x) ∈ [0, 1]. The function τP(x) expresses a
lack of knowledge regarding whether x belongs to P [27] and
it can be regarded as a dual concept that is associated with
the strength of commitment rP(x). The indeterminacy degree
τP(x) is defined as follows:

τP(x) =
√
1− (µP(x))2 − (νP(x))2 =

√
1− (rP(x))2. (11)

It follows that (τP(x))2 = 1 − (rP(x))2, which implies the
duality of τP(x) and rP(x).

Let p1 and p2 be two Pythagorean membership grades in
the universe of discourse X . Zhang and Xu’s proposed Ham-
ming distance measure (DZX

H ) between p1 and p2 takes into
account the squared differences in the membership degrees,
non-membership degrees and indeterminacy degrees [14].
The distance DZX

H (p1, p2)is defined as follows:

DZX
H (p1, p2)=

1
2
·

(∣∣∣(µP1 (x))2−(µP2 (x))2∣∣∣+∣∣∣(νP1 (x))2
−
(
νP2 (x)

)2∣∣∣+∣∣∣(τP1 (x))2−(τP2 (x))2∣∣∣) . (12)
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Ren et al. [36] presented a Euclidean distance mea-
sure (DRXG

E ) that is based on the membership degree, the
non-membership degree, and the indeterminacy degree in
Pythagorean membership grades. The distance DRXG

E (p1, p2)
between p1 and p2 is defined as follows:

DRXG
E (p1, p2)

=

{
1
2
·

[((
µP1 (x)

)2
−
(
µP2 (x)

)2)2
+

((
νP1 (x)

)2
−
(
νP2 (x)

)2)2
+

((
τP1 (x)

)2
−
(
τP2 (x)

)2)2]} 1
2

. (13)

Let β denote a distance parameter, where β ≥ 1. Chen [27]
developed a generalized distance measure (DC

G,β ) by extend-
ing the distance measures DZX

H and DRXG
E . Measures DZX

H and
DRXG
E are special cases of the generalized distance measure;

namely, DC
G,β reduces to DZX

H and DRXG
E when β = 1 and

2, respectively, namely, DC
G,1(p1, p2) = DZX

H (p1, p2) and
DC
G,2(p1, p2) = DRXG

E (p1, p2). The distance DC
G,β (p1, p2)

between p1 and p2 is defined as follows:

DC
G,β (p1, p2)

=

[
1
2
·

(∣∣∣(µP1 (x))2−(µP2 (x))2∣∣∣β+∣∣∣(νP1 (x))2
−
(
νP2 (x)

)2∣∣∣β+∣∣∣(τP1 (x))2−(τP2 (x))2∣∣∣β)] 1
β

. (14)

Li and Zeng [17] incorporated the direction of commitment
regarding membership into the specification of distance mea-
sures that are based on PF sets. By considering the differences
in four parameters (the degree of membership, the degree
of non-membership, the strength of commitment, and the
direction of commitment), Li and Zeng [17] proposed a nor-
malized generalized distance measure (DLZ

G,β ) of Pythagorean
membership grades, where the distance parameter satisfies
β ≥ 1. The distance DLZ

G,β (p1, p2)between p1 and p2 is
defined as follows:

DLZ
G,β (p1, p2)

=

[
1
4

(∣∣µP1 (x)−µP2 (x)∣∣β+∣∣νP1 (x)− νP2 (x)∣∣β
+
∣∣rP1 (x)− rP2 (x)∣∣β+∣∣dP1 (x)− dP2 (x)∣∣β)] 1

β
. (15)

Furthermore, Zeng et al. [18] considered each Pythagorean
membership grade to be characterized by five parameters (the
membership degree, non-membership degree, indeterminacy
degree, strength, and direction). In this regard, they proposed
a new distance measure (DZLY

G,β ) that is a function of the five
fundamental parameters of PF sets, where β ≥ 1. The dis-
tance DZLY

G,β (p1, p2) between p1 and p2 is defined as follows:

DZLY
G,β (p1, p2)=

[
1
5

(∣∣µP1 (x)−µP2 (x)∣∣β+∣∣νP1 (x)−νP2 (x)∣∣β
+
∣∣τP1 (x)− τP2 (x)∣∣β + ∣∣rP1 (x)− rP2 (x)∣∣β
+
∣∣dP1 (x)− dP2 (x)∣∣β)] 1

β
. (16)

The distance measures that are discussed above for
Pythagorean membership grades within the PF environment
suffer from several limitations and/or identification difficul-
ties: First, Li and Zeng [17] and Zeng et al. [18] addressed
the lack of consideration of the unique features of PS sets.
As described earlier, the features of PF sets, in contrast with
other nonstandard fuzzy sets, are the strength of commit-
ment rP(x) and the direction of commitment dP(x) within
a Pythagorean membership grade. Nonetheless, Zhang and
Xu [14], Ren et al. [36], and Chen [27] did not incorporate
rP(x) and dP(x) into their distance measures (DZX

H , DRXG
E ,

and DC
G,β ).

Second, although Li and Zeng [17] and Zeng et al. [18]
considered rP(x) and dP(x) in identifying distance measures
for PF sets, their proposed distance measures DLZ

G,β and D
ZLY
G,β

do not fully utilize the squared degrees of membership, non-
membership, indeterminacy, and strength of the Pythagorean
membership grades. The DLZ

G,β measure was developed based
on the differences with respect to µP(x), νP(x), rP(x), and
dP(x). The differences that correspond to (µP(x))2, (νP(x))2,
and (rP(x))2 were not incorporated into the DLZ

G,β measure.
The computation of theDZLY

G,β measure is based on the respec-
tive differences in terms of µP(x), νP(x), τP(x), rP(x), and
dP(x). Analogously, the basis of the DZLY

G,β measure does not
depend on the respective differences with respect to (µP(x))2,
(νP(x))2, (τP(x))2, and (rP(x))2.

Third, decision makers may be confronted by an underes-
timation problem when employing the DLZ

G,β and DZLY
G,β mea-

sures. The normalization approaches that were employed in
Li and Zeng’s and Zeng et al.’s definitions will underestimate
the maximal values of the normalized distance measures. For
example, the maximal values of the DLZ

G,1 and D
ZLY
G,1 measures

are 0.75 and 0.6, respectively, when β = 1. Moreover, when
β = 2, the maximal values of the DLZ

G,2 and DZLY
G,2 measures

are 0.866 and 0.7746, respectively.
Fourth, in Zeng et al.’s definitions, because of the duality

of τP(x) and rP(x), the computation of the DZLY
G,β measure

will result in the double weighting problem regarding the
dual concepts. To overcome these difficulties, this paper
attempts to develop a variety of novel distance measures for
Pythagorean membership grades and for PF sets.

IV. PROPOSED PF DISTANCE MEASURES
This section constructs a variety of novel PF distance mea-
sures within the PF environment, which fully take into
account the four fundamental parameters of Pythagorean
membership grades. Useful and desirable properties of the
proposed metrics are also investigated in this section. More-
over, this section compares various distance measures in the
PF context via illustrative examples.

As discussed earlier, various limitations and difficulties are
encountered when applying the specification approaches of
the existing distance measures for Pythagorean membership
grades. To address the issues regarding the lack of considera-
tion of the unique features of PF sets, the lack of adoption
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of the square terms of Pythagorean membership degrees,
the use of unsuitable normalization approaches, and the dou-
ble weighting problem, this paper proposes a new approach
for determining the PF distance measures of Pythagorean
membership grades and the normalized PF distance measures
for PF sets. Because the indeterminacy degree τP(x) and the
strength of commitment rP(x) are dual concepts, namely,
(τP(x))2 = 1 − (rP(x))2, this paper fully considers the
influences of four parameters, namely, µP(x), νP(x), rP(x),
and dP(x), while neglecting τP(x), in defining new PF dis-
tance measures. In the following, this paper presents several
novel PF distances: the Hamming PF distance measure DH ,
the Euclidean PF distance measure DE , and the generalized
PF distance measureDG,β . Essential properties of these mea-
sures are also investigated. Measures DH and DE are special
cases of measure DG,β . Namely, DG,β can be regarded as a
generalized version of DH and DE .

Let p1 = (µP1 (x), νP1 (x); rP1 (x), dP1 (x)) and p2 =
(µP2 (x), νP2 (x); rP2 (x), dP2 (x)) be two Pythagorean member-
ship grades in the universe of discourse X . The Hamming PF
distance measure between p1 and p2 is defined as follows:

DH (p1, p2) =
1
3

(∣∣∣(µP1 (x))2 − (µP2 (x))2∣∣∣+ ∣∣∣(νP1 (x))2
−
(
νP2 (x)

)2∣∣∣+ ∣∣∣(rP1 (x))2 − (rP2 (x))2∣∣∣
+
∣∣dP1 (x)− dP2 (x)∣∣) . (17)

The Euclidean PF distance measure between p1 and p2 is
defined as follows:

DE (p1, p2) =
{
1
3

[((
µP1 (x)

)2
−
(
µP2 (x)

)2)2
+

((
νP1 (x)

)2
−
(
νP2 (x)

)2)2
+

((
rP1 (x)

)2
−
(
rP2 (x)

)2)2
+
(
dP1 (x)− dP2 (x)

)2]} 1
2

. (18)

The generalized PF distance measure between p1 and p2 is
defined as follows:

DG,β (p1, p2)=
[
1
3

(∣∣∣(µP1 (x))2−(µP2 (x))2∣∣∣β+∣∣∣(νP1 (x))2
−
(
νP2 (x)

)2∣∣∣β+∣∣∣(rP1 (x))2−(rP2 (x))2∣∣∣β
+
∣∣dP1 (x)−dP2 (x)∣∣β)] 1

β
, (19)

where β is a distance parameter and β ≥ 1. If β = 1, the gen-
eralized PF distance reduces to the Hamming PF distance,
namely,DH (p1, p2) = DG,1(p1, p2). If β = 2, the generalized
PF distance reduces to the Euclidean PF distance, namely,
DE (p1, p2) = DG,2(p1, p2). AlthoughDG,β is the generalized
version of DH and DE (DH = DG,1 and DE = DG,2),
their properties differ. Thus, this paper separately explores the
properties of the three measures: DH , DE , and DG,β .
The generalized PF distance measureDG,β is a semimetric

because it satisfies the requirements of reflexivity, separabil-
ity, and symmetry for all β values, according to the following
theorem.

Theorem 1: Let p1 = (µP1 (x), νP1 (x); rP1 (x), dP1 (x)) and
p2 = (µP2 (x), νP2 (x); rP2 (x), dP2 (x)) be two Pythagorean
membership grades in the universe of discourse X . The gen-
eralized PF distance measure DG,β satisfies the following
properties:

(T1.1) Boundedness: 0 ≤ DG,β (p1, p2) ≤ 1;
(T1.2) Reflexivity: DG,β (p1, p1) = 0;
(T1.3) Separability: DG,β (p1, p2) = 0 if and only if

p1 = p2;
(T1.4) Symmetry: DG,β (p1, p2) = DG,β (p2, p1).
Proof: DG,β satisfies properties (T1.2) and (T1.4) directly.

Thus, it is only necessary to prove that (T1.1) and (T1.3) are
satisfied.DG,β (p1, p2) ≥ 0 according to the definition in (19).
From (7), one obtains:∣∣∣(µP1 (x))2−(µP2 (x))2∣∣∣+∣∣∣(νP1 (x))2 − (νP2 (x))2∣∣∣

+

∣∣∣(rP1 (x))2 − (rP2 (x))2∣∣∣
=

∣∣∣(µP1 (x))2 − (µP2 (x))2∣∣∣+ ∣∣∣(νP1 (x))2 − (νP2 (x))2∣∣∣
+

∣∣∣(µP1 (x))2 − (µP2 (x))2 + (νP1 (x))2 − (νP2 (x))2∣∣∣
≤
(
µP1 (x)

)2
+
(
νP1 (x)

)2
+
(
µP2 (x)

)2
+
(
νP2 (x)

)2
≤ 1+ 1 = 2.

Moreover, |dP1 (x) − dP2 (x)| ≤ 1 because 0 ≤

dP1 (x), dP2 (x) ≤ 1. Thus, |(µP1 (x))
2
− (µP2 (x))

2
| +

|(νP1 (x))
2
− (νP2 (x))

2
| + |(rP1 (x))

2
− (rP2 (x))

2
| + |dP1 (x)−

dP2 (x)| ≤ 3. Recall that β ≥ 1. The following is derived:

DG,β (p1, p2)

=

[
1
3

(∣∣∣(µP1 (x))2−(µP2 (x))2∣∣∣β+∣∣∣∣(νP1 (x))2− (νP2 (x))2∣∣∣β
+

∣∣∣(rP1 (x))2−(rP2 (x))2∣∣∣β + ∣∣dP1 (x)− dP2 (x)∣∣β)] 1
β

≤

[
1
3

(∣∣∣(µP1 (x))2 − (µP2 (x))2∣∣∣+ ∣∣∣(νP1 (x))2 − (νP2 (x))2∣∣∣
+

∣∣∣(rP1 (x))2 − (rP2 (x))2∣∣∣+ ∣∣dP1 (x)− dP2 (x)∣∣)] 1
β

≤

(
1
3
· 3
) 1
β

= 1.

It follows that 0 ≤ DG,β (p1, p2) ≤ 1, namely,
(T1.1) is valid. For the necessity of separability in (T1.3),
if DG,β (p1, p2) = 0, then the absolute values |(µP1 (x))

2
−

(µP2 (x))
2
|, |(νP1 (x))

2
−(νP2 (x))

2
|, |(rP1 (x))

2
−(rP2 (x))

2
|, and

|dP1 (x) − dP2 (x)| must be equal to 0; hence, p1 = p2. For
the sufficiency of separability in (T1.3), if p1 = p2, then
DG,β (p1, p2) = 0. Therefore, the property of separability is
satisfied, namely, (T1.3) is valid. This completes the proof.

According to the following theorem, the proposed Ham-
ming PF distance measure DH is a metric because it satisfies
the requirements of reflexivity, separability, symmetry, and
the triangle inequality.
Theorem 2: Let pi = (µPi (x), νPi (x); rPi (x), dPi (x))

(i =1, 2, 3) be three Pythagorean membership grades in the
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universe of discourse X . The Hamming PF distance measure
DH satisfies the following properties:

(T2.1) Boundedness: 0 ≤ DH (p1, p2) ≤ 1;
(T2.2) Reflexivity: DH (p1, p1) = 0;
(T2.3) Separability:DH (p1, p2) = 0 if and only if p1 = p2;
(T2.4) Symmetry: DH (p1, p2) = DH (p2, p1);
(T2.5) Triangle inequality: DH (p1, p3) ≤ DH (p1, p2) +

DH (p2, p3).
Proof: The Hamming PF distance measure DH can be

considered a special case of the generalized PF distance
measure DG,β (DG,β reduces to DH if β =1). Accordingly,
DH satisfies properties (T2.1)–(T2.4). Thus, one needs to
prove only (T2.5). Consider the component that is related
to the membership degree. This proof investigates the valid-
ity of inequality |(µP1 (x))

2
− (µP3 (x))

2
| ≤ |(µP1 (x))

2
−

(µP2 (x))
2
|+ |(µP2 (x))

2
− (µP3 (x))

2
|. Based on the relation-

ships among (µP1 (x))
2, (µP2 (x))

2, and (µP3 (x))
2, the fol-

lowing four assumptions are investigated: (i) (µP1 (x))
2
≤

(µP2 (x))
2
≤ (µP3 (x))

2; (ii) (µP1 (x))
2
≥ (µP2 (x))

2
≥

(µP3 (x))
2; (iii) (µP2 (x))

2
≤ min{(µP1 (x))

2, (µP3 (x))
2
}; and

(iv) (µP2 (x))
2
≥ max{(µP1 (x))

2, (µP3 (x))
2
}. From assump-

tions (i) and (ii), it follows that inequality |(µP1 (x))
2
−

(µP3 (x))
2
| ≤ |(µP1 (x))

2
−(µP2 (x))

2
|+|(µP2 (x))

2
−(µP3 (x))

2
|

is satisfied. From assumption (iii), it directly follows that
(µP1 (x))

2
− (µP2 (x))

2
≥ 0 and (µP3 (x))

2
− (µP2 (x))

2
≥ 0.

When (µP1 (x))
2
≥ (µP3 (x))

2, the following holds:∣∣∣(µP1 (x))2 − (µP2 (x))2∣∣∣+ ∣∣∣(µP2 (x))2 − (µP3 (x))2∣∣∣
−

∣∣∣(µP1 (x))2 − (µP3 (x))2∣∣∣
=
(
µP1 (x)

)2
−
(
µP2 (x)

)2
+
(
µP3 (x)

)2
−
(
µP2 (x)

)2
−
(
µP1 (x)

)2
+
(
µP3 (x)

)2
≥ 0.

When (µP1 (x))
2
≤ (µP3 (x))

2, the following holds:∣∣∣(µP1 (x))2 − (µP2 (x))2∣∣∣+ ∣∣∣(µP2 (x))2 − (µP3 (x))2∣∣∣
−

∣∣∣(µP1 (x))2 − (µP3 (x))2∣∣∣
=
(
µP1 (x)

)2
−
(
µP2 (x)

)2
+
(
µP3 (x)

)2
−
(
µP2 (x)

)2
+
(
µP1 (x)

)2
−
(
µP3 (x)

)2
≥ 0.

Accordingly, |(µP1 (x))
2
− (µP3 (x))

2
| ≤ |(µP1 (x))

2
−

(µP2 (x))
2
|+|(µP2 (x))

2
−(µP3 (x))

2
| is satisfied under assump-

tion (iii). Assumption (iv) directly implies that (µP2 (x))
2
−

(µP1 (x))
2
≥ 0 and (µP2 (x))

2
− (µP3 (x))

2
≥ 0. When

(µP1 (x))
2
≥ (µP3 (x))

2, one obtains:∣∣∣(µP1 (x))2 − (µP2 (x))2∣∣∣+ ∣∣∣(µP2 (x))2 − (µP3 (x))2∣∣∣
−

∣∣∣(µP1 (x))2 − (µP3 (x))2∣∣∣
=
(
µP2 (x)

)2
−
(
µP1 (x)

)2
+
(
µP2 (x)

)2
−
(
µP3 (x)

)2
−
(
µP1 (x)

)2
+
(
µP3 (x)

)2
≥ 0.

In contrast, when (µP1 (x))
2
≤ (µP3 (x))

2, it follows that:∣∣∣(µP1 (x))2 − (µP2 (x))2∣∣∣+ ∣∣∣(µP2 (x))2 − (µP3 (x))2∣∣∣

−

∣∣∣(µP1 (x))2 − (µP3 (x))2∣∣∣
=
(
µP2 (x)

)2
−
(
µP1 (x)

)2
+
(
µP2 (x)

)2
−
(
µP3 (x)

)2
+
(
µP1 (x)

)2
−
(
µP3 (x)

)2
≥ 0.

Therefore, |(µP1 (x))
2
− (µP3 (x))

2
| ≤ |(µP1 (x))

2
−

(µP2 (x))
2
|+|(µP2 (x))

2
−(µP3 (x))

2
| is satisfied under assump-

tion (iv). In a similar way, for the components that are related
to the non-membership degree and the strength of commit-
ment, the following relationships can be proven: |(νP1 (x))

2
−

(νP3 (x))
2
| ≤ |(νP1 (x))

2
− (νP2 (x))

2
| + |(νP2 (x))

2
− (νP3 (x))

2
|

and |(rP1 (x))
2
− (rP3 (x))

2
| ≤ |(rP1 (x))

2
− (rP2 (x))

2
| +

|(rP2 (x))
2
− (rP3 (x))

2
|. Next, consider the component that is

related to the direction of commitment. Inequality |dP1 (x) −
dP3 (x)| ≤ |dP1 (x) − dP2 (x)| + |dP2 (x) − dP3 (x)| is sat-
isfied under assumptions dP1 (x) ≤ dP2 (x) ≤ dP3 (x) and
dP1 (x) ≥ dP2 (x) ≥ dP3 (x). From assumption dP2 (x) ≤
min{dP1 (x), dP3 (x)}, the following result is obtained:∣∣dP1 (x)− dP2 (x)∣∣+ ∣∣dP2 (x)− dP3 (x)∣∣− ∣∣dP1 (x)− dP3 (x)∣∣
=


dP1 (x)− dP2 (x)+ dP3 (x)− dP2 (x)− dP1 (x)+ dP3 (x)
if dP1 (x) ≥ dP3 (x)
dP1 (x)− dP2 (x)+ dP3 (x)− dP2 (x)+ dP1 (x)− dP3 (x)
if dP1 (x) ≤ dP3 (x)

= 2
(
min

{
dP1 (x), dP3 (x)

}
− dP2 (x)

)
≥ 0.

Hence, |dP1 (x) − dP3 (x)| ≤ |dP1 (x) − dP2 (x)| + |dP2 (x) −
dP3 (x)| is satisfied. From these results, one concludes that
the triangle inequality, namely, DH (p1, p3) ≤ DH (p1, p2) +
DH (p2, p3), holds. Therefore, (T2.5) is valid. This completes
the proof.
Theorem 3: Let p1 and p2 be two Pythagorean membership

grades in the universe of discourse X . The Euclidean PF
distance measure DEsatisfies the following properties:

(T3.1) Boundedness: 0 ≤ DE (p1, p2) ≤ 1;
(T3.2) Reflexivity: DE (p1, p1) = 0;
(T3.3) Separability:DE (p1, p2) = 0 if and only if p1 = p2;
(T3.4) Symmetry: DE (p1, p2) = DE (p2, p1).
Proof: The DE measure is the special case of the general-

ized PF distance measure DG,β (DG,β reduces to DE when
β =2). Accordingly, properties (T3.1)–(T3.4) are satisfied
based on the proofs of (T1.1)–(T1.4), respectively. Moreover,
DE is a semimetric because it satisfies the requirements of
reflexivity, separability, and symmetry. This completes the
proof.

The angle θ and the direction of commitment d have the
following desirable properties:
Theorem 4: Let pc1 = (µPc1 (x), νPc1 (x); rPc1 (x), dPc1 (x)) and

pc2 = (µPc2 (x), νPc2 (x); rPc2 (x), dPc2 (x)) be the complements
of Pythagorean membership grades p1 and p2, respectively,
in the universe of discourse X . The degree θ that is associated
with p1, p2, pc1, and p

c
2 satisfies the following properties:

(T4.1) |θP1 (x)− θP2 (x)| = |θPc1 (x)− θPc2 (x)|;
(T4.2) |θP1 (x)− θPc2 (x)| = |θPc1 (x)− θP2 (x)|.
Proof: According to the definition in (9), θP1 (x) =

arc cos(µP1 (x)/rP1 (x)) and θP2 (x) = arc cos(µP2 (x)/rP2 (x))
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are associated withp1 and p2, respectively. From (8) and (10),
it follows directly that:

θPc1
(x) = arc cos

(
µPc1

(x)

rPc1 (x)

)
= arc cos

(
νP1 (x)
rP1 (x)

)
,

θPc2
(x) = arc cos

(
µPc2

(x)

rPc2 (x)

)
= arc cos

(
νP2 (x)
rP2 (x)

)
,

where θPc1 (x), θPc2 (x) ∈ [0, π/2]. It follows that:

cos2
(
θP1 (x)

)
+ cos2

(
θPc1

(x)
)
=

(
µP1 (x)

)2(
rP1 (x)

)2 +
(
νP1 (x)

)2(
rP1 (x)

)2 =1.
According to the Pythagorean Theorem, cos(θPc1 (x)) =
sin(θP1 (x)) because cos2(θP1 (x)) + sin2(θP1 (x)) = 1. Thus,
θPc1

(x) = π/2 − θP1 (x), namely, θP1 (x) and θPc1 (x) are angle
pairs whose measures sum to a right angle, namely, π/2
radians. Analogously, θPc2 (x) is the complementary angle of
θP2 (x), namely, θPc2 (x) = π/2− θP2 (x). It is proven that:∣∣∣θPc1 (x)− θPc2 (x)∣∣∣ = ∣∣∣(π2 − θP1 (x))− (π2 − θP2 (x))∣∣∣

=
∣∣θP1 (x)− θP2 (x)∣∣ ,∣∣∣θPc1 (x)− θP2 (x)∣∣∣ = ∣∣∣(π2 − θP1 (x))− θP2 (x)∣∣∣

=

∣∣∣−θP1 (x)+ (π2 − θP2 (x))∣∣∣
=

∣∣∣θP1 (x)− θPc2 (x)∣∣∣ .
Therefore, (T4.1) and (T4.2) are satisfied, which completes
the proof.
Theorem 5: Consider two Pythagorean membership

grades, namely, p1 and p2, and their complements, namely,pc1
and pc2, respectively, in the universe of discourse X . The
directions of commitment d that are associated with p1, p2,
pc1, and p

c
2 satisfy the following properties:

(T5.1) |dP1 (x)− dP2 (x)| = |dPc1 (x)− dPc2 (x)|;
(T5.2) |dP1 (x)− dPc2 (x)| = |dPc1 (x)− dP2 (x)|.
Proof: From (4), it follows that:∣∣dP1 (x)− dP2 (x)∣∣ = ∣∣∣∣π − 2 · θP1 (x)

π
−
π − 2 · θP2 (x)

π

∣∣∣∣
=

2
π

∣∣θP1 (x)− θP2 (x)∣∣ ,∣∣∣dPc1 (x)− dPc2 (x)∣∣∣ =
∣∣∣∣π − 2 · θPc1 (x)

π
−
π − 2 · θPc2 (x)

π

∣∣∣∣
=

2
π

∣∣∣θPc1 (x)− θPc2 (x)∣∣∣ .
According to (T4.1), |dP1 (x) − dP2 (x)| = |dPc1 (x) − dPc2 (x)|.
Analogously, |dP1 (x)−dPc2 (x)| = |dPc1 (x)−dP2 (x)| according
to (T4.2). This completes the proof.
Theorem 6: Let p1 and p2 be two Pythagorean membership

grades in the universe of discourse X . The Hamming PF
distance measure DH , the Euclidean PF distance measure
DE , and the generalized PF distance measure DG,βsatisfy the
following properties:

(T6.1) DH (p1, p2) = DH (pc1, p
c
2), DE (p1, p2) =

DE (pc1, p
c
2), and DG,β (p1, p2) = DG,β (pc1, p

c
2) for all β ≥ 1;

(T6.2) DH (p1, pc2) = DH (pc1, p2), DE (p1, pc2) =

DE (pc1, p2), and DG,β (p1, p
c
2) = DG,β (pc1, p2) for all β ≥ 1.

Proof: This proof only validates the cases of the Ham-
ming PF distance measure. The other cases can be proven
via a similar approach. From (8) and (17), it follows
that:

DH (pc1, p
c
2)

=
1
3

(∣∣∣∣(µPc1 (x))2 − (µPc2 (x))2
∣∣∣∣+ ∣∣∣∣(νPc1 (x))2

−

(
νPc2

(x)
)2∣∣∣∣+ ∣∣∣∣(rPc1 (x))2 − (rPc2 (x))2

∣∣∣∣
+

∣∣∣dPc1 (x)− dPc2 (x)∣∣∣)
=

1
3

((∣∣∣(νP1 (x))2 − (νP2 (x))2∣∣∣+ ∣∣∣(µP1 (x))2 − (µP2 (x))2∣∣∣
+

∣∣∣(rP1 (x))2 − (rP2 (x))2∣∣∣+ ∣∣∣dPc1 (x)− dPc2 (x)∣∣∣) .
Because |dP1 (x) − dP2 (x)| = |dPc1 (x) − dPc2 (x)| accord-
ing to (T5.1), DH (p1, p2) = DH (pc1, p

c
2) holds. Equa-

tions DE (p1, p2) = DE (pc1, p
c
2) and DG,β (p1, p2) =

DG,β (pc1, p
c
2) for all β ≥ 1 can be proven analogously. Thus,

(T6.1) is satisfied. Next, Hamming PF distances DH (p1, pc2)
and DH (pc1, p2) are computed as follows:

DH (p1, pc2)

=
1
3

(∣∣∣∣(µP1 (x))2 − (µPc2 (x))2
∣∣∣∣+ ∣∣∣(νP1 (x))2

−

(
νPc2

(x)
)2∣∣∣∣+ ∣∣∣∣(rP1 (x))2 − (rPc2 (x))2

∣∣∣∣
+

∣∣∣dP1 (x)− dPc2 (x)∣∣∣)
=

1
3

(∣∣∣(µP1 (x))2 − (νP2 (x))2∣∣∣+ ∣∣∣(νP1 (x))2 − (µP2 (x))2∣∣∣
+

∣∣∣(rP1 (x))2 − (rP2 (x))2∣∣∣+ ∣∣∣dP1 (x)− dPc2 (x)∣∣∣) ,
DH (pc1, p2)

=
1
3

(∣∣∣∣(µPc1 (x))2 − (µP2 (x))2
∣∣∣∣+ ∣∣∣∣(νPc1 (x))2

−
(
νP2 (x)

)2∣∣∣+ ∣∣∣∣(rPc1 (x))2 − (rP2 (x))2
∣∣∣∣

+

∣∣∣dPc1 (x)− dP2 (x)∣∣∣)
=

1
3

((∣∣∣(νP1 (x))2 − (µP2 (x))2∣∣∣+ ∣∣∣(µP1 (x))2 − (νP2 (x))2∣∣∣
+

∣∣∣(rP1 (x))2 − (rP2 (x))2∣∣∣+ ∣∣∣dPc1 (x)− dP2 (x)∣∣∣) .
According to (T5.2), |dP1 (x) − dPc2 (x)| = |dPc1 (x) − dP2 (x)|.
Therefore, equation DH (p1, pc2) = DH (pc1, p2) holds. Anal-
ogously, one can prove that DE (p1, pc2) = DE (pc1, p2) and
DG,β (p1, pc2) = DG,β (pc1, p2) for all β ≥ 1, namely, (T6.2)
is satisfied. This completes the proof.

Furthermore, the suitability and effectiveness of the pro-
posed PF distance measures (DH , DE , and DG,β ) are exam-
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ined via the following numerical examples and comparisons.
The compared distance measures are DZX

H , DRXG
E , DC

G,β ,
DLZ
G,β , and DZLY

G,β , which were developed by Zhang and
Xu [14], Ren et al. [36], Chen [27], Li and Zeng [17], and
Zeng et al. [18], respectively.
Example 1 (Maximal Normalized Distance): Let p1 =

(1, 0; 1, 1) and p2 = (0, 1; 1, 0) be two Pythagorean mem-
bership grades in the universe of discourse X . Consider
the Hamming distance model. The following results were
obtained: DZX

H (p1, p2) = DC
G,1(p1, p2) = DH (p1, p2) =

DG,1(p1, p2) = 1, DLZ
G,1(p1, p2) = 0.75, and DZLY

G,1 (p1, p2) =
0.6. Next, considering the Euclidean distance model,
the following results were obtained: DRXG

E (p1, p2) =

DC
G,2(p1, p2) = DE (p1, p2) = DG,2(p1, p2) = 1,

DLZ
G,2(p1, p2) = 0.8660, and DZLY

G,2 (p1, p2) = 0.7746.
Chen [27] presented the fundamental concept of a lattice
within the PF environment. PF numbers p1 and p2 are the
largest and smallest PF numbers, respectively, because they
are the top and bottom elements, respectively, of the lattice.
Accordingly, the distance between p1 and p2 should be 1 in
the lattice because it is based on PF sets. However, the results
that were computed using Li and Zeng’s and Zeng et al.’s dis-
tance measures are unreasonable and unacceptable because
DLZ
G,1(p1, p2), D

ZLY
G,1 (p1, p2), D

LZ
G,2(p1, p2), and DZLY

G,2 (p1, p2)
are not equal to 1. As discussed previously, the normalization
approaches in DLZ

G,β and DZLY
G,β are unsuitable because they

underestimate the maximal values of the normalized distance
measures.
Example 2 (Failure to Consider the Direction of Com-

mitment): Let p1 = (0.35, 0.42; 0.5467, 0.4423), p2 =
(0.42, 0.35; 0.5467, 0.5577), and p3 = (0.62, 0.73; 0.9578,
0.4482) be three Pythagorean membership grades in X .
Consider the Hamming distance model as an example.
Based on the distance measures of Zhang and Xu [14] and
Chen [27], one has DZX

H (p1, p3) = DZX
H (p2, p3) = 0.6184

and DC
G,1(p1, p3) = DC

G,1(p2, p3) = 0.6184. Namely,
the Hamming distances between p1 andp3 and between p2
andp3 are the same. From µP1 (x) = νP2 (x)(= 0.35) and
νP1 (x) = µP2 (x)(= 0.42), it is inferred that τP1 (x) =
τP2 (x)(= 0.8373). Thus, using Zhang and Xu’s and Chen’s
measures will yield the same results because DZX

H and
DC
G,β only involve the following components: the member-

ship degree µp, the non-membership degree νp, and the
indeterminacy degree τp. However, the results that are dis-
cussed above are unreasonable and unacceptable. Although
p1 andp2 have the same strength of 0.5467, they have different
directions of 0.4423 and 0.5577. The degrees µp, νp, and
τp in a Pythagorean membership grade p do not decom-
pose the interval of [0,1] linearly. Hence, the direction of
commitment dp plays a key role in determining PF distance
measures. Because dP1 (x) 6= dP2 (x), it is reasonable to antic-
ipate that DZX

H (p1, p3) 6= DZX
H (p2, p3) and DC

G,1(p1, p3) 6=
DC
G,1(p2, p3). Nevertheless, Zhang and Xu’s and Chen’s mea-

sures lead to conflicting results (DZX
H (p1, p3) = DZX

H (p2, p3)
and DC

G,1(p1, p3) = DC
G,1(p2, p3)), which are unconvincing.

Example 3 (Consideration of the Direction of Commit-
ment): This example is continued from Example 2. Based
on the distance measures of Li and Zeng [17], Zeng
et al. [18], and this paper, the Hamming distances between
p1 andp3 were calculated as follows: DLZ

G,1(p1, p3) = 0.2493,
DZLY
G,1 (p1, p3) = 0.3093, and DH (p1, p3) = DG,1(p1, p3) =

0.4143. The results between p2 andp3 were calculated as
follows: DLZ

G,1(p2, p3) = 0.2752, DZLY
G,1 (p2, p3) = 0.3301,

and DH (p2, p3) = DG,1(p2, p3) = 0.4488. It is observed that
DLZ
G,1(p1, p3) 6= DLZ

G,1(p2, p3), D
ZLY
G,1 (p1, p3) 6= DZLY

G,1 (p2, p3),
DH (p1, p3) 6= DH (p2, p3), and DG,1(p1, p3) 6= DG,1(p2, p3).
Therefore, in contrast to DZX

H and DC
G,1, measures DLZ

G,1,
DZLY
G,1 , DH , and DG,1 can differentiate between p1 andp2 even

though the two Pythagorean membership grades have the
same strength of 0.5467.
Example 4 (Distance from the Complement): Let p =

(0.77, 0.43; 0.8819, 0.6758) be a Pythagorean member-
ship grade in X . The complement of p is pc =

(0.43, 0.77; 0.8819, 0.3242). Regarding the distance between
p and pc, the following results were obtained: DZX

H (p, pc) =
DC
G,1(p, p

c) = 0.4080, DLZ
G,1(p, p

c) = 0.2579, DZLY
G,1 (p, p

c) =
0.2063, and DH (p, pc) = DG,1(p, pc) = 0.3892 based on the
Hamming distance model; and DRXG

E (p, pc) = DC
G,2(p, p

c) =
0.4080, DLZ

G,2(p, p
c) = 0.2978, DZLY

G,2 (p, p
c) = 0.2664, and

DE (p, pc) = DG,2(p, pc) = 0.3901 based on the Euclidean
distance model. DC

G,1(p, p
c) = DC

G,2(p, p
c) = 0.4080 (or,

equivalently, DZX
H (p, pc) = DRXG

E (p, pc) = 0.4080). More-
over, in this example, DC

G,β (p, p
c) = 0.4080 if 1 ≤ β ≤

790; hence, the parameter β does not affect the distance
between p and pc. Because Chen [27] merely considered the
degrees of membership, non-membership, and indeterminacy
in defining the generalized distance measures, DC

G,β can-
not properly capture the separation between a Pythagorean
membership grade and its complement. Such results are
unsuitable for use by decision makers. In contrast, the param-
eter β can exert its effect sufficiently in generalized dis-
tance measures DLZ

G,β , D
ZLY
G,β , and DG,β (e.g., DLZ

G,1(p, p
c) 6=

DLZ
G,2(p, p

c), DZLY
G,1 (p, p

c) 6= DZLY
G,2 (p, p

c), and DG,1(p, pc) 6=
DG,2(p, pc)). Nevertheless, the normalized distances that
use the measures DLZ

G,β and DZLY
G,β are smaller compared to

other measures (e.g., 0.2063 and 0.2664 based on DZLY
G,1 and

DZLY
G,2 , respectively). As discussed previously, the unsuitable

normalization approaches in DLZ
G,β and DZLY

G,β will lead to
invalid results because they underestimate the PF distances.
In contrast to DLZ

G,β and DZLY
G,β , DG,1(p, p

c) = 0.3892 and
DG,2(p, pc) = 0.3901 (or, equivalently, DH (p, pc) = 0.3892
and DE (p, pc) = 0.3901). Therefore, in contrast to the
compared distancemeasures, the proposedmeasures, namely,
DH , DE , and DG,β , yield reasonable and acceptable results.
The useful and desirable properties of the developed PF

distance measures, namely, DH , DE , and DG,β , have been
specified in Theorems 1−6. The numerical comparisons and
discussions in Examples 1−4 have further demonstrated that
the proposed measures outperform DZX

H , DRXG
E , DC

G,β , D
LZ
G,β ,

and DZLY
G,β .
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V. PF-DISTANCE-BASED COMPROMISE APPROACH
This section attempts to utilize the proposed distance mea-
sures to develop a simple and effective MCDA method that
is based on PF sets. This section formulates an MCDA
problem within the PF decision environment and presents
the characteristics of the ideal PF solutions. Based on the
proposed measures, namely,DH ,DE , andDG,β , the weighted
PF distance measures towards the ideal PF solutions are
determined to establish a closeness-based precedence index.
A novel PF-distance-based compromise approach is proposed
for addressing MCDA problems that involve PF information.

An MCDA problem can be expressed as a decision matrix
whose entries are the evaluative ratings of candidate alterna-
tives with respect to each criterion. Consider the following
MCDA problem in the PF context: Let Z = {z1, z2, · · · , zm}
be a discrete set of m candidate alternatives and let C =
{c1, c2, · · · , cn} be a finite set of n evaluative criteria, where
integers m, n ≥ 2. Based on each criterion, the set C can be
divided into CI (the set of benefit criteria) and CII (the set of
cost criteria), where CI ∩CII = ∅ and CI ∪CII = C . Let w =
(w1,w2, · · · ,wn) be the weight vector of the criteria, which
satisfies 0 ≤ wj ≤ 1 (j ∈ {1, 2, · · · , n}) and

∑n
j=1 wj = 1.

Let a Pythagorean membership grade pij = (µij, νij; rij, dij)
denote the evaluative rating of an alternative zi ∈ Z with
respect to a criterion cj ∈ C . The MCDA problem within the
PF environment can be represented in matrix form as follows:

p = [pij]m×n =
[
(µij, νij; rij, dij)

]
m×n

=


(µ11, ν11; r11, d11) (µ12, ν12; r12, d12)
(µ21, ν21; r21, d21) (µ22, ν22; r22, d22)

...
...

(µm1, νm1; rm1, dm1) (µm2, νm2; rm2, dm2)

· · · (µ1n, ν1n; r1n, d1n)
· · · (µ2n, ν2n; r2n, d2n)
. . .

...

· · · (µmn, νmn; rmn, dmn)

 . (20)

The characteristic of an alternative zi ∈ Z can be expressed
as a PF set Pi, which is characterized by a set (µij, νij; rij, dij)
for all cj ∈ C as follows:

Pi =
{ 〈
cj, pij

〉∣∣ cj ∈ C} = { 〈cj, (µij, νij; rij, dij)〉∣∣ cj ∈ C} ,
(21)

which satisfies the condition 0 ≤ (µij)2 + (νij)2 ≤ 1.

Moreover, rij =
√
(µij)2 + (νij)2, θij = arccos(µij/rij) =

arcsin(νij/rij), and dij = (π − 2 · θij)/π .
For the PF decision matrix p in an MCDA problem, let z∗

denote the positive-ideal PF solution. The characteristic P∗ of
z∗ is defined as follows:

P∗ =
{ 〈
cj, p∗j

〉∣∣ cj ∈ C}
=
{ 〈
cj,
(
µ∗j, ν∗j; r∗j, d∗j

)〉∣∣ cj ∈ C} , (22)

where p∗j = (µ∗j, ν∗j; r∗j, d∗j) denotes the evaluative rating
of z∗ regarding a criterion cj. The parameters that correspond

to p∗j are computed as follows:

µ∗j =


m

max
i=1

µij ifcj ∈ CI,

m
min
i=1

µij ifcj ∈ CII,
(23)

ν∗j =


m

min
i=1

νij ifcj ∈ CI,

m
max
i=1

νij ifcj ∈ CII,
(24)

r∗j =
√
(µ∗j)2 + (ν∗j)2, and d∗j = (π − 2 · θ∗j)/π , where

θ∗j = arccos(µ∗j/r∗j) = arcsin(ν∗j/r∗j). The condition 0 ≤
(µ∗j)2 + (ν∗j)2 ≤ 1 holds for all cj ∈ C .
Let z# denote the negative-ideal PF solution in p. The

characteristic P# of z# is defined as follows:

P# =
{ 〈
cj, p#j

〉∣∣ cj ∈ C}
=
{ 〈
cj,
(
µ#j, ν#j; r#j, d#j

)〉∣∣ cj ∈ C} , (25)

where p#j = (µ#j, ν#j; r#j, d#j) denotes the evaluative rating
of z# with respect to a criterion cj. The parameters that corre-
spond to p#j are computed as follows:

µ#j =


m

min
i=1

µij ifcj ∈ CI,

m
max
i=1

µij ifcj ∈ CII,
(26)

ν#j =


m

max
i=1

νij ifcj ∈ CI,

m
min
i=1

νij ifcj ∈ CII,
(27)

r#j =
√
(µ#j)2 + (ν#j)2, and d#j = (π−2·θ#j)/π , where θ#j =

arccos(µ#j/r#j) = arcsin(ν#j/r#j). Moreover, the condition
0 ≤ (µ#j)2 + (ν#j)2 ≤ 1 is satisfied for all cj ∈ C .
By utilizing the proposed measure DG,β , the weighted

generalized PF distance between the characteristics Pi and P∗
is calculated as follows:

DWG,β (Pi,P∗)

=

1
3

n∑
j=1

wj

(∣∣∣(µij)2−(µ∗j)2∣∣∣β+∣∣∣(νij)2
−(ν∗j)2

∣∣∣β+∣∣∣(rij)2−(r∗j)2∣∣∣β+∣∣dij − d∗j∣∣β)] 1
β

. (28)

When the positive-ideal PF solution z∗ is employed to
facilitate anchored judgments, the smaller DWG,β (Pi,P∗) is,
the higher the performance of alternative zi. For β = 1
and β = 2, the weighted measure DWG,β reduces to the
weighted Hamming and Euclidean PF distances, respectively,
where DWH (Pi,P∗) (= DWG,1(Pi,P∗)) and DWE (Pi,P∗) (=
DWG,2(Pi,P∗)) are expressed as follows:

DWH (Pi,P∗)

=
1
3

n∑
j=1

wj
(∣∣∣(µij)2 − (µ∗j)2

∣∣∣+ ∣∣∣(νij)2 − (ν∗j)2
∣∣∣
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+

∣∣∣(rij)2 − (r∗j)2
∣∣∣+ ∣∣dij − d∗j∣∣) , (29)

DWE (Pi,P∗)

=

1
3

n∑
j=1

wj

[(
(µij)2−(µ∗j)2

)2
+

(
(νij)2

−(ν∗j)2
)2
+

(
(rij)2−(r∗j)2

)2
+
(
dij−d∗j

)2
1
2

. (30)

Similarly, the weighted generalized PF distance between
the characteristics Pi and P# is calculated as follows:

DWG,β (Pi,P#)

=

1
3

n∑
j=1

wj

(∣∣∣(µij)2−(µ#j)2
∣∣∣β+∣∣∣(νij)2

−(ν#j)2
∣∣∣β+∣∣∣(rij)2 − (r#j)2

∣∣∣β+∣∣dij − d#j∣∣β)] 1
β

. (31)

When the negative-ideal PF solution z# is employed
to facilitate anchored judgments, the larger DWG,β (Pi,P#)
is, the higher the performance of alternative zi. More-
over, the weighted Hamming PF distance DWH (Pi,P#) (=
DWG,1(Pi,P#)) and the weighted Euclidean PF distance
DWE (Pi,P#) (= DWG,2(Pi,P#)) are expressed as follows:

DWH (Pi,P#)

=
1
3

n∑
j=1

wj
(∣∣∣(µij)2 − (µ#j)2

∣∣∣+ ∣∣∣(νij)2 − (ν#j)2
∣∣∣

+

∣∣∣(rij)2 − (r#j)2
∣∣∣+ ∣∣dij − d#j∣∣) , (32)

DWE (Pi,P#)

=

1
3

n∑
j=1

wj

[(
(µij)2 − (µ#j)2

)2
+

(
(νij)2

−(ν#j)2
)2
+

(
(rij)2−(r#j)2

)2
+
(
dij − d#j

)2
1
2

. (33)

The characteristic Pi that is closest to P∗ does not accord
with the characteristic that is farthest from P#. To address
this issue, this paper establishes a closeness-based precedence
index that is similar to the closeness coefficient (the relative
closeness to the ideal solutions) in TOPSIS methods. Based
on the generalized distancemodel, the closeness-based prece-
dence index, which is denoted as CIG,β , for each alternative
zi ∈ Z is defined as follows:

CIG,β (Pi) =
DWG,β (Pi,P#)

DWG,β (Pi,P∗)+ D
W
G,β (Pi,P#)

. (34)

It follows that 0 ≤ CIG,β (Pi) ≤ 1. If Pi = P∗, then
CIG,β (Pi) = 1; if Pi = P#, then CIG,β (Pi) = 0. More-
over, the larger CIG,β (Pi) is, the better the characteristic Pi
performs and the greater the preference is for alternative zi.

Accordingly, by setting a suitable value of the distance param-
eter β, the precedence ranks among candidate alternatives can
be obtained based on the descending order of the CIG,β (Pi)
values in the PF-distance-based compromise approach.

For each alternative zi, the closeness-based precedence
indices CIH and CIE , which are based on the Hamming
and Euclidean distance models, respectively, are defined as
follows:

CIH (Pi) = CIG,1(Pi) =
DWH (Pi,P#)

DWH (Pi,P∗)+ DWH (Pi,P#)
, (35)

CIE (Pi) = CIG,2(Pi) =
DWE (Pi,P#)

DWE (Pi,P∗)+ DWE (Pi,P#)
. (36)

Analogously, 0 ≤ CIH (Pi),CIE (Pi) ≤ 1. If Pi = P∗,
then CIH (Pi) = 1 (or CIE (Pi) = 1); if Pi = P#, then
CIH (Pi) = 0 (or CIE (Pi) = 0). The larger CIH (Pi) (or
CIE (Pi)) is, the better the characteristic Pi performs and the
greater the preference is for alternative zi. Therefore, the
precedence relationships among competing alternatives can
be effectively determined according to the descending order
of the CIH (Pi) (or CIE (Pi)) values.
The proposed PF-distance-based compromise approach

for addressing MCDA problems under complex uncertainty
based on PF sets can be implemented using a simple and
effective algorithm. This algorithm is comprised of six
phases: formulating an MCDA problem, collecting relevant
decision information, identifying the characteristics of ideals,
calculating the separation between the characteristics, obtain-
ing the closeness-based precedence indices, and identifying
the precedence relationships. The six phases are implemented
via the following steps:
Step 1 (Formulate an MCDA problem): Specify the set of

candidate alternatives Z = {z1, z2, · · · , zm}. Identify the set
of evaluative criteria C = {c1, c2, · · · , cn}, which is divided
into a set of benefit criteriaCI and a set of cost criteriaCII.
Step 2 (Collect relevant decision information): Establish

the weight vector w = (w1,w2, · · · ,wn), where
∑n

j=1 wj =
1. Construct the PF evaluative rating pij = (µij, νij; rij, dij) of
zi ∈ Z with respect to cj ∈ C . Form a PF decision matrix
p = [pij]m×n and calculate the characteristic Pi of each zi.
Step 3 (Identify the characteristics of the ideals): Deter-

mine the evaluative ratings p∗j = (µ∗j, ν∗j; r∗j, d∗j) and p#j =
(µ#j, ν#j; r#j, d#j) for all cj ∈ C to identify the characteris-
tics P∗ and P# of the positive-ideal PF solution z∗ and the
negative-ideal PF solution z#, respectively.
Step 4 (Calculate the separation between the characteris-

tics): Employ the weighted measuresDWH (DWG,1),D
W
E (DWG,2),

and DWG,β to compute the weighted PF distances between Pi
and P∗ and between Pi and P#.
Step 5 (Obtain the closeness-based precedence indices):

Compute the closeness-based precedence indices CIH (Pi)
(based onDWH ),CIE (Pi) (based onDWE ), andCIG,β (Pi) (based
on DWG,β ) of the characteristic Pi for each zi ∈ Z .
Step 6 (Identify the precedence relationships): Rank the m

alternatives according to the descending order of theCIH (Pi),
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CIE (Pi), or CIG,β (Pi) values to identify the precedence rela-
tionships among the alternatives in Z . The alternative that has
the largest closeness-based precedence index is the optimal
solution.

VI. APPLICATION AND COMPARITIVE STUDIES
This section applies the new PF-distance-based compro-
mise approach to a real-world case of bridge-superstructure
construction methods to evaluate the usefulness and prac-
ticability of the proposed methodology. Moreover, a sen-
sitivity analysis is implemented to investigate the results
that are obtained using several distance measures under
various parameter settings. Finally, comparative studies are
conducted to compare the proposed methodology to other
relevant approaches.

A. PRACTICAL APPLICATION
The real-world case, which was adopted from Chen [15],
involves the construction of a concrete-based bridge super-
structure for the Suhua Highway Alternative Road Project
in Taiwan. Because construction methods for building bridge
superstructures differ in terms of their construction character-
istics, applicable environments, construction costs, and con-
struction durations, the assessment of bridge-superstructure
construction methods has a decisive effect on successful
bridge construction [37]. This case study aims at addressing
the selection problem of bridge-superstructure construction
methods under complex uncertainty based on PF sets.

In Step 1, the MCDA problem of bridge-superstructure
construction was formulated based on a set of candidate
alternatives, namely, Z = {z1, z2, z3, z4}, and a set of evalu-
ative criteria, namely, C = {c1, c2, · · · , c8}. Set Z consists
of four commonly used bridge-superstructure construction
methods: the advanced shoring method (z1), the incremental
launching method (z2), the balanced cantilever method (z3),
and the precast segmental method (z4). Set C is comprised
of the durability (c1), damage cost (c2), construction cost
(c3), traffic effect (c4), site condition (c5), climatic condition
(c6), landscape (c7), and environmental impact (c8). Set C is
divided into CI = {c1, c5} and CII = {c2, c3, c4, c6, c7, c8},
namely, the durability and site condition are benefit criteria,
while the remaining six criteria are cost criteria.

In Step 2, based on the bridge-superstructure construction
case that was presented by Chen [15], the weight vector for
the eight criteria was defined as follows: w=(0.1404, 0.1252,
0.1090, 0.0839, 0.1361, 0.1252, 0.1408, 0.1394). Moreover,
the data of the PF evaluative rating pij = (µij, νij; rij, dij) for
all zi ∈ Z and cj ∈ C are listed in Table 1. Additionally,
the values of τij and θij that are associated with each pij
are listed in the last two columns. The PF decision matrix,
namely, p = [pij]4×8, and the characteristic Pi of each
alternative can be constructed based on all the PF evaluative
ratings. For example, according to (21), the characteristic
of the advanced shoring method was as follows: P1 ={〈c1,
(0.5407, 0.6781; 0.8673, 0.4285)〉, 〈c2, (0.8075, 0.2638;
0.8495, 0.7990)〉, 〈c3, (0.1654, 0.9508; 0.9651, 0.1096)〉,

TABLE 1. PF evaluative ratings in PF decision matrix p.

〈c4, (0.4802, 0.6774; 0.8303, 0.3926)〉, 〈c5, (0.9285, 0.3402;
0.9889, 0.7764)〉, 〈c6, (0.1443, 0.9485; 0.9594, 0.0961)〉,
〈c7, (0.2848, 0.5778; 0.6442, 0.2915)〉, 〈c8, (0.0727, 0.9961;
0.9987, 0.0464)〉}.

In Step 3, the membership degree, namely, µ∗j, and
the non-membership degree, namely, ν∗j, within p∗j can
be obtained via (23) and (24), respectively. Moreover,
the degrees µ#j and ν#j within p#j can be calculated via (26)
and (27), respectively. Based on these results, the char-
acteristic of the positive-ideal PF solution z∗ was deter-
mined via (22) as follows: P∗ ={〈c1, (0.9665, 0.2198;
0.9912, 0.8576)〉, 〈c2, (0.0666, 0.9644; 0.9667, 0.0439)〉,
〈c3, (0.1654, 0.9508; 0.9651, 0.1096)〉, 〈c4, (0.2504, 0.9371;
0.9700, 0.1662)〉, 〈c5, (0.9285, 0.3402; 0.9889, 0.7764)〉,
〈c6, (0.1443, 0.9692; 0.9799, 0.0941)〉, 〈c7, (0.1127, 0.9902;
0.9966, 0.0721)〉, 〈c8, (0.0727, 0.9961; 0.9987, 0.0464)〉}.
Moreover, via (25), the characteristic of the negative-ideal
PF solution z# was determined as follows: P# ={〈c1,
(0.5407, 0.6781; 0.8673, 0.4285)〉, 〈c2, (0.8075, 0.2638;
0.8495, 0.7990)〉, 〈c3, (0.5830, 0.6480; 0.8717, 0.4664)〉,
〈c4, (0.6608, 0.6619; 0.9353, 0.4995)〉, 〈c5, (0.3881, 0.7003;
0.8007, 0.3222)〉, 〈c6, (0.8540, 0.2077; 0.8789, 0.8481)〉,
〈c7, (0.8861, 0.3390; 0.9487, 0.7674)〉, 〈c8, (0.5887, 0.3709;
0.6958, 0.6421)〉}.

In Step 4, considering the universality and practicability
of the Hamming and Euclidean distance models, the distance

VOLUME 7, 2019 58179



T.-Y. Chen: Novel Generalized Distance Measure of Pythagorean Fuzzy Sets and a Compromise Approach

TABLE 2. Separation measures and closeness-based precedence indices.

parameter in the separation measures was set toβ = 1
and β = 2. Based on the weighted measure DWH (DWG,1),
the calculation results of the weighted Hamming PF distances
DWH (Pi,P∗) and DWH (Pi,P#) were obtained via (29) and (32),
respectively, and are listed in the top part of Table 2. Based on
the weighted measure DWE (DWG,2), the results of the weighted
Euclidean PF distances DWE (Pi,P∗) and DWE (Pi,P#) were
calculated via (30) and (33), respectively, and are listed in
the bottom part of Table 2.

In Step 5, the closeness-based precedence indices, namely,
CIH (Pi) and CIE (Pi), were derived by employing (35)
and (36), respectively. The computed results are listed
in Table 2. In Step 6, according to the descending order
of the CIH (Pi) values, the precedence relationships among
the four bridge-superstructure construction methods were
determined: z3 � z1 � z2 � z4. The same final ranking
result was obtained based on theCIE (Pi) values. Furthermore,
Table 2 lists the ranking orders of the four alternatives accord-
ing to the ascending order of the DWH (Pi,P∗) (or DWE (Pi,P∗))
values. In addition, this table presents the ranking results
that are based on the descending order of the DWH (Pi,P#)
(or DWE (Pi,P#)) values. Using DWH or DWE yielded the same
ranking result: z3 � z1 � z2 � z4. Therefore, the balanced
cantilever method (z3) is indeed the optimal choice for the
Suhua Highway Alternative Road Project.

B. SENSITIVITY ANALYSIS
Using the proposed PF-distance-based compromise approach
that is based on the generalized PF distance measure DG,β ,
this subsection conducts a sensitivity analysis to investigate
the influence of the distance parameter β on the solution
results.

To explore the application results that are yielded by mea-
sure DG,β under various parameter settings, the following
values of the distance parameter were considered in the sen-
sitivity analysis: β = 1, 2, 5, 10, 20, 50, 100, 200, 500,
1000, and 2000. For the bridge-superstructure construction
case, the results of the sensitivity analysis for the various β
values on the separation measures between Pi and P∗ and
between Pi and P# are presented graphically in Figures 2 and
3, respectively. The patterns among the four alternatives are
moderately stable when β ≤ 500. However, the distributions
of the separation measures show irregular patterns when

FIGURE 2. Sensitivity analysis of the separation between Pi and P∗.

FIGURE 3. Sensitivity analysis of the separation between Pi and P#.

β > 500. The change in the distribution patterns affects
the priority orders of the alternatives. As shown in Figure 2,
the consistent ranking result of z3 � z1 � z2 � z4 was
obtained based on the ascending order of the DWG,β (Pi,P∗)
values for β ≤ 500. However, different ranking results were
acquired for β > 500, e.g., z3 � z4 � z2 � z1 in the
case of β = 1000 and z3 � z1 � z4 � z2 in the case
of β = 2000. According to Figure 3, the identical ranking
result of z3 � z1 � z2 � z4 was obtained according to the
descending order of the DWG,β (Pi,P#) values for β ≤ 500.
For β > 500, distinct ranking results were obtained, e.g.,
z3 � z1 � z4 � z2 and z1 � z3 � z4 � z2 in the cases
of β = 1000 and β = 2000, respectively. To acquire more
stable and reliable results for facilitating decisionmaking, it is
suggested to set the β value within the range of [1, 500] in this
case.

The results of the sensitivity analysis on the closeness-
based precedence indices are graphically presented
in Figure 4. The common final ranking of z3 � z1 � z2 �
z4 was derived for β ≤ 500, which indicates the stable
and credible precedence relationships among four candidate
alternatives. Similar to Figures 2 and 3, the distribution of
the closeness-based precedence indices exhibits irregular
patterns when β > 500. For example, two final ranking
results of z3 � z4 � z1 � z2 and z3 � z1 � z4 � z2
were obtained in the cases of β = 1000 and β = 2000,
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FIGURE 4. Sensitivity analysis of closeness-based precedence indices.

respectively. Based on the sensitivity analysis of the param-
eter β on the CIG,β (Pi) values for all zi ∈ Z , it is concluded
that alternative z3 has the highest priority in all final ranking
results. Therefore, the balanced cantilever method (z3) is the
most suitable bridge-superstructure construction method for
the Suhua Highway Alternative Road Project.

Based on the comparison results of the sensitivity analysis,
the separation measures between Pi and P∗ and between
Pi and P# and the closeness-based precedence indices of
alternatives correspond to moderately steady and reliable
patterns when β ≤ 500. Accordingly, the specification of the
distance parameter β within the range of [1, 500] is suitable
for facilitating decision support because of the reasonable
and creditable results that are obtained via the sensitivity
analysis. The Hamming PF distance measure DH (DG,1) and
the Euclidean PF distance measure DE (DG,2) belong to the
most widely used distance models. It is suggested to set the
β value to 1 or 2 for simple computation and convenient
application. According to the sensitivity analysis and the
comparative study, the effectiveness and usefulness of the
proposed methodology in practice are satisfactory because
the developed PF-distance-based compromise approach can
yield reasonable results and present desirable outcomes to
support the authority in decision making. Moreover, the
robustness and validity of the proposed methodology have
been supported by the results of a comparative study under
various parameter settings.

C. COMPARATIVE ANALYSIS AND DISCUSSION
This subsection conducts two comparative studies to evaluate
the effectiveness and advantages of the proposed methodol-
ogy and discusses the results.

To facilitate a consistent comparison, the comparative stud-
ies focus on two commonly used distance models: the Ham-
ming and Euclidean distance models. The first comparative
study incorporated the Hamming distance model into the core
structure of TOPSIS. Developed measure DG,1 (Hamming
distance measure DH ) is compared with current distance
measures DZX

H (DC
G,1) [14], [27], D

LZ
G,1 [17], and DZLY

G,1 [18].
To determine the separation between Pi and P∗, weighted

measures DZX,W
H (DC,W

G,1 ), D
LZ,W
G,1 , and DZLY,W

G,1 are calculated
as follows:

DZX,W
H (Pi,P∗) =

1
2

n∑
j=1

wj
(∣∣∣(µij)2 − (µ∗j)2

∣∣∣
+

∣∣∣(νij)2 − (ν∗j)2
∣∣∣+ ∣∣∣(τij)2 − (τ∗j)2

∣∣∣) ,
(37)

DLZ,W
G,1 (Pi,P∗) =

1
4

n∑
j=1

wj
(∣∣µij − µ∗j∣∣+ ∣∣νij − ν∗j∣∣

+
∣∣rij − r∗j∣∣+ ∣∣dij − d∗j∣∣) , (38)

DZLY,W
G,1 (Pi,P∗) =

1
5

n∑
j=1

wj
(∣∣µij − µ∗j∣∣+ ∣∣νij − ν∗j∣∣

+
∣∣τij − τ∗j∣∣+ ∣∣rij − r∗j∣∣+ ∣∣dij − d∗j∣∣) .

(39)

The separation measures between Pi and P# that are based
on DZX,W

H , DLZ,W
G,1 , and DZLY,W

G,1 are calculated as follows:

DZX,W
H (Pi,P#) =

1
2

n∑
j=1

wj
(∣∣∣(µij)2 − (µ#j)2

∣∣∣
+

∣∣∣(νij)2 − (ν#j)2
∣∣∣+ ∣∣∣(τij)2 − (τ#j)2

∣∣∣) ,
(40)

DLZ,W
G,1 (Pi,P#) =

1
4

n∑
j=1

wj
(∣∣µij − µ#j

∣∣+ ∣∣νij − ν#j∣∣
+
∣∣rij − r#j∣∣+ ∣∣dij − d#j∣∣) , (41)

DZLY,W
G,1 (Pi,P#) =

1
5

n∑
j=1

wj
(∣∣µij − µ#j

∣∣+ ∣∣νij − ν#j∣∣
+
∣∣τij − τ#j∣∣+ ∣∣rij − r#j∣∣+ ∣∣dij − d#j∣∣) .

(42)

Consider the practical application to the bridge-
superstructure construction case. The first comparative anal-
ysis focuses on the results that are yielded by the proposed
methodology based on DG,1 and by the TOPSIS-based com-
promise approaches based on DZX

H , DLZ
G,1, and DZLY

G,1 . Fig-
ures 5 and 6 present the comparison results of the separation
measures between Pi and P∗ and between Pi and P#, respec-
tively, that are based on the Hamming distance model.

Figure 5 compares the weighted Hamming PF
distances DZX,W

H (Pi,P∗) (DC,W
G,1 (Pi,P∗)), DLZ,W

G,1 (Pi,P∗),
DZLY,W
G,1 (Pi,P∗) and DWH (Pi,P∗) (DWG,1(Pi,P∗)), which are

based on measures DZX
H (DC

G,1) [14], [27], D
LZ
G,1 [17], DZLY

G,1
[18], and the proposed DH (DG,1), respectively. The smaller
the separation measure between Pi and P∗, the closer the
alternative zi is to the positive-ideal PF solution z∗. Then, the
four alternatives can be ranked based on the ascending order
of the obtained weighted Hamming PF distances. According
to Figure 5, DZX,W

H (Pi,P∗), D
LZ,W
G,1 (Pi,P∗), D

ZLY,W
G,1 (Pi,P∗),

and DWH (Pi,P∗) yield the consistent ranking result of z3 �
z1 � z2 � z4.
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FIGURE 5. Comparison results of the separation between Pi and P∗ that
are based on the Hamming distance model.

FIGURE 6. Comparison results of the separation between Pi and P# that
are based on the Hamming distance model.

Figure 6 presents the comparison results of DZX,W
H (Pi,P#)

(DC,W
G,1 (Pi,P#)), DLZ,W

G,1 (Pi,P#), DZLY,W
G,1 (Pi,P#), and

DWH (Pi,P#) (DWG,1(Pi,P#)). The larger the separation measure
between Pi and P#, the farther the alternative zi is from
the negative-ideal PF solution z#. The four alternatives can
also be ranked according to the descending order of the
obtained weighted Hamming PF distances. DZX,W

H (Pi,P#),
DLZ,W
G,1 (Pi,P#), D

ZLY,W
G,1 (Pi,P#), and DWH (Pi,P#) all lead to

the identical ranking result of z3 � z1 � z2 � z4, which
accords with the ranking order in Figure 5.

The second comparative study employed the Euclidean
distance model in the core structure of TOPSIS. Pro-
posed measure DG,2 (the Euclidean distance measure
DE ) is compared with existing distance measures DRXG

E
(DC

G,2) [27], [36], D
LZ
G,2 [17], and DZLY

G,2 [18]. The separation
measures between Pi and P∗ that are based on weighted
measuresDRXG,W

E (DC,W
G,2 ),D

LZ,W
G,2 , andDZLY,W

G,2 are calculated
as follows:

DRXG,W
E (Pi,P∗)

=

1
2

n∑
j=1

wj

[(
(µij)2 − (µ∗j)2

)2

+

(
(νij)2 − (ν∗j)2

)2
+

(
(τij)2 − (τ∗j)2

)2
1
2

, (43)

DLZ,W
G,2 (Pi,P∗)

=

1
4

n∑
j=1

wj
[(
µij − µ∗j

)2

+
(
νij − ν∗j

)2
+
(
rij − r∗j

)2
+
(
dij − d∗j

)2
1
2

, (44)

DZLY,W
G,2 (Pi,P∗)

=

1
5

n∑
j=1

wj
[(
µij − µ∗j

)2
+
(
νij − ν∗j

)2

+
(
τij − τ∗j

)2
+
(
rij − r∗j

)2
+
(
dij − d∗j

)2
1
2

. (45)

The separation measures between Pi and P# that are based
on DRXG,W

E , DLZ,W
G,2 , and DZLY,W

G,2 are calculated as follows:

DRXG,W
E (Pi,P#)

=

1
2

n∑
j=1

wj

[(
(µij)2 − (µ#j)2

)2

+

(
(νij)2 − (ν#j)2

)2
+

(
(τij)2 − (τ#j)2

)2
1
2

, (46)

DLZ,W
G,2 (Pi,P#)

=

1
4

n∑
j=1

wj
[(
µij − µ#j

)2

+
(
νij − ν#j

)2
+
(
rij − r#j

)2
+
(
dij − d#j

)2
1
2

, (47)

DZLY,W
G,2 (Pi,P#)

=

1
5

n∑
j=1

wj
[(
µij − µ#j

)2
+
(
νij − ν#j

)2

+
(
τij − τ#j

)2
+
(
rij − r#j

)2
+
(
dij − d#j

)2
1
2

. (48)

For the bridge-superstructure construction case,
Figures 7 and 8 present the comparison results of the
separation measures between Pi and P∗ and between Pi
and P#, respectively, that are based on the Euclidean dis-
tance model. Figure 7 compares weighted Euclidean PF
distances DRXG,W

E (Pi,P∗) (DC,W
G,2 (Pi,P∗)), DLZ,W

G,2 (Pi,P∗),
DZLY,W
G,2 (Pi,P∗), and DWE (Pi,P∗) (DWG,2(Pi,P∗)), which are

based on measures DRXG
E (DC

G,2) [27], [36], DLZ
G,2 [17],

DZLY
G,2 [18], and the proposed DE (DG,2), respectively.

DRXG,W
E (Pi,P∗), DLZ,W

G,2 (Pi,P∗), DZLY,W
G,2 (Pi,P∗), and

DWE (Pi,P∗) all yield the same ranking: z3 � z1 �
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FIGURE 7. Comparison results of the separation between Pi and P∗ that
are based on the Euclidean distance model.

FIGURE 8. Comparison results of the separation between Pi and P# that
are based on the Euclidean distance model.

z2 � z4. Additionally, Figure 8 presents the comparison
results of DRXG,W

E (Pi,P#) (DC,W
G,2 (Pi,P#)), D

LZ,W
G,2 (Pi,P#),

DZLY,W
G,2 (Pi,P#), and DWE (Pi,P#) (DWG,2(Pi,P#)); these results

render the same ranking of z3 � z1 � z2 � z4.
Consider the first comparative study, which is based on the

Hamming distance model. The closeness-based precedence
indices, namely,CIZXH (using (37) and (40)),CILZG,1 (using (38)
and (41)), and CIZLYG,1 (using (39) and (42)), for each alterna-
tive zi are computed as follows:

CIZXH (Pi) =
DZX,W
H (Pi,P#)

DZX,W
H (Pi,P∗)+ D

ZX,W
H (Pi,P#)

, (49)

CILZG,1(Pi) =
DLZ,W
G,1 (Pi,P#)

DLZ,W
G,1 (Pi,P∗)+ D

LZ,W
G,1 (Pi,P#)

, (50)

CIZLYG,1 (Pi) =
DZLY,W
G,1 (Pi,P#)

DZLY,W
G,1 (Pi,P∗)+ D

ZLY,W
G,1 (Pi,P#)

. (51)

In the second comparative study, which is based on
the Euclidean distance model, the closeness-based prece-
dence indices, namely, CIRXGE (using (43) and (46)), CILZG,2
(using (44) and (47)), and CIZLYG,2 (using (45) and (48)), for

FIGURE 9. Comparison results of closeness-based precedence indices
that are based on the Hamming distance model.

FIGURE 10. Comparison results of closeness-based precedence indices
that are based on the Euclidean distance model.

each alternative zi are computed as follows:

CIRXGE (Pi) =
DRXG,W
E (Pi,P#)

DRXG,W
E (Pi,P∗)+ D

RXG,W
E (Pi,P#)

, (52)

CILZG,2(Pi) =
DLZ,W
G,2 (Pi,P#)

DLZ,W
G,2 (Pi,P∗)+ D

LZ,W
G,2 (Pi,P#)

, (53)

CIZLYG,2 (Pi) =
DZLY,W
G,2 (Pi,P#)

DZLY,W
G,2 (Pi,P∗)+ D

ZLY,W
G,2 (Pi,P#)

. (54)

The comparison results of the closeness-based precedence
indices that are based on the Hamming and Euclidean dis-
tance models are presented in Figures 9 and 10, respectively.

Consider the comparison results in Figures 5–8. As dis-
cussed previously, the smaller the separation measure
between Pi and P∗ is, the higher the performance of alterna-
tive zi. According to Figures 5 and 7, the common ranking
result of z3 � z1 � z2 � z4 was determined accord-
ing to the weighted Hamming and Euclidean PF distances
between Pi and P∗. In contrast, the larger the separation
measure between Pi and P# is, the higher the performance
of alternative zi. As shown in Figures 6 and 8, the same
ranking result, namely, z3 � z1 � z2 � z4, was
obtained based on the weighted PF distances between Pi and
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P#. These ranking results accord with the solution results
that are yielded by the proposed methodology. Neverthe-
less, the separation measures that were proposed by Li and
Zeng [17] and Zeng et al. [18] yield substantially lower
values than those by Zhang and Xu [14], Ren et al. [36],
Chen [27], and the proposed distance measures according to
Figures 5–8. Weighted measures DLZ,W

G,β and DZLY,W
G,β will

underestimate the separation measures between Pi and P∗
and between Pi and P#. Additionally, in contrast to weighted
measure DC,W

G,β , the proposed D
W
G,β fully considers the influ-

ences of four characteristics of PF sets. Based on the compari-
son results with the weighted generalized distance measures,
namely, DC,W

G,β , D
LZ,W
G,β , and DZLY,W

G,β , the proposed DWG,β can
yield more reasonable separation measure results.

According to Figures 9 and 10, a clear consensus on the
precedence relationships among four competing alternatives
is obtained: z3 � z1 � z2 � z4. Therefore, the optimal
alternative is the balanced cantilever method (z3). In addition
to the proposed measure, using the other distance measures
(DC

G,β , D
LZ
G,β , and D

ZLY
G,β ), the PF-distance-based compromise

approach yields the same final ranking result in the bridge-
superstructure construction case. Therefore, the robustness
of the proposed methodology is further demonstrated by the
results of the comparative analysis.

VII. CONCLUSIONS
In the theory of Pythagorean fuzziness, suitable distancemea-
sures for Pythagorean membership grades must be identified
for measuring the separation between PF sets. The determi-
nation of PF distance measures is essential for the devel-
opment of distance-based compromise approaches within
the PF environment. However, with the current PF distance
measures, various limitations and difficulties are encoun-
tered. In response, this paper has introduced new PF dis-
tance measures as a core technique for handling sophisticated
PF information in which Pythagorean membership grades
are utilized to accommodate the complicated uncertainty of
MCDA problems.

This paper has investigated the limitations and difficulties
of the current distance measures in PF contexts. To address
these issues, a variety of novel distance measures that are
based on PF sets has been developed by employing the
following four essential characteristics: the degree of mem-
bership, the degree of non-membership, the strength of
commitment, and the direction of commitment. The pro-
posed PF distance measures have been evaluated via the-
oretical analysis and comparative studies on critical topics
(the maximal normalized distance, failure to consider the
direction of commitment, and the distance from the com-
plement). The proposed Hamming, Euclidean, and general-
ized PF distances are effective measures for distinguishing
the separation between the characteristics of alternatives.
Based on the specification of suitable distance measures,
this paper has established a PF-distance-based compromise
approach for addressing uncertain MCDA problems within
the PF environment. This approach has been examined using

a real-world case study of bridge-superstructure construction
methods and the influence of the distance parameter has
been further explored via a sensitivity analysis. To evaluate
the methodological effectiveness, the proposed approach has
been compared with the TOPSIS-based compromise methods
that are based on the other distance measures. According to
the results of the sensitivity analysis and comparative studies,
the feasibility and reliability of the proposed methodology
have been demonstrated through comprehensive comparisons
with other relevant distance-based techniques.

In summary, compared to other relevant approaches,
the proposed methodology has the advantages of overcoming
the difficulties of the existing PF distance measures, provid-
ing a flexible and practical approach for separation measure-
ment that is based on PF sets, conductingMCDA calculations
in PF contexts more conveniently and effectively, and manip-
ulating uncertain information via a simple PF-distance-based
compromise approach. The application results, along with a
comprehensive comparative analysis, have demonstrated that
the proposed methodology can produce more convincing and
reasonable outcomes than other distance-based techniques.

Future research can focus on applying the PF-distance-
based compromise approach to more complicated real-world
problems, such as supplier evaluation and selection, invest-
ment portfolio and financial planning, land-use planning,
water resource management, transportation investment and
planning, econometric development and planning, public pol-
icy, and environmental issues. Moreover, the proposed PF
distance measures can be combined with other methods such
as TOPSIS, TODIM, VIKOR, and PROMETHEE to con-
struct more useful decision-making models within the PF
environment.
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