
SPECIAL SECTION ON MOBILE EDGE COMPUTING AND MOBILE CLOUD COMPUTING:
ADDRESSING HETEROGENEITY AND ENERGY ISSUES OF COMPUTE AND NETWORK
RESOURCES

Received April 10, 2019, accepted April 29, 2019, date of publication May 2, 2019, date of current version May 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2914450

Fog-Assisted Aggregated Synchronization Scheme
for Mobile Cloud Storage Applications
GIWON LEE1, HANEUL KO 2, SANGHEON PACK 3,
VALENTINO PACIFICI 4, AND GYÖRGY DÁN 4
1Samsung Electronics, Suwon 16677, South Korea
2Department of Computer Convergence Software, Korea University, Sejong 30019, South Korea
3School of Electrical Engineering, Korea University, Seoul 02841, South Korea
4School of Electrical Engineering, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden

Corresponding author: Sangheon Pack (shpack@korea.ac.kr)

This work was supported in part by the National Research Foundation of Korea through the Korean Government under Grant
NRF-2017R1E1A1A01073742, and in part by the Swedish Foundation for Strategic Research (SSF) through the Modane Project under
Grant NRF-2014R1A2A1A12066986.

ABSTRACT Cloud storage applications, such as Dropbox and Google Drive, have recently become very
popular among mobile users. In these applications, a cloud server is responsible for synchronizing updates to
files among mobile users, and thus if files are shared by many mobile users and are frequently updated then
the resulting synchronization traffic can be significant. In order to reduce the synchronization traffic with
providing acceptable access latency, we propose a fog-assisted aggregated synchronization (FAS) scheme in
which the fog computing server and the cloud server conduct localized and aggregated synchronizations,
respectively. We develop an analytical model of the FAS scheme based on renewal-reward theory and
use it for model-based adjustment of the timer that controls the trade-off between access latency and
synchronization traffic. We use analytical and simulation results to give insight into the effects of the
timer, the update-to-access ratio, the number of mobile users, and the sensitivity to the arrival process. The
analytical and simulation results demonstrate that the FAS scheme can reduce the synchronization traffic
significantly with acceptable access latency compared to conventional schemes.

INDEX TERMS Mobile cloud storage, synchronization traffic, fog-assisted aggregated synchronization,
renewal-reward theory.

I. INTRODUCTION
Cloud storage applications have become very popular among
mobile users in recent years [2]–[6]. As an example, Drop-
box, one of the most popular cloud storage applications, has
more than 100 million users worldwide, and allows its users
to access and share their files from mobile devices in real-
time. As another example,Microsoft announced that theywill
soon enable editing documents from Android tablets, so that
mobile users can access Office files and tools while on the
go [7], [8].

Most cloud storage applications require or encourage their
users to install a designated client program and to assign
a designated local folder. A mobile user can add or modify
a file in the local folder and the update is then automatically
synchronized with a cloud server (CS). When the file is
shared with other mobile users, the CS is responsible for

The associate editor coordinating the review of this manuscript and
approving it for publication was Junaid Shuja.

synchronizing the shared file with all sharing users. Such
a centralized architecture may be easy to manage, but if the
file is shared by many mobile users and is frequently updated
then the synchronization traffic can be significant [9], [10].
For instance, Li et al. [11] analyze a recent large-scale Drop-
box trace collected at the ISP level [12] and reveal that
the synchronization traffic contributes to more than 90% of
the traffic in Dropbox. Even with geo-distributed systems
(e.g., Microsoft OneDrive), Wu et al. [13] show that com-
plex synchronization protocols lead to non-negligible perfor-
mance overhead. Since excessive synchronization traffic in
mobile networks is critical owing to limited radio resources
and battery power [14], reducing the synchronization traffic
is one of the most important issues in mobile cloud storage
applications.

The existing synchronization schemes for cloud storage
applications fall into on of two categories [15]: update-
triggered and timer-triggered. In the update-triggered syn-
chronization scheme, once an update occurs, the full content

56852
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-9067-445X
https://orcid.org/0000-0002-1085-1568
https://orcid.org/0000-0001-7528-9994
https://orcid.org/0000-0002-4876-0223

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

of the file is updated to the CS and is synchronized with
mobile users. Update triggered synchronization can be easily
implemented and provides strong consistency, i.e., the file
used by mobile users is always up-to-date, but it leads to
significant synchronization traffic since the file is synchro-
nized upon each update. In the timer-triggered synchroniza-
tion scheme there is a pre-defined timer, and once the timer
expires, the updated file is delivered to the CS and is synchro-
nized to mobile users. Subsequently, a new timer is set for the
next synchronization. Compared with the update-triggered
synchronization, the timer-triggered synchronization scheme
can reduce the synchronization traffic but it does not ensure
strong consistency until the timer expires.

These two schemes correspond to extremes in terms of
the trade-off between synchronization traffic and consistency.
Recent work has aimed at addressing this trade-off through
applying one or the other scheme to a file depending on the
importance of ensuring consistency [21], thus allowing to
manage the trade-off for a set of files. The problem of manag-
ing the trade-off between synchronization traffic and consis-
tency for each individual file is however so far unsolved. The
problem of managing the trade-off is even more intriguing
when file access patterns are heterogeneous in space, as the
best scheme to use depend on the frequency of file accesses
and may hence be location specific.

To address this problem, in this paper we propose a fog-
assisted aggregated synchronization (FAS) scheme to reduce
the synchronization traffic for files that are frequently
updated and are shared bymanymobile users. In the proposed
FAS scheme, mobile users are grouped into domains depend-
ing on their geographical locations and each domain is man-
aged by one fog server (FS). Since the FS can be co-located
with an adjacent access point (AP)/base station (BS), the FS
can synchronize mobile users within its domain with lit-
tle traffic.1 In the FAS scheme, when an update occurs in the
domain of a FS, the update is first sent to the FS. The FS
synchronizes the update with mobile users in its domain and
sends the update to the CS, which informs the other mobile
users about the existence of an update. The CS accumulates
updates during a timer T . When the timer expires, the CS
delivers aggregated updates to the other FSs (except to the
originating FS) in order to synchronize mobile users in the
domains of the other FSs. Note that the CS sends aggregated
updates to the FSs instead of to the individual mobile users,
and the FS can multicast aggregated updates to mobile users
in its domain.

Owing to localized and aggregated synchronization,
the FAS scheme has the potential to reduce the synchro-
nization traffic significantly. Since the CS informs mobile
users in the other domains about the existence of updates to

1This architecture is analogous to the cloudlet architecture [17] where
the cloudlet is located between mobile users and the CS, and takes on
several tasks from mobile users to reduce the end-to-end response time and
the load of the CS. Unlike the existing cloudlet architecture, the proposed
architecture focuses on the synchronization among mobile users instead
of task offloading.

particular files, mobile users can request aggregated updates
from the CS before the timer expires if needed, which allows
to satisfy strong consistency [18]. Due to requesting aggre-
gated updates, the FAS scheme may introduce additional
latency when accessing a file, thus the timer T has to be cho-
sen to guarantee an acceptable access latency, while reduc-
ing the synchronization traffic. To find such a timer value,
we design a lightweight timer selection algorithm based on
an analytical model of the FAS scheme. Extensive simulation
results are given to demonstrate the effects of the timer, the
update-to-access ratio, the number of mobile users, and the
sensitivity to the arrival process. The analytical and simula-
tion results show that the FAS scheme can reduce the syn-
chronization traffic with acceptable access latency compared
to conventional schemes.

The main contributions of this paper are twofold. First,
the proposed FAS scheme is a novel solution to a fundamental
problem in mobile cloud storage synchronization manage-
ment, i.e., the reduction of the synchronization traffic by
using a fog architecture, and as such it can be widely used
in mobile cloud storage applications. Second, we develop
an analytical model of the synchronization traffic and of the
access latency of the proposed FAS scheme, and we validate
the model by extensive simulations. The presented analytical
and simulation results provide valuable insights for further
performance improvements of not only the FAS scheme,
but for the management of cloud storage synchronization
solutions in general.

The rest of this paper is organized as follows. Related
works are summarized in Section II. The system model and
the UDS and TDS schemes are introduced in Section III,
and the fog-assisted aggregated synchronization scheme is
described in Section IV. The analytical model is developed
in Section V. Simulation results are presented in Section VI,
followed by concluding remarks in Section VII.

II. RELATED WORK
Many mobile cloud storage applications for data sharing
have been widely deployed and gained much popularity in
recent years. As a result, it is expected that cloud storage
applications will generate a large amount of mobile Internet
traffic [12]. Specifically, Li et al. [9] reveal that frequent
and short updates to files in Dropbox generate an excessive
amount of maintenance traffic, despite a number of tech-
niques already in use for traffic reduction.

A common technique used by cloud storage applications
for reducing network traffic is delta encoding. Delta encoding
is an effective way for reducing the synchronization traffic.
Drago et al. [10] compare five popular cloud storage appli-
cations and demonstrate that Dropbox is able to reduce the
synchronization traffic significantly by using delta encoding.

Data compression is another way to reduce the synchro-
nization traffic. Li et al. [11] reveal that 52% of files in cloud
storage applications can be effectively compressed and data
compression is able to reduce 24% of the total synchroniza-
tion traffic based on a real-world trace.

VOLUME 7, 2019 56853

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

Server data deduplication eliminates replicas on the storage
server [19], [20]. Similarly, when the same content is already
present in the CS, replicas in the users’ local folder can be
identified to save synchronization traffic. Drago et al. [10]
show that Dropbox does not upload the data if the data are
readily available at the CS. Moreover, Dropbox can identify
multiple copies of users’ files even after they are deleted and
later restored.

Nonetheless, the synchronization traffic of cloud storage
applications is significant evenwhen the above techniques are
employed and thus a number of research efforts have tried to
further reduce the synchronization traffic. Li et al. [9] develop
an update-batched delayed synchronization scheme that acts
as a middleware between a Dropbox folder and an actual
folder on the file system. By means of batching updates from
the actual folder and applying them to the Dropbox folder at
once, the synchronization traffic can be significantly reduced.
In another work [15], they propose a timer-based synchro-
nization mechanism. Every time the timer expires, batched
updates are synchronized and the timer is recalculated to con-
sider the latest inter-update time. Ramos et al. [21] propose
a scalable cloud file sharing system, which considers users’
consistency requirements on the shared file while avoiding
unnecessary synchronization traffic. In their system, updates
requiring strong consistency are rapidly synchronized to users
whereas other updates are delayed and batched to reduce the
synchronization traffic. E et al. [22] designed an efficient
cross-cloud file collaboration system called CoCloud. Specif-
ically, they developed an inter-cloud transfer protocol includ-
ing adaptively chunked deduplication, adjusted compression,
and multi-level bundling. Cui et al. [23] proposed Quick-
Sync to reduce the synchronization traffic. In their system,
a network-aware chunker to adaptively select the propose
chucking strategy based on network conditions, a redundancy
eliminator to correctly perform delta encoding, and a batched
syncer to appropriately transmit chunks in a batchmanner and
reduce the number of reconnections are introduced. In our
previous work [24], we propose an efficient delta synchro-
nization algorithm that aggregates the update to reduce the
synchronization traffic and synchronizes aggregated updates
periodically to satisfy strong consistency. To identify the
optimal policy for the aggregation and the periodical synchro-
nization, an optimization problem is formulated as a Markov
decision process (MDP).

These previous works do not consider a fog architecture
for mobile cloud storage applications. The fog architecture
is compatible with the emerging mobile edge cloud (MEC)
architecture [25], [26], in which cloud computing and storage
resources located close to the network edge can be used to
provide application specific services and have access to radio
network information. Our proposed FAS scheme leverages
the MEC architecture to reduce the synchronization traffic
through a combination of periodic and on-demand synchro-
nization. Since cloud-based collaboration through mobile
cloud storage applications is typically used in geographically
confined areas, such as a company office or a university

FIGURE 1. System model illustrating FS domains (D = 3).

laboratory [27], the proposed FAS architecture, which lever-
ages geographical proximity, is a promising solution to
reduce the synchronization traffic.

III. SYSTEM MODEL AND BACKGROUND
In this section, we describe the system model and give an
outlines of the UDS and the TDS schemes.

A. SYSTEM MODEL
Figure 1 shows the systemmodel of the FAS scheme.We con-
sider a mobile network, in which there is one FS per domain
co-located with an AP/BS. FS domain can be a company
office or a university laboratory where many mobile users use
cloud storage applications. We assume that mobile users are
connected to one FS through a wireless link, whereas FSs are
connected to the CS through a mobile backhaul. We consider
a single file F shared by mobile users and synchronized by
the CS. By using localized and aggregated synchronizations,
FS is responsible for synchronizing mobile users within its
domain. We denote by D the number of FS domains and by
Md the number of mobile users in the FS domain d (1 ≤
d ≤ D). In Figure 1, we assume that there are 3 FS domains.
To avoid simultaneous updates to file F , only one user is

granted the right to update the file F at a time [18]. We refer
to the domain in which this user is located by D1, and call
it the originating domain. This is a reasonable simplifying
assumption for systems where individual files are modified
by a single user over an extended period of time, and it is also
reasonable if files are segmented into chunks and access con-
trol is managed at the chunk level (in this case our notion of a
file would correspond to a chunk). The delegation of the right
to update can be solved using existing protocols via the CS.
We consider that delta encoding is used for efficiency, and we
denote by uj the jth update of file F . We consider multicast
capable mobile networks, and since the FS maintains the list
of mobile users in its domain, it can multicast updates to
mobile users in its domain. To describe the operation of the
FAS scheme, we define four messages.

56854 VOLUME 7, 2019

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

• Update(F, uj): This message is sent to the FS and to the
CS to inform them about the jth update of F .

• Sync(F, uj, uj+1, . . .): The FS and the CS send this
message to synchronize updates (i.e., uj, uj+1, . . .) with
mobile users. Note that the CS can aggregate multiple
updates to minimize the synchronization traffic.

• Notify(F): This message is sent by the CS to notify
mobile users in FS domains about an available update
of file F (except in the originating domain). By receiv-
ing the message, mobile users can know that there is
an update to F and thus they should contact the CS
upon access to F . To avoid duplicating this message,
the CS sends this message only when the first update to
F occurs after the last synchronization of mobile users
in the other domains.

• Access(F): Themobile user sends thismessage to access
the shared file F after receiving a Notify(F) message.

B. BACKGROUND
Before describing the proposed FAS scheme, we provide an
overview of the UDS and the TDS schemes. In the UDS
scheme, whenever an update occurs, the CS synchronizes the
update to all mobile users. The message flow of the UDS
scheme is illustrated in Figure 2. In the figure Uk stands
for mobile user k , and U1 is a mobile user that makes
updates to F . When U1 first updates the file at time τ1,
an Update(F, u1) message is delivered to the CS. Then,
the update u1 is delivered to all users by sending Sync(F, u1)
messages immediately to all users (U2, U3, and U4 in the
figure). The same procedure is followed for u2 and for u4 at
times τ2 and τ4, respectively. As a result, mobile users can
access the up-to-date file F immediately when there is an
access event (e.g., U4 at time τ3).

FIGURE 2. Operation of update-triggered delta synchronization (UDS)
scheme.

In the case of the TDS scheme, the CS aggregates updates
during a pre-defined timer. The message flow of the TDS
scheme is illustrated in Figure 3. When U1 first updates the
file at time τ1, an Update(F, u1) message is sent to the CS,

FIGURE 3. Operation of timer-triggered delta synchronization (TDS)
scheme.

which then aggregates u1. Similarly, the next update u2 at
time τ2 is also aggregated in the CS. U3 can not access
the up-to-date file F at time τ3 because the timer has not
yet expired. When the timer expires at time τ4, aggregated
updates including u1 and u2 are synchronized by means of
Sync(F, u1, u2) messages.

If frequent updates occur and the number of mobile users
sharing the file is large, the synchronization traffic of theUDS
and the TDS schemes can be significant. Moreover, the TDS
scheme does not provide consistency after an update until the
timer expires.

IV. FOG-ASSISTED AGGREGATED SYNCHRONIZATION
(FAS) SCHEME
In this section, we describe the operation of the FAS scheme,
whose main objective is to reduce the synchronization traffic
in mobile cloud storage applications. To achieve this goal,
the FS is used for localized synchronization while the CS
performs aggregated synchronization, as follows. If an update
occurs, the update is synchronized to other mobile users
within the originating domain D1 by the FS, after which the
FS sends the update to the CS. To reduce the synchronization
traffic, the update is not synchronized immediately to mobile
users in the other domains. Instead, the CS sends a Notify(F)
message to the FSs, except to the originating FS, and the FSs
deliver the Notify(F) message to mobile users in their own
domains. As a result, all mobile users in the other domains
will know that there is an update available for F , even though
they have not received the update itself.

The CS aggregates updates during the timer T and sends
to the FSs aggregated updates using Sync(F, uj, . . .) mes-
sages when the timer expires. Each FS can then multicast
aggregated updates to mobile users in its domain. If a mobile
user wants to access F after receiving the Notify(F)message
but before the timer expires, the mobile user contacts the
CS by sending an Access(F) message, which will cause the
CS to send Sync(F, uj, . . .) messages. On the other hand,
if a mobile user has not received any Notify(F) message,

VOLUME 7, 2019 56855

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

it can use the local copy of F , as it was synchronized by the
most recent Sync message.
Intuitively, the FAS scheme may lead to additional latency

to access F compared with the UDS scheme. Therefore,
an appropriate timer should be chosen to guarantee an accept-
able expected access latency as well as reduced synchroniza-
tion traffic. We will address this problem in Section V-C.
Inwhat follows, we illustrate the operation of the FAS scheme
through two examples.

FIGURE 4. Example: Synchronization due to timer expiration.

A. SYNCHRONIZATION DUE TO TIMER EXPIRATION
Figure 4 shows the operation of the FAS scheme when
the synchronization occurs due to the expiration of the
timer. U1 sends an Update(F, u1) message to FS1 at time
τ1 (Step 1).2 If there are mobile users sharing F in the domain
of FS1 (e.g., U2), FS1 multicasts a Sync(F, u1) message
to them (Step 2). After that, FS1 sends an Update(F, u1)
message to the CS (Step 3). Note that the CS does not send
any Sync(F, u1) message to the other FSs immediately to
keep the synchronization traffic low, but it sends a Notify(F)
message to mobile users in the other domains to inform them
about the existence of the update to F (Steps 4-5). The same
happens upon the update u2 at time τ2, which is synchro-
nized to mobile users only within the originating domain by
FS1 but it is not sent to mobile users in the other domains
because the update of F has been already notified owing to
the update u1 (Steps 6-8). The CS aggregates two updates,
and upon the timer expiration at time τ3, it sends aggregated
updates by Sync(F, u1, u2) messages to all FSs except to the
originating FS1 (Steps 9-10). Note that the CS sends aggre-
gated updates to the FSs instead of to the individual mobile
users because each FS can multicast aggregated updates to
mobile users, e.g., FS2 can multicast the Sync(F, u1, u2)
message to U3 and U4. Through multicasting, the gain of the
FAS scheme increases with the number of mobile users per
domain sharing the same file.

2Since only one user is granted the right to update file F at a time, the CS
receives Update message from one domain.

B. SYNCHRONIZATION DUE TO ACCESS OF MOBILE USER
Figure 5 shows the operation of the FAS scheme when the
synchronization is performed due to the access request of a
mobile user in the other domains. There is an update u1 of
F at time τ1 (Step 1). Then, FS1 multicasts a Sync(F, u1)
message to mobile users in its domain (e.g.,U2), and sends an
Update(F, u1)message to the CS (Steps 2-3). The CS aggre-
gates the update and sends Notify messages to the other FSs,
which the other FSs deliver to mobile users in their domains,
since this is the first update after the last synchronization
(Steps 4-5). U2 can access F immediately at time τ2 without
contacting the CS because U2 is in the originating domain.
Nonetheless, when U4 in another domain wants to access
F at time τ3, it sends an Access(F) message to the CS via
FS1 because it received the Notify(F) triggered by u1 at time
of τ1 (Steps 6-7). In response, the CS synchronizes the file
by sending the Sync(F, u1)message to all FSs, and it restarts
the timer (Steps 8-9). Note that U4 would be able to access
file F without contacting the CS if noNotify(F)message had
been received after the last synchronization.

FIGURE 5. Example: Synchronization due to access(F) message.

TABLE 1. Frequently used notation.

V. ANALYTICAL MODEL
In this section, we derive an analytical model of the synchro-
nization traffic and of the access latency of the FAS scheme.
Table 1 contains the most frequent notation used in themodel.

To facilitate the analysis, we consider that the access events
follow a Poisson process with intensity λa [28], [29], update
events follow a Poisson process with intensity λu [30], and
the two processes are independent. We denote the arrival
intensity of access events outside of domain D1 by λa′ =(
1− M1−1

M−1

)
λa, where M1 denotes the number of mobile

56856 VOLUME 7, 2019

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

users in the originating domain and M represents the total
number of users. We use the notationNA(t),NA′ (t), andNU (t)
for the number of access events, access events outside of
domain D1, and update events during a period of length t ,
respectively. These are Poisson distributed random variables,
and we define the events A(t), A′(t), and U (t) that there are
access event, access event outside of domain D1, and update
event at time t . Finally, we define the update-to-access ratio
ρ = λu/λa for file F , which shows the relative frequency of
the two kinds of events.

We denote by Ss the size of a Sync message without any
update, and by Su the size of a single update. For simplicity
we assume that each update has size Su, but we note that in
principle Su could be interpreted as the average size of an
update, assuming that the size of an update is independent
of the inter-update time. Thus, if nu updates are aggregated
and synchronized with a Sync message, the size of the Sync
message will be Ss + nuSu. Finally, we denote the size of
the Notify message and the Access message by Sn and Sa,
respectively.

To compute the average synchronization traffic, we model
the system as a renewal-reward process. The renewal epochs
are the Sync messages sent by the CS to the FSs, and con-
sequently to all mobile users. The renewal epoch could be
triggered by a timer expiration or by an Access message sent
by a mobile user in a domain different from D1, if there was
an update since the last Syncmessage. We denote the number
of renewal events up to time t by NR(t), and we let R(t) be the
event that there is a renewal event at time t . We denote by
tn the beginning of renewal period n, and by Xn = tn+1 − tn
its length. For a particular renewal period, we denote the time
of the kth access event by tak , the time of the kth access event
outside of the originating domain by ta

′

k , and the time of the
kth update event by tuk .

A. SYNCHRONIZATION TRAFFIC
The rewardCn during renewal period n is the synchronization
traffic, i.e., the traffic generated by Update, Notify, and
Sync messages during the interval (tn, tn+1], and the average
synchronization traffic is

C = lim
t→∞

1
t

NR(t)∑
n=1

Cn. (1)

Let us consider the synchronization traffic Cn consists of
the synchronization traffic C1

n incurred in the originating
domain where updates occur and the synchronization traffic
Co
n incurred in the other domains, i.e.,

Cn = C1
n + C

o
n . (2)

In the originating domain, synchronization is performed
whenever an update occurs, and since updates are not aggre-
gated, the traffic due to a single synchronization is given
by Ss + Su. The expected synchronization traffic is thus
E[C1

n] = λu(Ss + Su)E[Xn].

To derive the synchronization traffic Co
n in the other

domains, we have to consider the synchronization traffic due
to the Sync message, due to the Notify message sent in
response to the first update after a Sync message, and due
to the Access message.
Observe that the renewal periods can end by one of two

reasons: due to a timer expiration or due to an access event in
the other domains. A renewal period can end due to a timer
expiration, in which case tn+1 − tn = T . This is the case if
no update event happens on (tn, tn + T], if there is no access
event outside of domain D1 on (tn, tn + T], or if there are
one or more access events outside of domainD1 on (tn, tn+T]
but all updates happen after the last access event of the period.

We can use the law of total probability to compute the prob-
ability that a renewal period ends due to a timer expiration.
By conditioning on the number of access and update events
during a period of length T , we obtain

P(Xn = T) =
∞∑

na′=0

∞∑
nu=0

P(ta
′

na′
< tu1 |na′ , nu)

×P(NA′ (T) = na′ ,NU (T) = nu). (3)

To compute the probability P(ta
′

na′
< tu1 |na′ , nu) that all access

events happen before the first update event, observe that
due to the Poisson arrival assumption, the distribution of the
arrival epochs conditional on the number na′ of access events
during a period of length T is uniform on [0,T]na′ [31]. Given
that there are na′ access events and nu update events during a
period of length T , we can thus compute the probability that
the first update event happens after the last access event using
combinatorial arguments as

P(ta
′

na′
< tu1 |na′ , nu) =

(
na′ + nu
na′

)−1
. (4)

We can also express the expected number of update events
during a renewal period that ends due to a timer expiration as

E[Nu(Xn)|Xn = T] =
∞∑

na′=0

∞∑
nu=0

P(ta
′

na′
< tu1 |na′ , nu)

nuP(NA′ (T) = na′ ,NU (T) = nu), (5)

which together with the size of the Syncmessages allows the
computation of the expected synchronization traffic during a
renewal period that ends due to a timer expiration

E[Co
n |Xn = T] = (Sn + Ss)P(Nu(Xn) > 0|Xn = T)

+ SsP(Nu(Xn) = 0|Xn = T)

+ SuE[Nu(Xn)|Xn = T]. (6)

Alternatively, a renewal period can end due to an access
event in the other domains, in which case Xn = tn+1 −
tn < T . This is the case if there is at least one update
since the last Sync message before an access event happens
outside of domainD1. Clearly, P(Xn < T) = 1− P(Xn = T),
but to be able to compute the expected length of a renewal
period, we need to compute the density function fXn (t),
t ∈ (0 < t < T) of the renewal period length. For this,

VOLUME 7, 2019 56857

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

FIGURE 6. Illustration of 4 renewal periods, periods 1-3 end due to timer expiration, period 4 ends due to an access
event.

we again use the law of total probability, conditioning on the
number of access events up to and including t and on the
number of update events up to t . Observe that given that there
are na′ access events and nu update events, the renewal period
ends after time t if the na′ th access event outside of D1 hap-
pens at time t and the first na′ − 1 access events happened
before the nu update events, as otherwise the renewal period
would have ended earlier. The probability that the na′ th access
event happens at time t is given by the Erlang(na′) distribution
with density function fE (t, na′ , λa′) while the probability that
the first na′ − 1 access events happened before the first of the
nu update events for na′ > 0 and nu > 0 is

P(ta
′

na′−1
< tu1 |na′ , nu, tna′ = t) =

(
na′ − 1+ nu
na′ − 1

)−1
, (7)

and thus we have

fXn (t) =
∞∑

na′=1

fE (t, na′ , λa′)

∞∑
nu=1

P(NU (t) = nu)
(
na′ − 1+ nu
na′ − 1

)−1
. (8)

Based on fXn (t) we can compute the expected renewal period
length due to an access event as

E[Xn|Xn < T] =
∫ T

0
tfXn (t)dt. (9)

To compute the traffic, observe that there is always oneNotify
and one Access message sent out during a renewal period
that ends due to an access event. The expected number of
updates during the renewal period can be computed by taking
the expectation of (8) with respect to nu,

E[Nu(Xn)|Xn < T] =
∫ T

0

∞∑
na′=1

fE (t, na′ , λa′)

∞∑
nu=1

nuP(NU (t) = nu)
(
na′ − 1+ nu
na′ − 1

)−1
dt, (10)

which together with the size of the Syncmessages allows the
computation of the expected synchronization traffic in the

other domains during a renewal period that ends due to an
access event as

E[Co
n |Xn < T] = (Sn + Ss + Sa)+ SuE[Nu(Xn)|Xn < T].

(11)

Finally, combining (3) with (6) and with (11) provides us the
total synchronization traffic.

Based on the above, we can calculate the average traffic
over time as

C = lim
t→∞

1
t

NR(t)∑
n=1

Cn =
E[Cn]
E[Xn]

. (12)

where the equality holds with probability one according to
the renewal reward theorem [31].

The computation of the average traffic C using (12)
requires the numerical evaluation of (3) and (8), which con-
tain infinite sums. Nonetheless, as the terms in (3) and (8)
decrease exponentially in na′ and nu, using a partial sum for
the evaluation introduces an error that can be bounded.

B. ACCESS LATENCY
We can use the above model to express the average latency
L of accessing file F . Since all updates are synchronized by
the FS in the originating domain, the access latency in the
originating domain is L1 = 0.
Unlike users in the originating domain, mobile users in

the other domains may need to send an Access message
to access file F . This is the case if there are aggregated
updates in the CS upon an access event. Thus, to compute the
average access latency, we need to compute the probability
that an access event would lead to the generation of anAccess
message, and we need to compute the time Lo it takes until
the corresponding Sync message is received.

We compute the probability that an arbitrary access event
triggers a Sync message by using the elementary renewal
theorem to compute the expected rate of renewal epochs

lim
t→∞

1
t
NR(t) =

1
E[Xn]

, (13)

and we observe that only a fraction P(Xn < T) of the renewal
epochs is triggered by an access event. Thus, the probability

56858 VOLUME 7, 2019

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

that an access event outside of FS domain D1 triggers a
renewal epoch can be expressed as

P(R(t)|A(t)) = P(Xn < T)
1

λa′E[Xn]
. (14)

To be able to compute the expected time it takes to receive
the Sync message, we need to compute the expected size
of the Sync message, which is a function of the number
of updates Nu(Xn) since the start of the renewal period.
The average number of updates since the beginning of the
renewal period until an access event that triggers a renewal
epoch is E[Nu(Xn)|Xn < T], which can be computed based
on (10) and (3), and provides the expected size of the Sync
message. The average access latency can then be computed
as L = P(R(t)|A(t))Lo.

C. MODEL-BASED TIMER SELECTION
UNDER LATENCY CONSTRAINT
The synchronization traffic can be significantly reduced by
increasing T , as a high value of T allows more updates to be
aggregated at the CS. Nonetheless, a larger value of T implies
increased access latency. In what follows, we propose a
lightweight timer selection algorithm which ensures that the
average access latency does not exceed a target threshold LB.
The algorithm is based on the following observation.
Proposition 1: The average access latency L is a mono-

tonically increasing function of the timer T .
Proof: Let us first observe that the expected number

of updates in a renewal period that ends due to an access
event (cf. (10)) is monotonically increasing with the timer T ,
hence so is the size of a Sync message. Let us now consider
the probability P(R(t)|A(t)) expressed in (14). By using the
quotient rule for computing the derivative of (14) with respect
to the timer T , it is easy to see that P(R(t)|A(t)) is also mono-
tonically increasing with the timer T . To provide an intuition
for the result, recall that it is only access event that happen
after the first update event of the renewal epoch that trigger
a renewal epoch. Furthermore, if we consider the remaining
time T − tu1 until the next timer expiration following the first
update event, then it is easy to see that for T ′ > T , the random
variable T ′ − tu1 first-order stochastically dominates T − tu1 .
Since the remaining time increases with the timer T , there
is a higher probability that an access event happens before
the timer expires (and thus triggers a renewal), and thus the
fraction of access events that trigger a renewal increases.

Proposition 1 allows us to formulate a simple algorithm for
choosing a timer that minimizes the synchronization traffic
subject to an average access latency constraint for a measured
arrival intensity, based on the model. Let us denote by τ the
largest timer value that satisfies L ≤ LB (Step 1), i.e.,

τ = max{T : L ≤ LB}. (15)

Intuitively, τ is the timer with lowest overhead. Nonetheless,
observe that for T < 1/λu the synchronization due to timer
expiration would occur more frequently than update events
and thus the synchronization traffic would be unnecessarily

Algorithm 1 Pseudo-Code of the Timer Selection Algorithm
Model-based timer selection algorithm

1: Let τ = max{T : L ≤ LB}
2: if τ ≥ 1/λu then
3: Let T = τ
4: else
5: Let T = 0 /* timer disabled */
6: end if

high. Therefore, the FAS scheme should only be used if
τ ≥ 1/λu, in which case the optimal timer value is T = τ .
Otherwise, the CS should not aggregate updates and synchro-
nization should be done immediately upon updates (i.e., just
like UDS); we use T = 0 to denote this case. Algorithm 1
shows the pseudo-code of the timer selection algorithm.

VI. PERFORMANCE EVALUATION
In what follows, we present numerical results based on the
analytical model and simulation results using an event-driven
simulator written in C++. The presented results serve for
three purposes: 1) to validate the analytical model; 2) to
compare the performance of the FAS scheme with that of
the UDS and the TDS schemes; and 3) to show that the
timer selection algorithm is fairly insensitive to the arrival
process. In the simulation, the events of Update(F, uj),
Sync(F, uj, uj+1, . . .), Notify(F), and Access(F) are gener-
ated and the corresponding synchronoization cost and latency
are computed. To obtain a realistic update-to-access ratio ρ,
we use Dropbox data sets collected during 42 consecutive
days reported in [12]. Based on the data sets, for a value
of λu = 1 we use a value of λa = 0.416, i.e., ρ = 2.4.
We consider that mobile users are uniformly spread among
FSs (i.e., M1 = M2 = · · · = MD). In simulations, the default
value of the acceptable access latency LB is set to 30 msec.
We simulated domains that consist of a single-hop wireless

link with bandwidthW and are connected to the CS byH -hop
wireline backhaul with bandwidth B, and we compute the
access latency based on the transmission time Lo = (H/B+
1/W)(Ss + nuSu).3 We consider that the cost of traffic over
the wireless access link may be different from that over the
backhaul [32], and thus we allow to weight the traffic over the
wireless access link by a factor ω. Thus, if a Sync message
with a single update is sent from the FS to mobile users over
the wireless access link, the traffic cost is ω (Ss + Su). While
this network model may be rudimentary, it is simple and it
allows us to focus on the fundamental characteristics of the
FAS scheme.

The timer of the TDS scheme is set to that of the
FAS scheme in simulations to allow for a fair comparison.
The default parameter values for simulations are derived
from [11], [33] and are summarized in Table 2. The presented

3The value of dividing the file size by the data rate cannot represent
accurately the transmission time due to the randomness of the wireless
channel, but we believe that it can be an approximate and simple model of
transmission time for wireless links.

VOLUME 7, 2019 56859

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

FIGURE 7. Synchronization cost and access latency vs. timer T (λa = 0.416, Md = 3). (a) Synchronization cost. (b) Access latency.

TABLE 2. Default parameter values for simulations.

simulation results are the averages of 100 simulation runs,
and the figures show the 95% confidence intervals.

A. EFFECT OF TIMER (T)
Figure 7(a) shows the synchronization cost as a function
of the timer T . Naturally, the synchronization cost of the
UDS scheme is constant regardless of T because the UDS
scheme does not employ any timer for the synchronization.
On the other hand, the synchronization costs of the FAS and
the TDS schemes decrease as T increases. The difference
is significant for small values of the timer T , which shows
the efficiency of the proposed FAS scheme in decreasing
the synchronization traffic. It is also worthwhile to note that
unlike the TDS scheme, the proposed FAS scheme always
leads to less overhead than the UDS scheme.

Figure 7(b) shows the access latency of the FAS scheme
as a function of the timer T . Note that the access latency of
the UDS scheme is 0, and so is that of the TDS scheme,
but the TDS scheme does not provide consistency. The
figure shows that the access latency of the FAS scheme is
a concave increasing function of the timer in accordance
with Proposition 1. Comparing the results for different update
intensities, we can also observe that the access latency
decreases slower than linear in the update intensity.

Based on Figure 7, we can conclude that the analytical
and simulation results for FAS overlap, which validates the
model. Thus in the following, we show analytical results only,
unless otherwise noted.

Figure 8 shows the trade-off between the access latency
and the synchronization cost for five combinations of
access intensity and update intensity, obtained by varying
the timer T . The figure shows that the trade-off is fairly

FIGURE 8. Synchronization cost vs. access latency trade-off (Md = 3).

insensitive to the access intensity, but the update intensity
has a significant impact. The significant impact of the update
intensity on the trade-off curve is apparent from Figure 8.
A closer inspection of the curves for different access intensity
values shows that while the access latency and synchro-
nization cost both change depending on the access intensity
(a lower access intensity results in lower synchronization
cost but higher access latency for a fixed value of T), the
tradeoff curves are fairly similar. Thus, similar access latency-
synchronization cost combinations can be achieved by adjust-
ing the timer length T .

B. EFFECT OF THE UPDATE-TO-ACCESS RATIO (ρ)
Figure 9 shows the synchronization cost as a function of
the update-to-access ratio ρ for timer T = 2 and constant
access intensity λa = 0.416. While the synchronization cost
of all three schemes increases linearly with ρ, it is clear
from the figure that the proposed FAS scheme outperforms
both the UDS and the TDS schemes, and the performance
difference increases with ρ, i.e., as the arrival intensity of
updates increases, in accordance with the corresponding
curves in Figure 8.

56860 VOLUME 7, 2019

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

FIGURE 9. Synchronization cost vs. update-to-access ratio ρ (T = 2,
Md = 3).

FIGURE 10. Synchronization cost vs. number of users Md (λa = 0.416,
λu = 1, T = 2).

C. EFFECT OF USER POPULATION (Md)
Figure 10 shows the synchronization cost as a function of the
number of mobile users per domain, Md , for T = 2. The
synchronization cost of the FAS scheme is constant regardless
of Md , because the FS multicasts updates within its domain
without additional overhead. Consequently, the gain of the
FAS scheme compared to the UDS and the TDS schemes
increases as Md increases. Although it may seem unfair to
compare schemes employing unicast and multicast transmis-
sion, it is important to note that it is the inclusion of a fog
server in the FAS system architecture that enables the use of
multicasting in each domain, hence the comparison.

D. SENSITIVITY TO THE ARRIVAL PROCESS
Finally, we evaluate the sensitivity of the results to the arrival
process using simulations. As alternatives to the Poisson
process (i.e., exponential inter-arrival time), we consider that
the inter-arrival times of update and access events follow
one of two Phase-type distributions: Erlang-k and hyper-
exponential. To keep the mean inter-arrival time constant
despite changing k , for the Erlang-k distribution we use
rate kλ. To obtain a hyper-exponential with the same mean,
we use amixture of two exponential distributions with param-
eters λ/k and kλ, and a probability of k/(1+k) and 1/(1+k),
respectively. Recall that the coefficient of variation of the

FIGURE 11. Synchronization cost vs. inter-arrival time distribution (T = 2,
Md = 3).

FIGURE 12. Access latency vs. inter-arrival time distribution (T = 2,
Md = 3).

Erlang-k distribution decreases with k (and thus the Erlang-k
resembles the deterministic distribution for large k), while
the coefficient of variation of the mixture of two exponential
distributions parameterized by k increases with k .
Figure 11 shows the synchronization cost as a function

of the distributions’ shape parameter k . The results show
that the synchronization cost is fairly insensitive to the inter-
arrival time distribution. Figure 12 shows the corresponding
results for the average access latency. The figure shows that
if the arrival process is closer to deterministic than a Pois-
son process (Erlang-k), the access latency does not increase
significantly with k . On the contrary, the access latency drops
significantly as the arrival process becomes less deterministic
than the Poisson process (hyper-exponential). Thus, the pro-
posed model-based timer selection algorithm would lead to a
small violation of the average latency constraint if the arrival
process is more deterministic than the Poisson process, and
would lead to latencies significantly below the threshold for
an arrival process that is less deterministic than the Poisson
process.

VII. CONCLUSION
In this paper, we have proposed a fog-assisted aggregated
synchronization (FAS) scheme for mobile cloud storage
applications. In the FAS scheme, to reduce the synchro-
nization traffic, the fog server and the cloud server conduct

VOLUME 7, 2019 56861

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

localized and aggregated synchronizations, respectively.
To evaluate the performance of the FAS scheme, we derived
an analytical model of the FAS scheme and validated it
against simulations. The analytical results and extensive
simulation results demonstrate the effects of the timer,
the update-to-access ratio, the number of mobile users, and
the sensitivity to the arrival process. Simulation results show
that the FAS scheme can reduce the synchronization traffic
significantly with acceptable access latency, and is fairly
insensitive to the temporal characteristics of the file access
pattern. Our work opens up for a number of interesting
research questions concerning mobile edge cloud support
for mobile cloud storage, including modeling the impact of
mobility on fog-assisted synchronization and the signaling
required to handle mobility, and further optimizations that
leverage the spatio-temporal characteristics of user access.
These question will be subject of our future work.

ACKNOWLEDGMENT
This paper was presented at the IEEE INFOCOM 2014 Stu-
dent Workshop, Toronto, Canada, April 2014 [1].

REFERENCES
[1] G. Lee, H. Ko, and S. Pack, ‘‘Proxy-based aggregated synchronization

scheme in mobile cloud computing,’’ in Proc. IEEE INFOCOM Student
Workshop, Apr./May 2014, pp. 187–188.

[2] S. Azodolmolky, P. Wieder, and R. Yahyapour, ‘‘Cloud computing net-
working: Challenges and opportunities for innovations,’’ IEEE Commun.
Mag., vol. 51, no. 7, pp. 54–62, Jul. 2013.

[3] D. Huang, T. Xing, and H. Wu, ‘‘Mobile cloud computing service mod-
els: A user-centric approach,’’ IEEE Netw., vol. 27, no. 5, pp. 6–11,
Sep./Oct. 2013.

[4] Y. Cui, Z. Lai, and N. Dai, ‘‘A first look at mobile cloud storage services:
Architecture, experimentation, and challenges,’’ IEEENetw., vol. 30, no. 4,
pp. 16–21, Jul./Aug. 2016.

[5] M. Akter, A. Gani, M. O. Rahman, M. M. Hassan, A. Almogren, and
S. Ahmad, ‘‘Performance analysis of personal cloud storage services for
mobile multimedia health record management,’’ IEEE Access, vol. 6,
pp. 52625–52638, Sep. 2018.

[6] T. Noor, S. Zeadally, A. Alfazic, and Q. Z. Sheng, ‘‘Mobile cloud comput-
ing: Challenges and future research directions,’’ J. Netw. Comput. Appl.,
vol. 115, pp. 70–85, Aug. 2018.

[7] Microsoft Makes Office Mobile Editing Free, Launches Separate
iPhone Apps and Preview for Android Tablets. Accessed: May 4, 2019.
[Online]. Available: http://venturebeat.com/2014/11/06/microsoft-makes-
office-mobile-editing-free-launches-separate-iphone-apps-and-preview-
for-android-tablets/

[8] Collaboration Just Got Easier: Real-Time Co-Authoring Now
Available in Office Web Apps. Accessed: May 4, 2019. [Online].
Available: http://blogs.office.com/2013/11/06/collaboration-just-got-
easier-real-time-co-authoring-now-available-in-office-web-apps/

[9] Z. Li et al., ‘‘Efficient batched synchronization in dropbox-like cloud
storage services,’’ in Proc. Middleware, 2013, pp. 307–327.

[10] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras, ‘‘Benchmarking
personal cloud storage,’’ in Proc. ACM IMC, 2013, pp. 205–212.

[11] Z. Li et al., ‘‘Towards network-level efficiency for cloud storage services,’’
in Proc. ACM IMC, 2014, pp. 115–128.

[12] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras,
‘‘Inside dropbox: Understanding personal cloud storage services,’’ in Proc.
ACM IMC, 2012, pp. 481–494.

[13] G. Wu et al., ‘‘On the performance of cloud storage applications with
global measurement,’’ in Proc. IEEE IWQoS, Jun. 2016, pp. 1–10.

[14] A. U. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, ‘‘A survey
of mobile cloud computing application models,’’ IEEE Commun. Surveys
Tuts., vol. 16, no. 1, pp. 393–413, 1st Quart., 2013.

[15] Z. Li, Z.-L. Zhang, and Y. Dai, ‘‘Coarse-grained cloud synchronization
mechanism design may lead to severe traffic overuse,’’ Tsinghua Sci.
Technol., vol. 18, no. 3, pp. 286–297, Jun. 2013.

[16] N. Samteladze and K. Christensen, ‘‘DELTA: Delta encoding for less
traffic for apps,’’ in Proc. IEEE LCN, Oct. 2012, pp. 212–215.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for
VM-based cloudlets in mobile computing,’’ IEEE Pervasive Comput.,
vol. 8, no. 4, pp. 14–23, Oct./Dec. 2009.

[18] B. Calder et al., ‘‘Windows azure storage: A highly available cloud
storage service with strong consistency,’’ in Proc. ACM SOSP, 2011,
pp. 143–157.

[19] W. Hu, T. Yang, and N. J. Matthews, ‘‘The good, the bad and the ugly of
consumer cloud storage,’’ ACM SIGOPS Oper. Syst. Rev., vol. 44, no. 3,
pp. 110–115, 2010.

[20] H. Slatman, ‘‘Opening up the sky: A comparison of performance-
enhancing features in skydrive and dropbox,’’ in Proc. 18th Twente Student
Conf. IT, 2013, pp. 1–8.

[21] J. P. Ramos, L. Veiga, and P. Ferreira, ‘‘vfcBOX: Multi-user consistent file
sharing,’’ in Proc. MGC, 2011, p. 5.

[22] J. E, Y. Cui, P. Wang, Z. Li, and C. Zhang, ‘‘CoCloud: Enabling effi-
cient cross-cloud file collaboration based on inefficient Web APIs,’’
IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 1, pp. 56–69,
Jan. 2018.

[23] Y. Cui, Z. Lai, X. Wang, and N. Dai, ‘‘QuickSync: Improving
synchronization efficiency for mobile cloud storage services,’’
IEEE Trans. Mobile Comput., vol. 16, no. 12, pp. 3513–3526,
Dec. 2017.

[24] G. Lee, H. Ko, and S. Pack, ‘‘An efficient delta synchro-
nization algorithm for mobile cloud storage applications,’’
IEEE Trans. Service Comput., vol. 10, no. 3, pp. 341–351,
May/Jun. 2017.

[25] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, ‘‘Mobile
edge computing: A key technology towards 5G,’’ ETSI, White Paper 11,
Sep. 2015.

[26] Y. Hao et al., ‘‘Energy efficient task caching and offloading for
mobile edge computing,’’ IEEE Access, vol. 6, pp. 11365–11373,
2018.

[27] M. Miller, Cloud Computing: Web-Based Applications That Change the
Way You Work and Collaborate Online. Indianapolis, IN, USA: Que Pub-
lishing, 2009.

[28] G. Joshi, Y. Liu, and E. Soljanin, ‘‘On the delay-storage trade-
off in content download from coded distributed storage systems,’’
IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 989–997,
May 2014.

[29] S. Chen et al., ‘‘When queueing meets coding: Optimal-latency data
retrieving scheme in storage clouds,’’ in Proc. IEEE INFOCOM,
Apr./May 2014, pp. 1042–1050.

[30] H.-E. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Pérez, ‘‘Consistency
in the cloud: When money does matter!’’ in Proc. IEEE/ACM CCGrid,
May 2013, pp. 352–359.

[31] S. M. Ross, Stochastic Processes. New York, NY, USA: Wiley, 1996.
[32] J. Xie and I. E. Akyildiz, ‘‘A distributed dynamic regional location man-

agement scheme for mobile IP,’’ IEEE Trans. Mobile Comput., vol. 1, no. 3,
pp. 163–175, Jun. 2002.

[33] G. Lee, I. Jang, S. Pack, and X. Shen, ‘‘FW-DAS: Fast wireless data access
scheme in mobile networks,’’ IEEE Trans. Wireless Commun., vol. 13,
no. 8, pp. 4260–4272, Aug. 2014.

GIWON LEE received the B.S. and Ph.D. degrees
from Korea University, Seoul, South Korea,
in 2009 and 2015, respectively. Since 2015,
he has been with Samsung Electronics, Gyeonggi,
South Korea. His research interests include mobile
cloud computing, software-defined networking,
artificial intelligence, 5G networks, and the future
Internet.

56862 VOLUME 7, 2019

G. Lee et al.: Fog-Assisted Aggregated Synchronization Scheme for Mobile Cloud Storage Applications

HANEUL KO received the B.S. and Ph.D. degrees
from the School of Electrical Engineering, Korea
University, Seoul, South Korea, in 2011 and 2016,
respectively. He is currently an Assistant Professor
with the Department of Computer Convergence
Software, Korea University, Sejong, South Korea.
From 2016 to 2017, he was a Postdoctoral Fellow
of mobile networks and communications, Korea
University, Seoul, South Korea. From 2017 to
2018, he was with the Smart Quantum Communi-

cation Research Center, Korea University, Seoul, South Korea, and a Visiting
Postdoctoral Fellow of the University of British Columbia, Vancouver, BC,
Canada. His research interests include 5G networks, mobility management,
mobile cloud computing, SDN/NFV, and the future Internet.

SANGHEON PACK received the B.S. and
Ph.D. degrees in computer engineering from
Seoul National University, Seoul, South Korea,
in 2000 and 2005, respectively. He joined Korea
University, Seoul, South Korea, in 2007, as a Fac-
ulty Member, where he is currently a Professor
with the School of Electrical Engineering. From
2005 to 2006, he was a Postdoctoral Fellow of
the Broadband Communications Research Group,
University of Waterloo, Waterloo, ON, Canada.

His research interests include the future Internet, SDN/ICN/DTN, mobility
management, mobile cloud networking, multimedia networking, and vehic-
ular networks. He was a recipient of the IEEE ComSoc APB Outstanding
YoungResearcherAward, in 2009, theKICSHaedongYoung Scholar Award,
in 2013, the Korea University TechnoComplex (KUTC) Crimson Professor,
in 2015, the IEEE/IEIE Joint Award for IT Young Engineers Award, in 2017,
and the KIISE Young Information Scientist Award, in 2017. He will serve
as the TPC Vice-Chair of information systems of the IEEE WCNC 2020,
and has served the Track Chair of the IEEE CCNC 2019. He has served
as the Co-Chair of the IEEE VTC 2010-Fall Transportation, the Publicity
Co-Chair of the IEEE SECON 2012, the Co-Chair of the IEEE WCSP
2013Wireless Networking Symposium, the TPCVice-Chair of ICOIN 2013,
the Publication Co-Chair of the IEEE INFOCOM 2014, ACM MobiHoc
2015, and the Track TPC Chair of EAI Qshine 2016. He is an Editor of
the IEEE INTERNET OF THINGS (IoT) journal, the Journal of Communications
Networks (JCN), and IET Communications. He is a Guest Editor of the IEEE
TRANSACTIONS ON EMERGING TOPICS IN COMPUTING (TETC).

VALENTINO PACIFICI received the M.Sc. degree
in computer engineering from the Politecnico di
Milano, and the M.Sc. and Ph.D. degrees from the
KTH Royal Institute of Technology, Stockholm,
where he is currently a Postdoctoral Researcher
with the Laboratory of Communication Networks.
His research interest includes key questions in the
areas of content management systems.

GYÖRGY DÁN received the M.Sc. degree in com-
puter engineering from the Budapest University
of Technology and Economics, Hungary, in 1999,
the M.Sc. degree in business administration from
the Corvinus University of Budapest, Hungary,
in 2003, and the Ph.D. degree in telecommuni-
cations from KTH, in 2006. He is currently an
Associate Professor with the KTH Royal Insti-
tute of Technology, Stockholm, Sweden. He was a
Consultant in the field of access networks, stream-

ing media, and videoconferencing, from 1999 to 2001. He was a Visit-
ing Researcher with the Swedish Institute of Computer Science, in 2008,
a Fulbright Research Scholar with the University of Illinois at Urbana–
Champaign, from 2012 to 2013, and an Invited Professor with EPFL, from
2014 to 2015. His research interests include the design and analysis of
content management and computing systems, game theoretical models of
networked systems, and cyber-physical system security in power systems.

VOLUME 7, 2019 56863

	INTRODUCTION
	RELATED WORK
	SYSTEM MODEL AND BACKGROUND
	SYSTEM MODEL
	BACKGROUND

	FOG-ASSISTED AGGREGATED SYNCHRONIZATION (FAS) SCHEME
	SYNCHRONIZATION DUE TO TIMER EXPIRATION
	SYNCHRONIZATION DUE TO ACCESS OF MOBILE USER

	ANALYTICAL MODEL
	SYNCHRONIZATION TRAFFIC
	ACCESS LATENCY
	MODEL-BASED TIMER SELECTION UNDER LATENCY CONSTRAINT

	PERFORMANCE EVALUATION
	EFFECT OF TIMER (T)
	EFFECT OF THE UPDATE-TO-ACCESS RATIO ()
	EFFECT OF USER POPULATION (Md)
	SENSITIVITY TO THE ARRIVAL PROCESS

	CONCLUSION
	REFERENCES
	Biographies
	GIWON LEE
	HANEUL KO
	SANGHEON PACK
	VALENTINO PACIFICI
	GYÖRGY DÁN

