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ABSTRACT In recent years, deep reinforcement learning methods have achieved impressive performance
in many different fields, including playing games, robotics, and dialogue systems. However, there are
still a lot of restrictions here, one of which is the demand for massive amounts of sampled data. In this
paper, a hierarchical meta-learning method based on the actor-critic algorithm is proposed for sample
efficient learning. This method provides the transferable knowledge that can efficiently train an actor on
a new task with a few trials. Specifically, a global basic critic, meta critic, and task specified network are
shared within a distribution of tasks and are capable of criticizing any actor trying to solve any specified
task. The hierarchical framework is applied to a critic network in the actor-critic algorithm for distilling
meta-knowledge above the task level and addressing distinct tasks. The proposed method is evaluated on
multiple classic control tasks with reinforcement learning algorithms, including the start-of-the-art meta-
learning methods. The experimental results statistically demonstrate that the proposed method achieves

state-of-the-art performance and attains better results with more depth of meta critic network.

INDEX TERMS Deep reinforcement learning, hierarchical framework, knowledge, meta-learning.

I. INTRODUCTION

Despite deep reinforcement learning (DRL) has successfully
solved both simulated and real-world tasks, such sophisti-
cated and large-scale task environments as Atari [1] and
Go [2], there is still one limit in DRL compared with human
performance [3]. That is sample efficiency. DRL has to learn
from scratch and require far more experience than humans,
while humans and animals are able to learn a new task in a
very small number of trials and flexibly adapt to changing
task conditions.

In recent years, there is a large body of related research
seeking to improve the sample efficiency of DRL, including
the incorporation of a good prior. Flexible, data-efficient
learning naturally requires the operation of prior biases [4].
One of sources of such biases has been explored in
the machine learning literature under the rubric of meta
learning [5], [6], which also has various alternative names,
including life-long learning, learning to learn, etc.

In this paper, the authors consider solving distributions of
related tasks, with the goal of learning a new task quickly.

The associate editor coordinating the review of this manuscript and
approving it for publication was Pasquale De Meo.

How to learn common knowledge, also called meta knowl-
edge, between different tasks is the key to learning a new
task efficiently. Motivated by the vision of meta learning and
the framework of Actor-Critic [7] method where the actor
network outputs actions according to states, and the critic net-
work learns to criticize the action made by the actor network,
the authors propose a hierarchical meta-critic method to learn
meta knowledge shared between different tasks by training
multiple actors at given tasks.

The authors apply hierarchical framework to the proposed
method for helping agents to learn knowledge above the task
level. The framework of the proposed approach is somewhat
similar to the Options [8] in hierarchical reinforcement learn-
ing, but applied to the setting of a task distribution. To achieve
this vision, the authors introduce the idea of task specified
network into actor-critic method for encoding the information
of tasks into the learning structure. The task specified network
reads in a series of trajectory data of the current task, and
produces a task specified embedding, so as to encode the
information of the current task into meta-critic network.

An end-to-end training approach is also designed for the
proposed model that allows for effectively solving a new task,
treated solely by learning a hierarchical meta-critic network.

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

57069

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-0996-436X

IEEE Access

Z. Xu et al.: Learning to Learn: Hierarchical Meta-Critic Networks

In sum, the contributions of this paper are outlined as
follows.

o The authors propose a novel meta learning framework
based on actor-critic algorithm with a global basic critic,
meta critic and task specified network that learn to crit-
icize any actor at any given tasks. The authors regard
multiple actor networks as ‘options’ in the Options
framework for learning the distributions of related tasks
during training.

o The authors design a new end-to-end training method
to consider learning basic/meta critic and task speci-
fied networks in the upper structure of the model, and
actor networks in the underlying structure of the model
respectively.

o The empirical evaluation results show that the effective-
ness of the proposed method, which not only outper-
forms pure deep reinforcement learning algorithms on a
new task, but also is comparable to other state-of-the-art
methods in meta learning.

The organization of this paper is as follows. Related work is
introduced in Section 2. In Section 3, the authors formulate an
optimization problem and present the framework and training
details of the proposed method. In Section 4, the authors
invalid the proposed algorithm on a wide range of classic
control tasks, and discuss the effect of depth of networks
on the model. Concluding remarks with a discussion of the
extended work of the proposed approach are in the final
section.

Il. RELATED WORK

The goal of prior work in hierarchical reinforcement learning
(HRL) is to improve the learning efficiency by recombin-
ing a set of temporally extended primitives, among which
one of the most classic framework is Options framework.
Previous work about options framework mostly assume
that the options are designed in advance, more recent
work seek to learn the options automatically [9], [10].
Vezhnevets et al. [11] propose an architecture in which
a high-level controller explicitly sets sub-goals for and
provides appropriate rewards to a low-level controller.
Florensa e al. [12] present a general framework that first
learns useful skills in a pre-training environment, and then
leverages the acquired skills for learning faster in down-
stream tasks. Bacon et al. [13] propose a new option-critic
architecture capable of learning both the internal policies and
the termination conditions of options, in tandem with the
policy over options, and without the need to provide any
additional rewards or sub-goals. Levy ef al. [14] present a
novel approach to hierarchical reinforcement learning called
Hierarchical Actor-Critic (HAC) that enables agents to learn
to break down problems involving continuous action spaces
into simpler sub-problems belonging to different time scales.
Yang et al. [15] propose to learn basic skills and compound
skills simultaneously through a hierarchical deep reinforce-
ment learning algorithm, which contains two levels of hier-
archy, in the first level of hierarchy, multiple basic skills
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are learned simultaneously, while the second level of hier-
archy is designed for learning compound skills. The experi-
mental results have proved that the proposed algorithm can
learn both basic skills and compound skills on a Pioneer
3AT robot in three different navigation scenarios. Other
approaches [16]-[18] are committed to learning a decom-
position of complex mixed task tasks into sub-goals. These
previous work almost focus on the single and static task,
while ignoring multi-task and dynamic tasks setting. This
paper considers solving the distributions of related tasks by
distilling meta knowledge shared between different tasks,
with the goal of learning a shared high-level network archi-
tecture.

Meta learning has a long history, but has grown to promi-
nence recently as many have advocated for it as a key to
achieving human-level intelligence in the future [19]. The
goal of meta learning is to take advantage of a variety of
related tasks to train single model, such that it is able to
solve a new task with only a very small number of trials.
At present, the popular meta learning methods fall into two
categories: one is utilizing gradients in past training tasks to
help initialize the networks for a new task. Finn et al. [20]
propose a Model-Agnostic Meta Learning (MAML) method
for fast adaptation of deep networks, which doesn’t introduce
additional parameters for metal-learning nor require a par-
ticular learner architecture. Al-Shedivat et al. [21] develop
a gradient-based meta learning algorithm similar to MAML
algorithm and suitable for continuous adaptation of RL agents
in nonstationary environments. More concretely, the agents
are capable of learning to anticipate the changes in the envi-
ronment and update their policies accordingly. Xu et al. [22]
discuss how to learn the meta-parameters of a return function
while interacting with the environment, and show that adjust-
ing the meta-parameters of basic deep reinforcement learning
algorithms could help achieve much higher performance than
previously observed on Atari 2600 games [23].

The other one is engineering the prior biases into the
learning system for remembering meta knowledge shared
by different tasks. The representative method is RNN-based
(Recurrent Neural Network), which can be classified into two
main categories. The first one is using a recurrent model r as
the meta-learner with parameters 6, which takes as input the
training dataset Dy, for a particular task 7 and a new test input
Xte, and produces the estimated output y;, for that input:

Vte = r(Dlra Xtes 9) == r((x1, yl)v ceey (Xk, )’k)axte; 9) (1)

Wang et al. [4] introduce a novel method called Deep
meta-RL, which consists three key elements: (1) Utilize a
deep reinforcement learning algorithm to train a recurrent
model, (2) The training dataset involves the distribution of
related tasks, not a single task, (3) The action chose by
the agent and the reward received from the environment in
the previous time step will be used as the additional input
to the current neural network. Santoro et al. [24] intro-
duce a memory-augmented neural network to be trained for
storing and retrieving memories on each classification task.
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Duan et al. [25] encode reinforcement learning algorithm
with the weights of the RNN, which are learned slowly by a
general-purpose reinforcement learning algorithm. Besides,
multiple episodes from a series of different MDPs (Markov
Decision Process) is used as the input of the RNN, and a
policy gradient update through the whole temporal span of
the RNN. Mishra et al. [26] present a novel and generic
architecture, which combines temporal convolutions and soft
attention as a meta-learner. The temporal convolutions are
able to aggregate information from experience in the past, and
the soft attention will pinpoint specific pieces of information.

The second one is taking as input the training dataset Dy
for a particular task 7" and the parameters ¢ of a learner
model ¢, then, the meta-learner r outputs new parameters ¢*
for the learner model. Then, the test input x;, is fed into the
learner model to produce the predicted output y;,:

Vie = 1 (Xge; ¢*) = r(xze; ¢(Dyr; @)
r(Xge; ¢((x1, y1)s + - v (s Y13 9)) (2)

Andrychowicz et al. [27] consider a recurrent neural net-
work as the output of meta learning, which is treated
as an optimization method to fit other models to data.
Ravi & Larochelle [28] propose an LSTM-based meta
learning model as a optimization method for training
another neural network classifier in the few-shot regime.
Bertinetto et al. [29] map a training dataset to the weights
of a deep neural network by training a meta-learner, which
is utilized to classify future examples. Maclaurin et al. [30]
successfully optimize the validation performance by the way
of adapting the hyper-parameters of gradient descent, which
back-propagates through the chain of gradient steps.

The above contents briefly introduce previous work on
hierarchical reinforcement learning and employing RNN in
the context of meta learning. The proposed HMCN (Hierar-
chical Meta-Critic Networks) method not only takes advan-
tage of the characteristics of hierarchical framework to add
another learning structure into actor-critic method, but also
distills meta knowledge from the distribution of related tasks
by learning a global basic/meta critic and task specified
networks, which are capable of supervising any actor trying
to solve any specified task. The authors will introduce the
Hierarchical Meta-Critic Networks method in the following
content.

lll. METHODOLOGY
Firstly, the authors introduce the problem statement and
the background of the proposed method (Section A), then,
the proposed method and the training process are explained
in detail (Section B).

A. BACKGROUND

In the reinforcement learning problem, at each time f,
an agent will take an action a; according to the observed
state s; and the received reward r;, which is based on
the previous action a;_1 acting on the environment, then,
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FIGURE 2. The model of Actor-Critic method.

the environmental state s; transfers to the state 5,4 at time
t + 1. As shown in Figure 1.

The reinforcement learning algorithms study a specific,
single task M with a Markov decision process, while in
meta learning scenario, a distribution of different but related
tasks are considered. The goal of meta learning is to find a
strategy g that can quickly learn new tasks M;:

min > Ex,y Ly 3)

M;
where Ej,[] represents the average expectation, Ly, =
H
— " Ri(s;, a;) represents the cumulative loss of the task M;,

H ti_sl the length of the episode, and R(s, a) represents the
reward function in reinforcement learning.

The proposed method is based on the actor-critic (AC)
algorithm, which uses neural networks as value function
approximators for critic and actor. The critic is the state-
action value function [31] and estimates the future discount
return by minimizing the TD error (temporal difference
error), while the actor outputs the actual action [32], [33].
As shown in Figure 2.

The critic network with weight parameters ¢ takes as
input the state s; and action a;, outputs the future discount
return: Q™ (sy, a;; @) = ry + Yy O™ (St+1, ar+1; @), where the
notation Q™ refers to the critic is trained to model the return
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FIGURE 3. Diagram of hierarchical meta-critic network architecture.

of policy my. The goal of the critic network is to predict the
future discount return accurately.

The actor network with weight parameters 6 takes as input
the state s,, outputs an actual action a;, where a;, = mg(s;).
The policy mp defined in reinforcement learning outputs a
distribution over actions given a state. The goal of the actor
network is to maximize the future discount return, assumed to
be the return estimated by the critic network. The process of
optimization is to alternatively update the actor network and
critic network:

0 < argmax Q™ (s;, as; P) 4
0
¢« arg;nin(Q”f’ (515 ars @) — 11 — Y O™ (5141, dr1; 9))°
Q)

where a; = myp(s;) and as+1 = o (St41)-

The goal of the proposed method is to learn a policy for a
new test task +* by leveraging the background tasks 7', in the
case of considering a set of training tasks 7 = {#;} plus
allowed environmental interactions. In contrast to other meta
learning methods solving this problem, the authors propose
a novel and flexible meta learning method for knowledge
transfer by adding an high-level network architecture for
distilling meta knowledge from multiple source tasks.

B. HIERARCHICAL META-CRITIC NETWORKS ALGORITHM
As shown in Figure 3, the authors propose a novel framework
for incorporating meta knowledge into the architecture of
networks. The core of the proposed framework is establishing
a high-level network structure for learning meta knowledge,
which is based on the perspective of learning a global meta-
critic network from a basic critic and a task specified network
by supervising multiple actors at given tasks.
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1) BASIC CRITIC AND TASK SPECIFIED NETWORK

In order to help agents learn the knowledge of the task level,
the authors introduce a task specified network to encode the
feature of tasks via a task embedding k(;. The task specified
network takes a series of trajectory data

F,tfi = {(S—i, Qr—i, Fe—i)s -, (St—1, Ar—1, T1—1)} (6)

as input and outputs a task specified encoding k;. The past
state-action pairs as input reveal the characteristics of the
actor it is to criticize, and the past rewards record the feature
of the task the actor is solving.

Different from Actor-Critic method proposed before,
the authors additionally add a basic critic network to record
the current state-action value Qy (s, a;). The authors believe
that it is necessary to separate the evaluation of the current
state from the meta critic network through a basic critic
network, which is beneficial for meta-critic to consider both
historical information and current information respectively.
In the end, the output of the task specified network and the
output of the basic critic are concatenated together as the
input of meta-critic network.

2) META-CRITIC NETWORK

Basic, meta-critic and task specified network are shared
across all tasks and actors. Assuming L tasks, the update
formula of meta-critic and actors are:

0 = argmax Qg(s, dl, k) Vie(1,2,...,L} (7
%
_ L Piogi i

.. ¢ = argmax > st ap k) =7

—yQp(siy 1. by ki) ®)

When optimizing @, k! is regarded as a constant rather
than a function. The authors divide the learning proceeds of
meta learning into two stage: meta training stage and specific
actor training stage. In meta training stage, the authors train
multiple actors on multiple source tasks along with a shared
high-level network architecture, which contains a basic critic,
meta critic and task specified networks. In specific actor
training stage, the authors train an actor at given tasks with
a very small number of trials, where the parameters of the
basic/meta critic and task specified network are fixed. The
processes of two stages are summarized in Table 1 and 2.

IV. EXPERIMENTS
A. IMPLEMENTATION AND DETAILS
For all the following experiments, the authors tested four
algorithms: Actor-Critic (AC): Both critic and actor network
are trained from scratch directly for each new task. Model-
Agnostic Meta Learning (MAML): One of state-of-the-art
meta learning methods. Meta-Critic (MC): recently proposed
meta learning method for sample efficient learning. Hierar-
chical Meta-Critic Networks (HMCN): The proposed method
as describe above.

For HMCN method, the architecture of neural networks
are as follows: (i) Basic critic is a three-layer MLP network,
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TABLE 1. Meta training stage.

Stage 1: Meta Learning Stage of HMCN

Input: The distribution of related tasks 77

Output: Trained basic critic and meta-critic networks
Output: Trained task specified network

1 Init: basic critic and meta-critic networks;

2 Init: task specified network;

3 For episode=1,....M do

4 Generate [ tasks from 77
5 Init: L actor networks;
6
7
8

For step =1,...,m do

Sample batches of tasks;
For each task in batches do

9 Sample training data from task;
10 Train corresponding actor;

11 End

12 Train meta-critic network;

13 Train basic critic

14 Train task specified network;

15 End

16  End

TABLE 2. Specific actor training stage.

Stage 2: specific actor training stage of HMCN
Input: An new unseen task
Input: Trained basic critic and meta-critic networks
Input: Trained task specified network
Output: Trained actor network
1 Init: one actor network;

For step =1,...,m do

2

3 Sample few training data from task;
4 Train actor;
5 End

which has 20 neutrons in hidden layers. The number of neu-
rons in the input layer equals the dimensions of state plus the
dimensions of action, and the number of neurons in the output
layer is one. (ii) Actor is a three-layer MLP network, which
has 80 neurons in hidden layers. The number of neurons in
the input layer is one, and the number of neurons in the
output layer is equal to the action size. (iii) Task specified
network (TSN) is a one-layer LSTM with 30 neurons, and
the number of neurons in the output layer is three. (iiii) Meta-
critic network is a four-layer MLP network, which has 80 cell
units in each hidden layers. The number of neurons in the
input layer is equal to the number of output of basic network
plus the number of output of TSN, and the number of output
neurons equals one. The value of hyper-parameters is shown
in Table 4.

For AC method, the authors use the same size of basic
critic network and actor network as HMCN algorithm. For
MC and MAML methods, the network architecture and
hyper-parameter settings are same as the original paper,
which can be found in literature [20] and [34] for more details.
All the networks were built and trained in Pytorch [35].

B. DEPENDANT MULTI-ARM BANDIT
In the Dependant Multi-arm Bandit (MAB) task, the authors
assumed the rewards of arm are dependent: the probability of
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rewards obeys a Dirichlet distribution, which is unknown to
the agent. Each task has a different arm reward configuration:
multiple sample drawn from the same Dirichlet distribution.
The authors prepared the experiments for 2-arm, 4-arm and
6-arm bandits.

For the rigor of comparisons, the authors generated
200 tasks with ample samples for training AC, MAML, MC
and HMCN methods. Each task instance comprises 10 trials.
In each experiment, the algorithms were trained for
2000 episodes. For HMCN method, in specific actor training
stage, the authors trained actors for each new task, where the
parameters of basic, meta critic and task specified network
were fixed. In the test experiment, the authors generated
50 new tasks along with different rewards distribution and
only a few trials were allowed per task. The authors inde-
pendently carried out each experiment 10 times respectively
to reduce the randomness of receiving a rewards. The learned
policy was tested every 5 trials to calculate the average scores.

The experimental results are shown in Table 3, where the
average reward is the point product of the softmax output
of actor network and the probability of receiving a reward
by pulling each arm. The proposed method shows better
performance than other meta learning methods at any given
test.

The experiment results in Table 3 have demonstrated that
the validity of the proposed method. The authors attribute this
outstanding performance to the design of network structure
of the algorithm. By training multiple MAB tasks along with
a shared high-level network architecture, which contains a
basic/meta critic and task specified networks, the authors dis-
till and persevere common knowledge from multiple source
tasks in the form of network parameters. In specific actor
training stage, with previously saved common knowledge,
meta critic network can criticize and learn an actor more
efficiently than other learning algorithms while solving a new
MAB task.

C. CARTPOLE CONTROL

Cartpole control is a classic control task in reinforcement
learning research, which was first studied in literature by
Donaldson [36]. In the control system, there is an inverted
pendulum mounted on a pivot point on a cart. The goal of
control system is to keep the pendulum upright by apply
horizontal forces to the cart. The observation s consists of
four elements: the cart position x, the velocity of cart xy,
the pole angle 6, the velocity of pole angle 6y. The action
a is a horizontal force of +1 or —1 applied to the cart. The
reward of 41 will be provided for every timestep when the
pendulum remains upright. The threshold of every task is
set A = 200, which means if the pole remains upright for
200 continuous timesteps or falls, the episode will automati-
cally end up.

For the rigor of comparisons, the authors sampled pole
lengths in the range [1, 8] to generate 500 tasks for training
AC, MAML, MC and HMCN methods. Each task instance
comprises 10 trials. In each experiment, agents were trained
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TABLE 3. Comparison of several meta learning methods in MAB task.

Num of Bandits 2-arm 4-arm 6-arm
Num of Pulls 5 10 15 10 15 20 15 20 25
Random 0.5 0.25 0.17
AC 0.60 (0.18)  0.60(0.18) 0.60(0.18) 0.35(0.13) 0.36(0.13) 0.36(0.12) 0.20(0.18) 0.21(0.18) 0.21(0.17)
MAML 0.63 (0.26) 0.65(0.26) 0.65(0.25) 0.37(0.20) 0.37(0.19) 0.38(0.22) 0.26(0.15) 0.27(0.15) 0.27 (0.14)
MC 0.70 (0.19)  0.70(0.19) 0.70(0.18) 0.38(0.14) 0.39(0.16) 0.39(0.15) 0.26 (0.10) 0.27(0.10) 0.28 (0.10)
HMCN 0.71(0.19) 0.72(0.18) 0.72(0.18) 0.39(0.13) 0.40(0.13) 0.41(0.12) 0.28(0.10)  0.29 (0.10)  0.30 (0.11)
' ' ' ' ' ' ' P TABLE 4. Value of hyper parameters.
160 - /M% i\E Ypere
/
140 - }/P/ . %]{; * l % Description Value
) ' S | Basic critic base learning rate 0.0001
[ /- Task specified network base learning rate 0.0001
g py %f Meta critic base learning rate 0.0001
@ Y Actors base learning rate (meta training stage) 0.0001
% % Actors base learning rate (specific actor training stage) 0.001
o T %j{}, % $ % Initial exploration parameter 1
® % %/ Minimum exploration parameter 0.1
Discount factor 0.99

—6— Pure Actor-Critic | |

—*—MC
MAML

—+—HMCN

n n . . . . . .
0 20 40 60 80 100 120 140 160 180
testing episodes

FIGURE 4. Average scores and standard deviations on different pole
length tasks.

for 5000 episodes, which consists of around 100000 update
iterations. For HMCN method, in specific actor training
stage, the authors trained actors for each new task, where the
parameters of basic, meta critic and task specified network
were fixed. The four algorithms were tested on 100 new tasks,
which were repeated 10 times for each task. The learned
policy was tested every 10 training episodes to calculate
the average scores of multiple runs. The score refers to the
cumulative reward of agents in each episode.

The average scores and standard deviations in the
Figure 4 show that the HMCN learns faster than MC and
pure actor-critic in the early stage of specific actor training
stage, but learns slower than MAML starting from a well
initialized network. Along with the training of actor network,
HMCN quickly learns to outperform the others and achieves
the highest scores in end of specific actor training stage.

Table 5 records the average scores and standard deviations
after the convergence of the four algorithms on the different
pole length of Cartpole tasks, and quantitatively analyzes the
experimental results. Compared with the pure actor-critic,
MAML, and meta critic algorithms, HMCN improves the
scores by 57.2%, 20.4% and 12.6%, In terms of stability, the
standard deviation is reduced by 26.1%, 19.0% and 30.6%.

To verify robustness of the proposed algorithm, the authors
not only focus on different pole lengths, but also assume
different pole weight to find whether the proposed algorithm
still works. For AC, MAML, MC and HMCN methods,
the authors generated 500 tasks by sampling pole weight in
the range [1, 3], and each task instance comprises 10 trials.
In each experiment, agents were trained for 5000 episodes,
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TABLE 5. The average score and standard deviation on different pole
length tasks.

Task Pure
Random Actor- MAML MC HMCN
AVG (STD) Critic
Cartpole with
. 71.1 132.5 1452 166.2
different pole 9.6
(4.6) (4.2) (4.9) 3.4
length

which consists of around 100000 update iterations. The
four algorithms were tested on 100 new tasks, which were
repeated 10 times for each task. The learned policy was tested
every 5 training episodes to calculate the average scores of
multiple runs. The score refers to the cumulative reward of
agents in each episode.

The Figure 5 shows that average scores and standard devi-
ations of four learning algorithms on different pole weight
tasks. The authors observe that MAML has a clear lead in
scoring at the beginning of specific actor training stage, but is
gradually overtaken by HMCN and MC in the later stages of
testing. HMCN achieves the best performance in the end since
basic/meta critic and task specified network start helping train
actors and accelerate the learning process.

Table 6 records the average scores and standard deviations
after the convergence of the four algorithms on the different
pole weight of Cartpole tasks, and quantitatively analyzes
the experimental results. Compared with the pure actor-critic,
MAML and meta critic algorithms, HMCN improves the
scores by 49.4%, 20.9% and 11.9 %, the standard deviation
is reduced by 32.4%, 13.8% and 24.2%.

In contrast to basic reinforcement learning and state-of-
the-art meta learning algorithms, the proposed method sig-
nificantly increases task scores, besides, the stability also has
been improved greatly.

To understand why hierarchical meta-critic framework
works well while dealing with a new cartpole task, consider
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FIGURE 5. Average scores and standard deviations on different pole
weight tasks.

TABLE 6. The average score and standard deviation on different pole
weight tasks.

Task Pure
Random  Actor- MAML MC HMCN
AVG (STD) Critic
Cartpole with
. 67.8 106.3 118.8 134.0
different pole 9.2
i (3.7 29 (33) (25)
weight

that during specific actor training stage meta-critic network
is able to criticize accurately a new cartpole task based
on the information given by basic critic and task specified
network, then from the point of view the new task’s actor,
it credits to the meta-critic network’s pre-training, which in
fact preserves common knowledge between multiple different
cartpole tasks, i.e. meta-knowledge, in the form of network
parameters during meta training stage. When HMCN method
solves a new cartpole task, basic critic network tells meta
critic network which state the current task is in, and task
specified network helps meta critic network decide which
type of current task is. Combining the knowledge of basic
critic network and task specified network, meta critic network
can criticize an actor accurately and learn a new cartpole task
more efficiently than other learning algorithms.

Furthermore, the authors performed several t-tests for four
algorithms on two kinds of Cartpole tasks. The significance
level was set as @« = 5%. As shown in Table 7, the score
of pure actor critic is Syc, the score of MAML is Spyamr,
the score of MC is Sy, the score of HMCN is Sgycn.
The test of HMCN all rejects original hypothesis and accepts
alternative hypothesis. It further shows that compared to
pure reinforcement learning and meta learning algorithms,
HMCN method leads to statistically-significant improvement
in the performance while solving a new task.

The reason why the proposed method addresses sample
inefficient in DRL is as follows: The general reinforcement
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TABLE 7. The hypothesis test of Cartpole.

Alternative hypotheses
(H,SIGNIFICANCE)

Sac <Sumen Smamr <Sumen Smc <Sumen
Cartpole with
different pole (1, 1.02¢-11) (1,9.78¢-07) (1, 1.25¢-04)

length

Cartpole with
different pole (1, 6.07¢-10) (1, 2.24¢-06) (1,4.75e-05)

weight

learning method solves a new problem by training the net-
work from scratch, while the proposed method is able to learn
anew task with only a few trials. As a result, when faced with
a distribution of different tasks, the general reinforcement
learning method has to learn tasks from scratch one by one,
in the contrast, the proposed method relies on the already
distilled meta knowledge and only needs to train one actor
with very few trials to achieve better performance.

The proposed method draws on the idea of knowledge
distillation [37], which supervises a student network by build-
ing a teacher network. In the proposed approach, meta-critic
network acts as the role of a teacher network, basic critic
and task specified networks provide the teacher network
with additional information about the current task. Different
from previous knowledge distillation methods, the authors
design multiple actors as student networks, where one actor
corresponds to one task. The teacher network distills and pre-
serves meta knowledge by supervising multiple actors trying
to solve any specified task. The proposed HMCN approach
provides a route to knowledge transfer that can efficiently
adapt to a new task and learn better.

D. EFFECT OF DEPTH

The proofs in Section B and C has proved the validity of
the proposed meta learning method in several classic control
tasks. Meta knowledge can be distilled from different but
related tasks for accelerating learning speed and improve
the performance. Now, the authors seek to experimentally
explore this new method and aim to answer the question: is
there a scenario for which hierarchical meta-critic networks
requires a deeper representation for meta critic or actor net-
works to achieve better performance?

To answer this question, the authors will study a series of
mountain car tasks with different heights of goals, where the
tangential forces are applied to forcing the car to reach the
target height on the right. The state of mountain car contains
the horizontal position x and the horizontal velocity x of
the car. Actions are set as the tangential forces of —1 or 1
applied on the car. The reward r(s, a) = —1 is provided for
every timestep. When the car reaches a target height or the
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FIGURE 7. Different depth of meta-critic networks.

horizon of H exceeds 600, the current episode automatically
terminates.

To compare the relationship between depth of meta
critic/actor networks and performance, the authors will vary
the meta critic/actor networks depth from 1 to 3 hidden layers
and compare the performance of those models, which have
the same number of neurons and activation functions in each
hidden layers. The height of goal is sampled in the range
[0.2, 1.0] to generate 1000 tasks, and each task instance
comprises 10 trials. In each experiment, agents were trained
for 10000 episodes, which consists of around 6000000 update
iterations. The authors tested a new mountain car task along
with the target height of 0.5 and only a few trials were
allowed for testing. The authors independently carried out
each experiment 10 times respectively to reduce the random-
ness of receiving a rewards. The learned policy was tested
every 50 training episodes to calculate the average scores of
multiple runs. The score refers to the cumulative reward of
agents in each episode.

The results, shown in Figure 6, demonstrate that deeper
hidden layers of actor networks don’t seem to bring the
improvement of performance. In the contrast, Figure 7 shows
that the proposed HMCN method indeed achieves better per-
formance with a deeper meta critic network. This statistical
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results suggest that the depth of meta-critic network is pivotal
for effective meta reinforcement learning using HMCN.

The reason why a deeper meta-critic network can achieve
better performance is that a deeper meta-critic network might
have a stronger ability to persevere and express meta knowl-
edge, which can help criticize the actor efficiently with only a
few trials. In the contrast, since the actor network is training
from scratch every time, the depth of the actor network has
little effect on the performance under the condition of very
few trials.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the authors present a novel meta learning
method to provide a route for knowledge transfer. The authors
combine hierarchical framework into actor-critic method for
distilling meta knowledge above distributions of different
but related tasks. An end-to-end training approach is also
designed for the proposed method. Empirical evaluation
results show that the proposed method achieves better or com-
parable results.

The proposed method draws inspiration from the research
of both meta learning and hierarchical reinforcement learn-
ing, which can be classified as meta reinforcement learn-
ing [38]. One of future work is to extend the proposed
approach to other deep reinforcement learning algorithms,
even supervised learning methods. Moreover, how to com-
bine gradient signal into the proposed approach is also a
promising research direction.
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