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ABSTRACT Accurate and reliable estimation of heart rate (HR) from photoplethysmographic (PPG) signals
during moderate and vigorous physical activities is a challenging task, since intense motion artifacts can
easily disguise the true HR. A novel method for estimating HR from PPG signal, during intensive physical
exercise, is presented in this paper. The proposed method employs a recursive Wiener filtering technique
for HR estimation from motion artifacts-corrupted PPG signal and simultaneously recorded the triaxial
accelerometer signal. The experimental results demonstrated that the average relative error and the average
absolute error of the proposed method on a public dataset (IEEE 2015 Signal Processing Cup Database)
of 23 PPG recordings were 1.73 and 1.85 beats per minute, respectively. Our proposed approach is faster
and more accurate than the existing proposals. Therefore, the proposed algorithm can be a reliable solution
for HR estimation from noisy PPG signal.

INDEX TERMS Fast Fourier transform, heart rate, motion artifacts, photoplethysmographic signal, recursive
Wiener filtering, recursive spectral subtraction.

I. INTRODUCTION
In recent years, photoplethysmography (PPG) has drawn
much attention as it is a simple, low cost and non-
invasive technique for measuring heart rate (HR), respiratory
rate (RR), blood pressure, oxygen saturation level in blood,
blood sugar and so on [1]. In clinical settings, HR is the most
commonly measured bio-marker for monitoring cardiac
activity. Measuring accurate and reliable HR during phys-
ical exercise is also one of the significant features in fit-
ness testing. Although PPG signal is strongly modulated by
cardiac frequency, it becomes very difficult to estimate HR
during physical exercises due to the motion artifacts (MAs).
During physical exercise, the dominant frequency (the
frequency at which the maximum power of a signal is
captured) of PPG signal presents the effects ofMAs instead of
cardiac activity, which is shown in the black boxes ‘b’ and ‘d’
in the Fig. 1. Therefore, the estimation of dominant fre-
quency from PPG signal does not provide the true HR during
exercise (Fig. 1) and consequently, HR estimation from PPG
becomes erroneous.

The associate editor coordinating the review of this manuscript and
approving it for publication was György Eigner.

The IEEE 2015 Signal Processing Cup challenge public
database of PPG during intensive exercise with reference
ECG (electrocardiogram) has resulted in a surge of research
publications in the area of PPG derived HR estimation.
Different methods that have been proposed to estimate HR
from PPG during physical exercise by attenuating or remov-
ing MAs are blind source separation (e.g. independent
component analysis [2], principal component analysis [3],
canonical correlation analysis, singular spectrum analy-
sis [4]), adaptive filtering [5]–[7], ensemble empirical mode
decomposition [8], spectral subtraction (SS) [9], Kalman
filtering [10], [11], ensemble Wiener filtering [12], [13],
particle filtering [14], spectral matrix decomposition [15]
and iterative adaptive thresholding [16] (Table 1). Previ-
ously reported Wiener filtering based HR estimation algo-
rithms [12], [13], [17], did not exploit individual channel
of accelerometer (ACM) signal for denoising PPG signal.
Instead, all these studies used the resultant ACM signal as
noise signature in Wiener filter. To improve the PPG denois-
ing, we have used the individual channel of ACM signal
independently through recursive Wiener filter in this work.

In this paper, a novel method, by combining recur-
sive Wiener filtering (RWF) and history tracking based
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FIGURE 1. Time-frequency analysis of raw PPG signal where the RGB
color map represents the amplitude information. Ground truth HR
frequency curve (showed on magenta) was measured from the reference
ECG signal. The dominant frequency of the PPG spectrogram in white
boxes ‘a’, ‘c’ and ‘e’ represent the HR activity and black boxes ‘b’ and ‘d’
represent the effects of MAs. This figure is generated using short time
Fourier transform. We chose 8 second non-overlapping window and the
complete recording of eight minutes was segmented into approximately
148 segments. The FFT resolution was chosen 2048 point with the sample
rate of 25 Hz.

TABLE 1. Methods for extracting HR from PPG during intense exercise.

post-processing, is presented that shows a better performance
than the existing proposals for estimating HR from PPG
signal corrupted by intense MAs.

II. DATABASE AND METRICS
A. DATABASE
In this study, we used 23 five minute recordings from 20 sub-
jects of ages from 18 to 58 years, which is publicly available
in IEEE Signal Processing Cup database [4]. Each recording
includes one channel ECG, two channel PPG, and triaxial
ACM signals, where all signals are sampled at 125 Hz.
The PPG signals were recorded using two wrist-worn pulse

FIGURE 2. Recording protocol of IEEE signal processing cup database.
Group G1, G2, and G3 have 12, 22, and 23 recordings respectively.

oximeters with green LEDs (wavelength ∼ 515 nm). The
ACM signals were recorded using a triaxial accelerometer,
which was also embedded in the same wristband with pulse
oximeter. One channel electrocardiogram (ECG) signal is the
ground truth and it is simultaneously recorded with other
signals. The ECG signals are reliable enough to be the ground
truth because the electrical signals measured from the chest
are less affected by MAs. Subjects were engaged with three
different types of exercises: ‘T0’, ‘T1’, and ‘T2’ respectively.
First twelve (from 1st to 12th) recordings of the database
are of ‘T0’ type exercise where signals are corrupted with
less intensive MAs and grouped as ‘G1’. The other eleven
recordings (from 13th to 23rd) are highly corrupted by MAs
since they were acquired during ‘T1’ and ‘T2’ type exercises;
for them, the HR estimation is more challenging than for the
first 12 recordings. For the convenience of comparison with
the existing algorithms in the literature, we used the same
grouping of recordings: i) G1 (first 12 of 23 recordings);
ii) G2 (all 23 recordings except recording 13th); and
iii) G3 (all 23 recordings). The entire outline of the dataset
and exercise types is illustrated in Fig. 2.

B. PERFORMANCE MEASUREMENT
In line with previous studies [4], [9], [10], [18], the aver-
age absolute error (avAE) and average relative error (avRE)
metrics are used in this study to measure the performance of
HR estimator. avAE and avRE are defined using equations
1 and 2.

avAE =
1
N

N∑
n=1

|HRest (n)− HRtrue(n)| (1)

avRE =
1
N

N∑
n=1

|HRest (n)− HRtrue(n)|
HRtrue(n)

× 100% (2)
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where N is the total number of estimates (number of win-
dows), HRest (n) and HRtrue(n) denote the estimated and the
true HR value in the nth time window in BPM, respectively.
In addition to avAE and avRE, Pearson scatter plot and Bland
Altman plot are used as evaluation indexes to demonstrate
the similarity and agreement between the reference and the
estimated HR.

III. HEART RATE ESTIMATION AND TRACKING
The algorithm presented in this paper combines three stages
of signal processing: 1. Preprocessing of PPG and ACM sig-
nals and refining the PPG frequency information using phase
vocoder and zero padded DFT. 2. Denoising of PPG signal
using recursive Wiener filtering. 3. Smoothing of estimated
HR using history tracking. These stages are elaborated in the
following subsections.

A. PREPROCESSING OF PPG AND ACM SIGNALS
The PPG and ACM signals were segmented into 8 seconds
window with 75% overlap (6 seconds) and passed through
the fourth order Butterworth band-pass filter (0.2-5)Hz. Since
the standard sampling rate for extracting HR reliably from
PPG must be equal or greater than 25 Hz [23], to reduce the
computational cost, we down sampled PPG from 125 to 25Hz
(1/5th of the raw signal) for further processing. Instead of
using single channel PPG (either PPG1 or PPG2), we used
the averaged value of z-scored (zero mean and unit variance)
PPG signals as used in previous studies to reduce unwanted
random noise [12], [18].

B. REFINING PPG FREQUENCY INFORMATION
The frequency resolution of a signal is limited by its win-
dow size. For 8 seconds PPG, the frequency resolution is
7.5 (= 60 × 1

8 ) BPM. This resolution is increased by using
zero padded DFT. To achieve the HR resolution less than
1 BPM, the minimum frequency shift must be∇f ≤ 1/60 Hz.
In the spectral analysis, the number of FFT bin is set to
2048 which ensures less than 1 BPM frequency resolution.

To get more refined and accurate frequency information,
we added phase vocoder technique [24] along with zero
padded DFT. Phase vocoder measures the change of phase
angle with respect to time to refine the initial estimation of
instantaneous frequency [24], [25]. Let us consider, θ1 and
θ2 are the DFT phases from previous and current frames
respectively. We refined the current frequency with the help
of previous frequency f using phase vocoder.

argmin
n

(fn − f ) (3)

fn =
(θ2 − θ1)+ 2πn

2π1t
, ∀n ∈ N ; f =

dθ (t)
2πdt

(4)

where 1t is the time difference between two time frames
and fn is calculated for several n. In our approach we used
1t = 2 seconds and n = 1 to 10. We chose the value
of fn closest to the previous frequency f and set the new
f = fn. Once we get the refined and accurate PPG frequency

FIGURE 3. The overall block diagram of the recursive Wiener filtering.
Y i , Y i

W 1, Y i
W 2, and Y i

W 3 are the noisy PPG spectra, filtered output spectra
of first, second and final stage respectively for the i th time frame. Ai

X , Ai
Y ,

and Ai
Z are the x , y and z axis ACM spectra respectively for i th time frame.

information using phase vocoder and zero padded DFT,
we denoise this PPG using recursiveWiener filtering with the
help of triaxial ACM signal.

C. RECURSIVE WIENER FILTERING FOR PPG DENOISING
Wiener filter (WF) is an optimal filtering technique to filter
out the additive noises from the known stationary noisy signal
where filter coefficients are computed by the least square
error estimation using the desired signal and filtered esti-
mated signal. In this study, we proposed the RWF approach
in the frequency domain to denoise the noisy PPG signal.
We used a three stage cascaded WF in the frequency domain
with the help of simultaneously recorded ACM signals as the
noise signature. The overall block diagram of the proposed
RWF approach is shown in Fig. 3. Let us consider Y i(f ) to
be the spectra of the ith window of the noisy PPG signal.
We denoise Y i at three different stages with the help of
x, y and z axis ACM signal as the noise signature at each stage.
The filtered signal of each stage is used as the input for the
following stage. Lastly, the filtered output of third stage, Y iW3,
is considered as the final denoised signal which is further used
to estimate HR. The overall RWF process is defined as:

Y iW1 = RW i
X × Y

i (5)

Y iW2 = RW i
Y × Y

i
W1 (6)

Y iW3 = RW i
Z × Y

i
W2 (7)

Y iW1, Y
i
W2, and Y

i
W3 are the filtered PPG spectra at ith time

frame after first, second and final stage denoising respec-
tively. RW i

X , RW
i
Y and RW i

Z are the RWF coefficients at ith

time frame for first, second and final stage respectively. The
RWF coefficients of the proposed approach for each stage are
calculated using the following equation:

RW i
P = 1−

M × AiP
1

min(E,i)

∑i
j=max(1,i−E+1) Y

j
(8)

where, P ∈ {X ,Y ,Z }, M is a real valued constant which
is used for scaling the noise magnitude, and AiX ,A

i
Y , and

AiZ are the x, y and z axis ACM spectra respectively at ith

time frame. In this study, we chose M = 1/3 to scale
down the noise amplitude. Since we used a three stage RWF,
where the filtered output of each stage considered as the input
signal for the next stage, one third of the noise amplitude
at each stage normalizes the noise magnitude to unit scale.
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Algorithm 1 HR Smoothing Using History Tracking
Initialization:
HRi = HR at i− th Time Frame;
N = Total Number of Time Frames;
HRLR = Predicted HR using Linear Regression;
i2 = 12;
β = 0.80;
HT1 = 25;
while i ≤ N do

if i < i2 && |HRi − HRi−1| ≥ HT1 then
HRi = βHRi + (1− β)HRLR;

else if i ≥ i2 then
αi = 0;
n = 1;
while n < i− 1 do

1 = |HRn − HRn+1|;
if 1 > αi then

αi = 1;
end
HT2 = αi + 3;
if |HRi − HRi−1| ≥ HT2 then

HRi = βHRi + (1− β)HRLR;
end

In addition, the average frequency spectrum of previous E
spectral envelopes is used as RWF coefficients, which works
simply like recursive spectral subtraction (RSS) model when
E = 1. In this study, we have empirically selected E = 12
for calculating RWF output.

D. HR SMOOTHING USING HISTORY TRACKING
Once the HR is estimated from RWF denoised PPG sig-
nal, history tracking is used to smooth the abrupt tem-
poral variation of the estimated HR. The algorithm for
history tracking is shown in Algorithm 1. For the first
30 seconds of the recording i.e., for i − th window frame
i < i2, estimated HR is considered as the final HR if
the difference with respect to previous window frame is
less than empirically chosen threshold HT1 (= 25 BPM ).
In contrast, if the difference is higher than this threshold,
we predict HR from the past five HR estimate using linear
regression method.

For HR smoothing after 30 seconds (i ≥ iθ ), an adap-
tive HR threshold (HT2) is estimated from the previously
estimated HR trace. Again, if the absolute difference of the
estimated HR from the previous HR is> HT2, then we use (9)
to predict new HR.

H̃Ri = β × HRi + (1− β)× HRLR (9)

where β = 0.8 and HRLR is the predicted HR from the
past five HR estimates. Finally, this algorithm provides new
HR estimation for every 2 seconds, corresponding to a final
reporting rate of 0.5 Hz.

IV. RESULTS AND DISCUSSION
An example of estimated (using proposed RWF based denois-
ing model) and reference HR from a single subject during
’T0’, ’T1’ and ’T2’ activity is shown in Fig. 4. It is obvi-
ous that the reference HR changes abruptly in these sub-
jects and such changes increase with the increased intensity
of the activity (see the traces of middle and right panel
with respect to the left panel of the Fig. 4). As expected,
the proposed model yields exactly similar HR estimation for
most of the time frames with the reference HR. The overall
performance of the proposed algorithm is demonstrated in the
last column of Table 2 and 3. Table 2 and 3 also compare
the performance of the proposed algorithmwith recently pub-
lished algorithms. The mean avAE, avRE values of our algo-
rithm for recording groups G1, G2, and G3 are (1.02, 0.81),
(1.78, 1.64) and (1.85, 1.73) BPM respectively. For recording
group G1, the proposed algorithm outperforms all previously
reported methods except SpaMA enlisted in Table 2 and 3.
However, the performance of SpaMA was worse than other
studies including our proposed one for groups G2 and G3.
This indicates that developing a generalized and performing
method to extract HR from PPG during intensive exercise
(G2 and G3) is challenging. For the recording groups G2 and
G3, our proposed approach outperforms all of the methods
listed in Table 2 and 3.

The Pearson correlation (PC) between estimated and actual
HR, and the line of best fit (dotted red line) for the recording
groups G1, G2, and G3 are shown in Fig. 5 (left panel).
The PC values obtained for groups G1, G2 and G3 were
0.997, 0.993, and 0.992 respectively. Additionally, Fig. 5
(right panel) shows the Bland-Altman plot which is used
in analyzing the agreement between estimated and ground
truth HR. Limit of agreement (LOA) for the recording groups
G1, G2, and G3 were [3.46, −3.74], [7.15, −7.01], and
[7.30, −7.29] respectively. Pearson correlation coefficients
and LOA of Bland-Altman plot showed the robustness of the
proposed method in HR estimation.

A. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
Most of the studies that used this challenge database reported
the results by grouping the recordings in three different
groups G1, G2 and G3 (Table 2 & 3). Interestingly, to denoise
the PPG signal although most of the studies used accelerom-
eter (ACM) signal, the study [6] neither used ACM signal
nor reported HR for intensive noisy recording. This indi-
cates that ACM signal is important in denoising PPG signal
during intensive physical activity. In addition, although the
best performance reported for group G1 was 0.89 BPM [9]
(Table 2), they were 1.90 and 1.97 BPM for groups G2 and
G3 respectively [12] (Table 2). This clearly depicts that there
is still room for improving the performance of HR estimation
during intensive physical activity (groups G2 and G3).

We compared the performance of our algorithm with
some of the recently published work PARHELIA [14],
Galli et al. [10], and Fallet and Vesin [21] along
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FIGURE 4. Continuous heart rate monitoring of one example Subject during ‘T0’ (left), ‘T1’ (middle) and ‘T2’ (right) types
of activity using proposed recursive Wiener filter (RWF) based denoising model with and without history tracking based
smoothing. The average absolute error of example subject with ‘T0’, ‘T1’, and ‘T2’ type activity was 1.72, 13.75, and
9.96 BPM respectively without smoothing and 0.64, 2.19, and 1.50 BPM respectively with smoothing.

TABLE 2. Performance comparison of HR estimation for our proposed method and existing methods in terms of average absolute error (avAE) for each
recording.

with well-known TROIKA [4] and JOSS [18]. PARHE-
LIA [14], Galli et al. [10], Fallet and Vesin [21], TROIKA
and JOSS demonstrated mean avAE 1.17, 1.85, 1.40, 2.34,

and 1.28 BPM respectively for G1 recordings whereas
our proposed algorithm showed 1.02 BPM. On the con-
trary, PARHELIA, IMAT and MC-SMD did not report their
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TABLE 3. Performance comparison of HR estimation for our proposed method and existing methods in terms of average relative error (avRE) for each
recording.

TABLE 4. Comparison of the limit of agreement (LOA), Pearson correlation (PC), and computational cost of the proposed method with the existing
methods.

outcomes for G2 and G3 recordings. For G2 recordings,
Galli et al. [10], Fallet and Vesin [21], TROIKA and
JOSS reported 2.45, 2.71, 2.73, and 2.08 BPM mean avAE
respectively whereas our method exhibited 1.78 BPM. For
G3 recordings Temko [12] and SpaMa [9] reported 1.97 and
2.07 BPMmean avAEwhere our algorithm shows 1.85 BPM.
The ensemble approach of WF (EWF) [12] showed compar-
atively better result than other methods listed in table 2 for
the recording groups G2 and G3. The proposed RWF based
denoising model improves the performance over EWF by
6.31% and 6.10% for the recording groups G2 and G3 respec-
tively. Therefore, the RWF based method is found to be a
better solution for HR estimation during intensive physical

exercise in the presence of ACM signal as noise signature.
In summary, the proposed approach showed better perfor-
mance than any other well-known and recently published
methods listed in Table 2 and 3. Additionally, from Table 2
and 3, it is obvious that none other than Temko [12] and
SpaMa [9] so far reported their results (e.g. avAE 3.54 and
3.41 BPM respectively and avRE 4.08 and 4.25 BPM
respectively) for the extremely noisy recording no. 13.
Our algorithm demonstrates the best results even for this
noisy recording. The avAE and avRE for recording 13 using
our proposed method are 3.38 and 3.78 BPM respectively.

The comparison on LOA of our proposed method with
the existing ones is illustrated in Table 4 for recording
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FIGURE 5. Pearson scatter plot (left) and Bland Altman plot (right) for
recording groups G1, G2, and G3. Pearson correlation coefficients for
recording groups G1, G2, and G3 were 0.997, 0.993, and
0.992 respectively. Limit of agreement (LOA) for recording groups G1, G2,
and G3 were [3.46, −3.74], [7.15, −7.01], and [7.30 , −7.29] respectively.

group G1. The lower the value of LOA of the Bland-
Altman plot, the closer the estimated value to the reference.
From Table 4, it is clear that the LOA of our method is
smaller than that of other methods mentioned in the table.
On the other hand, a higher PC represents higher resemblance
between the measured and reference values. The line of best
fit will be found when the PC is 1.00. The PC of our proposed
method for recording group G1 is 0.997 which is higher
than any other methods enlisted in Table 4. Table 4 shows
that our proposed method demonstrates both the highest PC
and narrowest LOA out of all compared methods. Therefore,
the proposed method can estimate HR more accurately and
precisely, especially in case of acute physical exercises than
all other reported studies.

B. PROCESSING TIME
The average execution time for all 8 second window was
calculated to determine the computational cost of the pro-
posed algorithm which is then used for comparisons against
the existing algorithms as shown in the fifth column of
Table 4. A limitation of this comparison is of course
the differences in the computational platforms; however,

the proposed approach is still significantly faster than the
state-of-art JOSS.

V. CONCLUSION
In this paper, we proposed a novel recursive Wiener filtering
based denoising algorithm to estimate the heart rate (HR)
from photoplethysmography (PPG) signal during intensive
physical exercise. The proposed algorithm showed the lowest
error rates (1.78 and 1.85) in HR estimation among exist-
ing algorithms during intensive exercise (recording groups
G2 and G3). In addition, the experimental results for G1 and
G2 recordings showed that our algorithm achieved 20.31%
and 14.42% better estimation accuracy than the well-known
conventional method JOSS. Moreover, the proposed method
is also computationally faster than JOSS. Therefore, the pro-
posed algorithm can be an accurate and reliable solution for
HR estimation from noisy PPG signal. In the future, we aim to
validate the proposed model in estimating HR and breathing
rate in real time during daily living activities using wearable
computation platforms.
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