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ABSTRACT In this paper, a fractional-order memristive chaotic circuit system is defined according to
memristor circuit. The dynamic characteristics are analyzed through the phase diagram, bifurcation diagram,
and Lyapunov exponent spectrum, and the randomness of the chaotic pseudo-random sequence is tested
by NIST SP800-22. Based on this fractional-order memristive chaotic circuit, we propose a novel color
image compression-encryption algorithm. In this algorithm, compression sensing (CS) algorithm is used
for compression image, and then using Zigzag confusion, add modulus and BitCircShift diffuse encrypt the
image. The theoretical analysis and simulation results indicate that the proposed compression and encryption
scheme has good compression performance, reconstruction effect, and higher safety performance. Moreover,
it also shows that the new algorithm facilitates encryption, storage, and transmission of image information
in practical applications.

INDEX TERMS Color image encryption, compression sensing (CS), zigzag confusion, add modulus and
BitCircShift diffuse, fractional-order memristive chaotic circuit.

I. INTRODUCTION
As the development of science and technology, the
information safety becomes important. Compared with other
information carriers, color image has more information.
Therefore, it is necessary for us to study color image
encryption.

Due to the inherent performance of chaotic system
with randomness, non-periodicity and sensitivity to param-
eters and initial values [1]– [3], it is widely applied to
image encryption algorithm. At the moment, various color
image encryption algorithms using chaotic system were pro-
posed [4]– [21]. Huang et al. applied the unpredictable char-
acteristics of chaotic system to encrypted color image [4].
Choquet fuzzy integral and piecewise linear of chaotic map
were applied to encrypted color image [5]. Wei et al. [6]
introduced a color image encryption scheme through DNA
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sequence operation and chaotic sequence. Kadir et al. rep-
resented a color image encryption algorithm by skew tent
map and hyperchaotic system [7]. A new color image
encryption algorithm is presented through Rhouma et al. [8].
Wu et al. designed a lossless color image encryption algo-
rithm, the scheme by 6D hyperchaotic and plane-image
to improve safety performance [9]. The image encryption
scheme according to block confused and dynamic index
diffused is introduced by Xu et al. [10]. These different
image encryption algorithms [4]– [8], [10] just encrypted
image, and not compress image, which bring high stor-
age and transmission costs of the information. Because
compression sensing (CS) can effectively compress and
encrypt image, therefore, we propose a novel color image
compression-encryption algorithm through CS to overcome
these shortcoming.

Compared to other chaotic system, the fractional-order
chaotic system possesses more abundant dynamics char-
acteristics, because of its nonlocal features and high

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

58751

https://orcid.org/0000-0002-7774-2833


F. Yang et al.: Color Image Compression-Encryption Algorithm

nonlinearity [22]– [25]. What’s more, the fractional-order
chaotic system is used to cryptosystem, which increase the
key space and improve security. The fractional-order mem-
ristive system is solved through Adomian decomposition
method (ADM) algorithm [26]– [28], which reduces com-
putation time and enhances space complexity. In addition,
memristor chaotic system is easy to implement in practi-
cal application. Memristor, a nonlinear two-terminal elec-
tronic component was predicted by Chua [28]. It is used
for construction chaotic oscillators through replacing linear
or nonlinear resistance components [29]– [30]. Until 2008,
the memristor was fabricated in I Iewlett-Packard Lab [33],
which shown that the memristor was physically realized.
After that, many new memristive chaotic systems were pro-
posed and practical circuit could be realized [34]– [36].
Therefore, in this algorithm, we chose the fractional-order
memristive chaotic circuit for image encryption.

In 2006, Candes and Donoho proposed CS theory. They
proved that sample signal much smaller than the data sam-
pling rate specified by Nyquist’s theorem when the signal
is sparse or compressible [37], and the high probability
signal can be accurately reconstructed. To improve secu-
rity and compression features of the image compression
and encryption algorithm has been proposed, an improved
algorithm by CS and 4D hyperchaotic system is pro-
posed by Tong et al. [38]. Zhu et al. [39] designed
a novel compression-encryption algorithm by 2D discrete
hyperchaotic system, CS and Chinese remainder theorem.
A color image encryption algorithm through CS and frac-
tional Fourier transform is proposed [40]. Chai et al. [41]
proposed a visually secure image encryption scheme based on
compressive sensing. Among them, they just performed one
time compression, which would not enough to cut short the
storage and transmission costs of encrypted image. To ade-
quately reduce the costs, our algorithm performs twice com-
pression. In addition, the chaotic pseudo-random sequences
were not tested randomness even though they used in these
algorithms. In this paper, the randomness of chaotic pseudo-
random sequences is tested by NIST SP800-22.

In this paper, we focus on investigating a color
image compression-encryption algorithm through CS and
fractional-order chaotic circuit. The rest of the paper is orga-
nized as follows. In Section 2, the basic definition and pre-
liminary are introduced. In Section 3, dynamical behaviours
of fractional-order memristive chaotic circuit are analyzed,
and its pseudo-random sequences are designed and tested.
The proposed algorithm is described in section 4. In section
5, the simulation results of the proposed algorithm are given.
The security performances are analyzed in section 6. Finally
some conclusions are obtained.

II. BASIC DEFINITION AND PRELIMINARY
A. COMPRESSION SENSING (CS)
Assumption one dimensional signal y = [y(1), y(2), . . . ,
y(N )]T, the linear combination of its orthogonal basis is

defined by

y = 9S =
N∑
i=1

Si9i, (1)

where 9, S are basis matrix, column vector, N × 1 column
vector and the sparse coefficient of y respectively. If S has
K coefficients not equal to non-zero and (N-K) coefficients
equal to zero, y is deemed to be sparse. The sparse signal y is
measured through the measurement matrix 8 ∈ RM×N , and
the corresponding measured value Y is obtained by

Y = 8y = 89S = 2S, (2)

where 2 represents aM × N matrix.
The signal reconstruction is essentially a linear equation

solving process. Because the number of unknowns is more
than equations in Eq. (2) and the coefficients S are sparse,
the Eq. (2) has a group of multiple solutions. The minimum
norm l0 to reconstruct signal can be solved, if the measure-
ment matrix8 and the basis matrix9 are meet to (Restricted
Isometry Property) RIP [42]. For all y ∈

∑
k , the existing

δk ∈(0,1) is used to:

(1− δk ) ‖y‖22 ≤ ‖Ay‖
2
2 ≤ (1+ δk ) ‖y‖22 , (3)

where y is k-order sparse signal. δk is RIP constant, and
matrix A ∈ RM×N is meet k-order RIP.

The signal can be accurately reconstructed by

Ŝ = argmin ‖S‖0, s.t. Y = 2S (4)

where ‖ · ‖ 0 is vector norm l0, and it means that the amount
of non-zero elements in the vector y.

We use discrete cosine transform (DCT) to extend image
pixel matrix. The measurement matrix is obtained by chaotic
pseudo-random sequence and Hadamar matrix. The orthog-
onal matching pursuit (OMP) algorithm is applied to recon-
struct image.

B. ZIGZAG CONFUSION
Zigzag confusion refers to the transformation process of start-
ing from the upper left element of the matrix, scanning the
element in the matrix in the order of Z, and reorganizing them
into the same size matrix in line. It is also called the standard
transformation. Generally, 4 × 4 or 8 × 8 sub-blocks are
used as templates, or the whole square matrix can be scanned
directly. For example, the zigzag confusion of a 4× 4 matrix
is shown in Fig. 1. Where the Fig. 1(a) is original matrix, the
start pixel’s position is (1, 1) of zigzag confusion process as
shown in Fig.1 (b), and the result of matrix zigzag confusion
is shown in Fig.1(c). From the Fig. 1, we can see that the
matrix can be effectively scanned by zigzag confusion.

C. ADOMIAN DECOMPOSITION METHOD (ADM)
Suppose the fractional-order chaotic system ∗Dqto(t) =
f (x(t)) + g(t), here x(t) =[x1(t), x2(t),. . . , xn(t)]T are given
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FIGURE 1. Zigzag confusion (a) original matrix, (b) zigzag confusion,
(c) the matrix after zigzag confusion.

function variables, in autonomous systems, g(t) =[g1(t),
g2(t),. . . , gn(t)]T are constants, f (x(t)) including linear and
nonlinear partial functions. The system is divided into three
parts by the following formulation [22],
∗Dqtox(t) = Lx(t)+ Nx(t)+ g(t)
x(k)(t+0 ) = bk , k = 0, 1, . . . ,m− 1
m ∈ N , m− 1 < q ≤ m,

(5)

where ∗Dqto means that the derivative operator of order q,
L represent the linear part of the system function and N
is the non-linear part of system function, and bk is initial
value. By applying the Jqto both sides of Eq. (3) and obtained
following equation [23]:

x = Jqt0Lx + J
q
t0Nx + J

q
t0g+

m−1∑
k=0

bk
(t − t0)k

k!
, (6)

where Jqto represent the integral operator of order q, and t0 ≤
t ≤ t1, q ≥ 0, r ≥ 0, γ > −1 and C is real constant.
The basic characteristics of the integral operator J q to are
presented by [22]:

Jqt0(t − t0)
γ
=

0(γ + 1)
0(γ + 1+ q)

(t − t0)γ+q, (7)

Jqt0C =
C

0(q+ 1)
(t − t0)q, (8)

Jqt0J
r
t0x(t) = Jq+rt0 x(t). (9)

According to principle of Adomian decomposition algo-
rithm, the non-linear parts of Eq. (5) are decomposed byAij =

1
i!
[ d

i

dλiN (νij (λ))]λ=0

νij (λ) =
∑ i

k=0(λ)
kxkj

, (10)

where, i ∈(0, ∞), j ∈(1, n). Then the non-linear parts are
express as

Nx =
∞∑
i=0

Ai(x0, x1, . . . , x i). (11)

So the solution of Eq. (5) x =
∑
∞

i=0 is described by

x0 = Jqt0g+
∑m−1

k=0 bk
(t − t0)k

k!
x1 = Jqt0Lx

0
+ Jqt0A

0(x0)
x2 = Jqt0Lx

1
+ Jqt0A

1(x0, x1)
. . .

x i = Jqt0Lx
i−1
+ Jqt0A

i−1(x0, x1, . . . , x i−1).
. . .

(12)

III. FRACTIONAL-ORDER MEMRISTOR CHAOTIC CIRCUIT
PSEUDO-RANDOM SEQUENCES
A. FRACTIONAL-ORDER CHAOTIC CIRCUIT
Here, the memristor chaotic circuit as shown in Fig. 2(a), the
equivalent circuit of voltage-controlledmemristor is shown in
Fig. 2(b). On this basis, a fractional-order memristive chaotic
circuit is defined.

FIGURE 2. Memristor circuit based on Chua’s circuit, (a) simple circuit
schematic, (b) Voltage-controlled memristor circuit.

Based on Fig. 2(b), the relationship of input voltage v and
current i, and voltage v0 and capacitor C0, are described as
follows

C0
dv0
dt
= −

1
Ra
v, (13)

i = W (v0)v = −
1
Rb

(1− gv20)v, (14)

where g represents overall gain of multipliersMa andMb.
For the variables v0, v1, v2 and i in Fig. 2(a), the circuit

equations are given by

C0
dv0
dt
= −

1
Ra
v1

C1
dv1
dt
=

1
Ra

(1− gv20)v1 + i2

C2
dv2
dt
=
v2
R
− i2

L
di2
dt
= v2 − v1

, (15)

where v = v1.
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Let x = v0, y = v1, z = v2, w = Ri2, τ = t/RC2, Rb = R,
a =RC2/RaC0, b = C2/C1, c = R2C2/L, so the Eq. (15) is
defined as [43]

ẋ = −ay
ẏ = b(1− gx2)y+ bw
ż = z− w
ẇ = c(z− y)

, (16)

where a, b, c and g represent system parameters. Set a =
12.375, b = 7.0213, c = 2.475, g = 0.2 and x ∈
(0, 1.5, 0, 0), we get the Lyapunov exponents (0.0805, 0, -
0.0303, -34.5343). Obviously, in these Lyapunov exponent
values, there is a positive exponent, which shows that the
system is chaotic.

According to the fractional-order definition, and corre-
sponding the fractional-order system is given by

cDqt0x1 = −ax2
cDqt0x2 = b(1− gx21 )x2 + bx4
cDqt0x3 = x3 − x4
cDqt0x4 = c(x3 − x2)

, (17)

where q represent order of the equation. When q = 1, system
(17) becomes system (16).

B. THE SOLUTION OF FRACTIONAL-ORDER
MEMRISTOR CHAOTIC CIRCUIT
The fractional-order system (17) is derived by ADM algo-
rithm, and then linear and nonlinear terms are obtained as
follows

Lx1
Lx2
Lx3
Lx4

 =

−ax2

bx2 + bx4
x3 − x4
c(x3 − x2)

 ,

Nx1
Nx2
Nx3
Nx4

=

0
−bgx21x2
0
0

 . (18)

Based on Eq. (10), the before five Adomian polynomials
for the nonlinear part -bg x21x

2 are



A0
−bgx2(x1)2

= −bgx02 (x
0
1 )

2

A1
−bgx2(x1)2

= −bg(x12 (x
0
1 )

2
+ 2x02x

1
1x

0
1 )

A2
−bgx2(x1)2

=−bg(x22 (x
0
1 )

2
+2x12x

1
1x

0
1+2x

0
2x

2
1x

0
1+x

0
2 (x

1
1 )

2)

A3
−bgx2(x1)2

= −bg(x32 (x
0
1 )

2

+2(x22x
0
1x

1
1 + x

0
2x

3
1x

0
1 + x

0
2x

1
1x

2
1 ))

−bg(2x12x
2
1x

0
1 + x

1
2 (x

1
1 )

2)
A4
−bgx2(x1)2

= −bg(x42 (x
0
1 )

2

+2(x32x
0
1x

1
1 + x

2
2x

2
1x

0
1 + x

1
2x

1
1x

2
1 ))

−2bg(2(x12x
3
1x

0
1 + x

0
2x

4
1x

0
1 + x

0
2x

3
1x

0
1 )+ x

2
2 (x

1
1 )

2

+x02 (x
2
1 )

2)
(19)

The initial conditions are

x11 = −ax
0
2
(t − t0)q

0(q+ 1)

x12 = (b(x02 − gx
0
2 (x

0
1 )

2)+ bx04 )
(t − t0)q

0(q+ 1)

x13 = (x03 − x
0
4 )

(t − t0)q

0(q+ 1)

x14 = (b(x03 − x
0
2 ))

(t − t0)q

0(q+ 1)

, (20)

where x0j is the initial values of system (17), h = t − t0, and
then the solution of system (17) can be represented by

x̃j(t) = c0j + c
1
j
(t − t0)q

0(q+ 1)
+ c2j

(t − t0)2q

0(2q+ 1)

+ c3j
(t − t0)3q

0(3q+ 1)
+ c4j

(t − t0)4q

0(4q+ 1)
(21)

where
c01 = x01
c02 = x02
c03 = x03
c04 = x04

, (22)


c11 = −ac

0
2

c12 = bc02 + bc
0
4 − bgc

0
2(c

0
1)

2

c13 = c03 − c
0
4

c14 = c(c03 − c
0
2)

, (23)


c21 = −ac

1
2

c22 = bc12 + bc
1
4 − bg(c

1
2(c

0
1)

2
+ 2c02c

1
1c

0
1)

c23 = c13 − c
1
4

c24 = c(c13 − c
1
2)

, (24)



c31 = −ac
2
2

c32 = bc22 + bc
2
4 − bg(c

2
2(c

0
1)

2
+ 2c02c

2
1c

0
1

+(2c12c
1
1c

0
1 + c

0
2(c

11
1 )2))

0(2q+ 1)
02(q+ 1)

c33 = c23 − c
2
4

c34 = c(c23 − c
2
2)

, (25)



c41 = −ac
3
2

c42 = bc32 + bc
3
4 − bg((c

2
2(c

0
1)

2
+ 2c02c

3
1c

0
1

+2(c22c
1
1c

0
1 + c

1
2c

2
1c

0
1 + c

0
2c

1
1c

2
1)

0(3q+ 1)
0(q+ 1)0(2q+ 1)

+c32(c
11
1 )2

0(3q+ 1)
03(q+ 1)

)

c43 = c33 − c
3
4

c44 = c(c33 − c
3
2).

(26)

C. DYNAMICAL ANALYSIS OF FRACTIONAL-ORDER
CHAOTIC CIRCUIT
Here, set the system parameter a = 12.375, b = 7.0213, c =
2.475, g = 0.2, q = 0.98, h = 0.001 and initial values (x1,
x2, x3, x4 )∈ (0, 1.5, 0, 0), and we get Lyapunov exponents
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FIGURE 3. Dynamic characteristics of the fractional-order memristor
chaotic system, (a) x-y plane, (b) bifurcation diagram for q ∈(0.7, 1),
(c) Lyapunov exponents spectrum for q∈(0.7, 1).

(0.1209, 0, -0.0580, -49.9689), Lyapunov dimension DL =

3.0013 and phase diagram as shown in Fig.3 (a).Therefore,
the system is chaotic. Then let the other parameters and
initial values keep unchanged, order q ∈ (0.7, 1), bifurca-
tion diagram and Lyapunov exponents spectrum are shown
Fig.3 (b) and (c). From the Fig. 3(b) and (c), we can see
that the fractional-order memristor chaotic circuit system has
better randomness and parameters sensitivity. Hence, it can
improve security performance to apply in image encryption
algorithm.

D. DESIGN OF FRACTIONAL-ORDER CHAOTIC
PSEUDO-RANDOM SEQUENCE
The quantized sequences of chaotic sequences are called
chaotic pseudo-random sequences. The randomness of
chaotic system is mostly reflected in the performance
of quantized random sequences. Quantization of chaotic
real value sequence is an important part of generat-
ing pseudo-random sequence design. This process directly
affects the randomness, complexity and other characteristics
of sequences, and ultimately affects the security of its appli-
cation system. Set a = 12.375, b = 7.0213, c = 2.475,
g = 0.2, initial system value (x1, x2, x3, x4 )∈ (0, 1.5, 0, 0),
then the system are decimals as the chaotic sequences. The
specific steps as follows.
Step 1: After the system parameters and initial values are

determined, the system was iterated for 5000 times to elimi-
nate the transient effect, and then fractional-order memristive
chaotic circuit system is continued to be iterated. We get
the four decimals sequences, and then new four decimals
sequences are generated by

xl(j) = 2× x(j)−
max(x)+min(x)
max(x)−min(x)

y1(j) = 2× y(j)−
max(y)+min(y)
max(y)−min(y)

z1(j) = 2× z(j)−
max(z)+min(z)
max(z)−min(z)

wl(j) = 2× w(j)−
max(w)+min(w)
max(w)−min(w)

,

(27)

where x(j), y(j), z(j) and w(j) represents four chaotic
sequences, max and min are Maximum and Minimum of
chaotic sequence. In addition, x1(j), y1(j), z1(j) and w1(j)
denote new decimals sequences.

Step 2: Decimals sequences are converted to integer
sequence by taking the module, integer up and integer down.

x2(j) = mod(round(1000×
∣∣x1(j)× 1016

∣∣
−floor(

∣∣x1(j)× 1016
∣∣))

y2(j) = mod(round(1000×
∣∣y1(j)× 1016

∣∣
−floor(

∣∣y1(j)× 1016
∣∣))

z2(j) = mod(round(1000×
∣∣z1(j)× 1016

∣∣
−floor(

∣∣z1(j)× 1016
∣∣))

w2(j) = mod(round(1000×
∣∣w1(j)× 1016

∣∣
−floor(

∣∣w1(j)× 1016
∣∣))

, (28)

where x1(j), y1(j), z1(j), w1(j) represents new four decimals
sequences, and x2(j), y2(j), z2(j), w2(j) denote new integer
sequences.

E. NIST SP800-22 TEST
In this paper, the quantized chaotic pseudo-random sequences
are used to image compression and encryption algorithm,
and random sequence performance is analyzed by NIST
SP800-22. For this test, all testing is done automatically
through the test package STS. There are 15 test indica-
tors and 2 kinds of judgment basis (P-value, pass rate) in
NIST SP800-22 [44]. For the pass rate, given significant
level of α, test sequence β group, the confidence interval of
pass-through rate is defined as:

(1− α − 3
√
α(1− α)/β, 1− α + 3

√
α(1− α)/β). (29)

If the pass rate falls within this confidence interval, which
indicates that the sequence passed the test, otherwise, the test
is failed. For P-value, if P-value > 0.0001, which shows
that the sequence is random, otherwise, the sequence is not
random.

Setting the significant level of α = 0.01, test sequence
β = 100, each group leader is 1 000 000 bit, the confidence
interval is [0.96, 1], we get the pseudo-random sequences
of test results for fractional-order memristor chaotic circuit
as shown in Table.1. From the Table.1 we can see that
the pseudo-random sequence generated by fractional-order
memristive chaotic circuit passed 15 test indexes of NIST
SP 800-22 random number inspection standard. Moreover,
the image encryption algorithm using fractional-order mem-
ristor chaotic circuit has more high security features.

IV. IMAGE COMPRESSION-ENCRYPTION AND
DECRYPTION ALGORITHM
A. COMPRESSION-ENCRYPTION ALGORITHM
The proposed color image compression and encryption algo-
rithm process is shown in Fig.4, and the main process is
consist of decomposition of the image plane, discrete cosine
transform (DCT), CS, Zigzag scrambling and add modulus
and BitCircShift diffusion. The details of compression and
encryption scheme are as follows.
Step 1: The plain color image I with size of H × W is

inputted.
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TABLE 1. Test Results Of NIST SP 800-22.

FIGURE 4. Flowchart of the process encryption algorithm.

Step 2: The plain color image I are decomposed into three
plains R, G and B with size of H ×W .
Step 3: To sparse the pixel matrix of image, three sparse

matrices of planes R, G and B are obtained byDCT operation.
The definition of DCT is as follows,

Bpq = αpαq
H−1∑
h=0

W−1∑
w=0

Ahw cos
π (2h+ 1)p

2H
cos

π (2w+ 1)q
2w

,

(30)

where, ∗ tests contain multiple tests, listed as the worst case.

αp =


1
√
H
, p = 0√

2
H , 1 ≤ p ≤ H − 1

, (31)

αq =


1
√
W
, q = 0√

2
W , 1 ≤ q ≤ W − 1

, (32)

where A is pixel matrix of original image, and B represents
the new matrix, H andW means that the length and height of
the image.
Step 4: To get the measurement matrix, for the fractional-

order memristor chaotic circuit system, setting the parameter
and initial values, let the system (20) iterate m + M times
and thrown away the formerm values to enhance initial value
sensitivity. We obtain four chaotic sequences, and then the
four pseudo-random sequences are obtained by quantization
operation of chaotic sequences, the quantitative principle is
defined in section III D.
Step 5: Three pseudo-random sequences are randomly

selected from the Step.4, and then three measurements matri-
ces ofM×M are obtained by combining the Hadamar matrix
andM =CR(compression ratio)× H . Here, Hadamar matrix
is generated by [

−1 1
1 −1

]
(33)

Step 6: According to mensurement, three sparse plain
matrices after DCT is calculated by compression using three
measurement matrices. We get three compressed image pixel
matricesH×M, on the basis of this, by calculating the second
mensurement matrix. Then three compressed image pixel
matricesM×M are obtained.
Step 7: The confusion operations of the three compressed

pixel matrices. The pixel positions of three compressed image
pixel matrices are scrambled by the zigzag confusion in
Section 2.2, and we can get three confused image pixel
matrices.
Step 8: In order to obtain the random of chaotic sequence of

diffusion operations, setting parameters and initial conditions
of the fractional-order memristor chaotic circuit system, and
let the system (20) iterate n+M times and thrown away the
former n values to enhance initial value sensitively, we can
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FIGURE 5. Flowchart of the process decryption algorithm.

get four chaotic sequences, and then four pseudo-random
sequences are generated by Eq. (27) and Eq. (28).
Step 9: In diffusion operations, the pixel values are dif-

fused by new pseudo-random sequence. The new two pseudo-
random sequences S1 and S2 are obtained by

p(4j− 3) = x(j)
p(4j− 2) = y(j)
p(4j− 1) = z(j)
p(4j) = w(j)

, (34)

where x(j), y(j), z(j) and w(j) represent four pseudo-random
sequences, and p represent new pseudo-random sequence.

Step.10 The diffusion operations for three scrambled
image pixel matrices are performed through the Modulariza-
tion and the BitCircShift algorithm. The diffusion results are
obtained by{
Ci = (Ci−1 ⊕ Si ⊕ Pi) <<< LSB3 (Ci−1)
Ci = (Ci−1 + Si + Pi) mod 256 <<< LSB3 (Ci−1) ,

(35)

where Si are the pseudo-random sequences S1 and S2. LSB3
represents the lowest three digits of the data, and the proposed
algorithm using the 8b image, therefore, each pixel has 8b,
the lowest three digits of the any one data is (0, 7). This is the
valid range of circular bits for a pixel point data.
Step 11: The encrypted image is obtained through combin-

ing three diffused image pixel matrices.

B. DECRYPTION ALGORITHM
It is obvious from the Fig.5 that decryption algorithm process
including the Modularization and the BitCircShift, Zigzag
and DCT inverse algorithm. A detailed process of the recon-
struction and decryption algorithm is presented as follows.
Step 1: For an encrypted image M×M, decompose it into

three pixel matricesM×M.
Step 2: The Modularization and the BitCircShift inverse

algorithm are used to recover three diffused pixel matri-
ces. The diffusion pseudo-random sequences are obtained by
Step.8 and 9 of the encryption.

Step 3: Three compressed pixel matrices are regained
through Zigzag reverse algorithm.
Step 4: Three sparse plane matrices N × N are recon-

structed based on OMP algorithm. Where, the measurement
matrices are generated by using Eq. (30) and (31).
Step 5: The decryption image is obtained by DCT inverse

algorithm and IDCT is calculated as follow

Amn =
M−1∑
m=0

N−1∑
n=0

αpαqBpq cos
π (2m+ 1)p

2M

cos
π (2n+ 1)q

2N
, (36)

αp =


1
√
M
, p = 0√

2
M , 1 ≤ p ≤ M − 1

, (37)

αq =


1
√
N
, q = 0√

2
N , 1 ≤ q ≤ N − 1

, (38)

where B represents the pixel matrix reconstructed by OMP
algorithm. A denote new IDCT result matrix,M and N means
that length and height of the image.

V. SIMULATION RESULTS
A. THE RESULTS OF ENCRYPTION AND
DECRYPTION ALGORITHMS
Setting the parameters a = 12.375, b = 7.0213, c = 2.475,
g = 0.2, h = 0.001, q = 0.98, x0 = 0, y0 = 1.5,
z0 = 0, w0 = 0, m = 500 and n = 500, and then input
color ‘‘Lena’’ and ‘‘pepper’’ images with the size of 256 ×
256. The proposed compression and encryption algorithm are
performed in MATLAB 2014a, and the compression ratio is
0.8, the encrypted image and decrypted image are as shown
in Fig. 6. It can be seen from the Fig. 6 that the new algorithm
can compression and encryption image effectively.

B. THE COMPRESSION RATIO ANALYSIS
The compression performance of the new algorithm is ana-
lyzed by Mean Structural Similarity (MSSIM) and Peak Sig-
nal to Noise Ratio (PSNR) with different compression ratios
(CR). TheCR is defined as [45];

CR =
CM × CN
IM × IN

, (39)

where IM and IN are length and height of original image. CM
and CN are length and height of encrypted image, respec-
tively.

1) MEAN STRUCTURAL SIMILARITY (MSSIM)
The MSSIM is used to estimate the characteristic of the
encryption algorithm, and it is described by [46]

l(X ,Y ) =
2µXµY + L1
µ2
X + µ

2
Y + L1

, (40)

c(X ,Y ) =
2σXσY + L2
σ 2
X + σ

2
Y + L2

, (41)
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FIGURE 6. Algorithm test results, (a1) original Lena image, (a2) encrypted
Lena image, (a3) decrypted Lena image, (b1) original pepper image, (b2)
encrypted pepper image, (b3) decrypted pepper image.

s(X ,Y ) =
σXY + L3
σXσY + L3

, (42)

SSIM(X ,Y ) = l(X ,Y )× c(X ,Y )× s(X ,Y ), (43)

MSSIM(X ,Y ) =
1
M

M∑
k=1

SSIM (xk , yk) , (44)

where µ represent the mean of image structural. σ means
that image variance structural. L1, L2 and L3 represent small
constants to avoid denominator of 0. M represent the overall
number of image blocks. Here, parameters L1 = (K1 × C)2,
L2 = (K2 × C)2, L3 = L2/2, K1 = 0.001, K2 = 0.003,
M = 64, C = 255. The MSSIM values with different CR
are shown in Table.2. According to the Table.2, the MSSIM
values change when the compression ratio varies, which
effectively compress and encrypt image according to different
practical application needs.

TABLE 2. Mssim Values Under The Different CR.

2) PEAK SIGNAL TO NOISE RATIO (PSNR)
PSNR is used to evaluate the performance of reconstruction
algorithm to restore image. The formula for calculating PSNR
is defined as [46], [47]:

MSE =
1
rc

r∑
i=1

c∑
j=1

(Eij − eij)2, (45)

PSNR = log10(
2552

MSE
), (46)

where r and c are length and height of the image, MSEmeans
that mean error between the original and the restore image.Eij
and eij are pixels of original and restore image in (i, j) posi-
tion. The larger of PSNR value shows that the reconstructed
image is closer to the original image. The PSNR values of
different CR are listed in Table.3. The PSNR values are close
to 30 when CR>0.4. Therefore, the reconstruction result is
also good for a small of compression.

TABLE 3. Psnr values under the different CR.

VI. PERFORMANCE ANALYSIS
For the security performance analysis of existing image
encryption algorithms, Lena image is generally used as the
target image for performance analysis. In order to facilitate
comparison, we only analyze the features of Lena image.

A. KEY SPACE
For a good encryption algorithm, it should be has enough
large key space and to resist brute force attacks. Our key of
image compression and encryption scheme is comprised of
chaotic system parameters a, b, c, g, q, h, initial values x0,
y0, z0, w0, iterations m and n. If the computational accuracy
is 10−15, the key space of the proposed algorithm would be
2448, which shows that the new algorithm has larger key space
and can prevent the brute force attacks. Key space compared
results with other algorithms as shown Table.4.

TABLE 4. Key space of different algorithm.

B. KEY SENSITIVITY ANALYSIS
The sensitively is an important indicator to evaluate the secu-
rity performance of encryption algorithm. To test the key
sensitivity, we make a small change in the value of the secret
key, the decrypted image results as Fig.7. It can be seen that
if the key value is slightly changed, the decrypted image is
entirely different from the original Lena image. Moreover,
the proposed algorithm is extremely sensitivity to its key.

C. STATISTICAL ANALYSIS
In this section, the statistical performance is analyzed by
histogram and the correlation coefficient.

1) HISTOGRAM ANALYSIS
The histogram indicates that the image pixel distribution.
For the original image, its pixel distribution fluctuate, on the
contrary, the encrypted image’s pixel distribution is uniform
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FIGURE 7. key sensitively test, (a1) x0+ 10− 15, (a2) y0+ 10− 15,
(a3) z0+ 10− 15, (b1) w0+ 10− 15, (b2) a+ 10− 15, (b3) b+ 10− 15,
(c1) c + 10− 15, (c2) g+ 10− 15, (c3) q+ 10− 15.

FIGURE 8. Histogram of image, (a1) histogram of original image R,
(a2) histogram of original image G, (a3) histogram of original image B,
(b1) histogram of encrypted image R, (b2) histogram of encrypted
image G, (b3) histogram of encrypted image B.

and flat. The histogram of original and encrypted Lena image
with R, G and B are represented in Fig.8. It shows that
the histogram distribution of original image is fluctuates,
histogram distribution of encrypted image is flat. Moreover,
the proposed algorithm can resist histogram attack.

2) CORRELATION COEFFICIENT ANALYSIS
Image correlation means that an important statistical char-
acteristic of image, the encryption algorithm can be cracked

FIGURE 9. Correlation of images, (a1) correlation of original Lena image
at horizontal, (a2) correlation of original Lena image at vertical, (a3)
correlation of original Lena image at diagonal, (b1) correlation of
encrypted Lena image at horizontal, (b2) correlation of encrypted Lena
image at vertical, (b3) correlation of original Lena image at diagonal.

TABLE 5. Correlation coefficient of different directions.

through statistical analysis. Therefore, in this paper, the cor-
relation coefficient of different pixels is used to measure the
ability to reduce correlation of the algorithm. If the correla-
tion coefficient of encrypted image is smaller than original
image, the encryption performance of algorithm is good and
the ability of anti-attack cracking is strong. Correlation coef-
ficients of different pixels are calculated by [48]

rxy =
cov(x, y)
√
D(x)D(y)

, (47)

where cov (x, y) represent the covariance of x and y,D(x) and
D(y) means that variance of x and y. According to mathemat-
ical expectation E(x), cov (x, y),D(x) andD(y) are calculated
by

cov(x, y) = E {[x − E(x)] [y− E(y)]} , (48)

E(x) =
1
M

M∑
i=1

xi, (49)

D(x) =
1
M

M∑
i=1

[xi − E(x)]2, (50)

whereM represent the overall pixels of the image. In the test,
1000 pixel pairs were randomly selected for the original Lena
and Fig. 6(b), and the correlation coefficients of all directions
were obtained by the above formulas. The correlations of
original and encrypted Lena image at different directions are
shown in Fig.9. The different pixel values of the original
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TABLE 6. Correlation Coefficient of Different Direction for R, G and B.

image are distributed on the diagonal, which indicates that
it has extremely correlation between adjacent pixels of orig-
inal image. We can see that all the pixels of the encrypted
image are distributed in the entire plane, which demonstrates
that almost not have correlation between different pixels of
encrypted image.

Correlation coefficient values of original and encrypted
Lena image at different directions are listed in Table. 5.
Correlation coefficient values between pixels of R, G and
B components at different directions are shown in Table 6.
We can see that correlation coefficient values of original
image are about 1, the encrypted image are almost 0, which
shows that the new algorithm can effectively reduce corre-
lation between adjacent pixels of original image. Compared
with other algorithms, the proposed color image compression
and encryption scheme has higher security.

D. INFORMATION ENTROPY
The information entropy is a particularly useful measure to
test the randomness of image information, and it is calculated
by

H = −
M∑
j=0

p(i) log2 p(j), (51)

whereM means that the gray scale of the image, and p(j) rep-
resent the probability of gray value j occurrence. For L = 256
gray image, the theoretical value of information entropy H
is 8 [27]. The information entropy values of encrypted Lena
image for R,G and B in Table 7. Table 8 listed the information
entropy values of different encryption algorithms. From the
Table 7 and 8 we can see that new algorithm has more
randomness of image information.

E. DIFFERENTIAL ATTACK ANALYSIS
Researchers usually use pixel count change rate (NPCR)
and average intensity change rate (UACI) as two criteria to
measure whether the method can resist differential attack.
NPCR and UACI calculation as follows:

NPCR =

∑
i,j
D(i, j)

L
× 100% (52)

TABLE 7. Information entropy of R, G and B.

UACI =
1
L

∑
i,j

|C(i, j)− C1(i, j)|
256

× 100%, (53)

here, C is encrypted image pixel value before original image
changed, andC1 is encrypted image pixel values after original
image changed, L is the number of all pixels in an image, if
C(i, j) and C1(i, j) are not equal, then D(i, j) is 1, otherwise
D(i, j) is 0.
In our experiments, we only change the lowest bit of one

random pixel of the original image, and carry out the test for
10 times with one round of encryption to obtain the average
NPCRs and UACIs as listed in Table.9. The results shows that
the mean NPCRs and UACIs of our algorithm are over 99.6%
and 33.3% respectively only through one round of encryption,
which shows that the algorithm can prevent the differential
attack.

F. ROBUSTNESS ANALYSIS
The robustness is an important measure to evaluate algorithm
security. Image robustness refers to that the image still has
certain fidelity after experiencing various signal processing
or various attacks. In this test, robustness is analyzed by
cropping attack, rotation attack.

1) CROPPING ATTACK
To test the algorithm resist cropping attack, we make the
encrypted Lena image with six different data losses as shown
in Fig. 10 (a), (b), (c), (d), (e) and (f). The corresponding
decrypted images are presented in Fig. 10 (g), (h), (i), (j),
(k) and (l), respectively. The Fig. 10 shows that even though
the encrypted images are lost, the main information of image
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TABLE 8. Information entropy of different encryption algorithm.

FIGURE 10. Cropping attack analysis results, (a) 1/2 data loss of
Figure.6(a2), (b) 1/4 data loss of Figure.6(a2), (c) 1/8 data loss of
Figure.6(a2), (d) 1/16 data loss of Figure.6(a2), (e) 1/32 data loss of
Figure.6(a2), (f) 1/32 data loss of Figure.6(a2), (g) decrypted image
of 1/2 data loss, (h) decrypted image of 1/4 data loss, (i) decrypted image
of 1/8 data loss, (j) decrypted image of 1/16 data loss, (k) decrypted
image of 1/32 data loss, (l) decrypted image of 1/64 data loss.

TABLE 9. Mean NPCRs and UACIs of encrypted Lena images.

can be covered. Therefore, our algorithm would resist data
loss attack in different degree.

2) ROTATION ATTACK
The rotation attack is a typical geometric attack. If the
attacker made slight geometric transformation on the

FIGURE 11. Rotation attack results, (a) recovered image of rotation 2◦,
(b) recovered image of rotation 18◦, (c) recovered image of rotation 25◦.

encrypted image, the pixel position in the image is almost
completely changed, which make the image owner unable
to get the properly encrypted image. For this test, the cipher
image is rotated with 2◦, 18◦ and 25◦, and the test results as
show in Fig. 11. The test results indicate that the algorithm
can resist rotation attack.

VII. CONCLUSION
In this paper, a fractional-order memristor chaotic circuit is
obtained. The dynamic behaviors analysis shows that the
fractional-order chaotic system represented better sensitiv-
ity of initial values and parameters. The randomness test
indicates that the pseudo-random sequence generated by
fractional-order memristor chaotic circuit has better random-
ness. Moreover, it has some advantages of image information
encryption. Based on this chaotic system, a novel color image
compression and encryption algorithm is proposed. The com-
pression ratio research results show that the algorithm has
stronger compression and reconstruction effects. The security
performance analysis illustrates that the designed algorithm
can resist various attack. Therefore, we presented image com-
pression and encryption scheme can effectively compress and
encrypt image, which provides experimental basis and theo-
retical guidance for safe transmission of image information.
In the later work, we will propose more encryption and CS
algorithms and continuously improve security.
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