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ABSTRACT Firefly algorithm (FA) belongs to the swarm intelligence algorithm, which is famous for its
strong exploration, a small number of parameter settings and effortless operation. However, there are some
drawbacks in the searching process for FA, as the poor accuracy of the solution, high-computational time
complexity, and doughty oscillation. These phenomenons are attributed to two factors: 1) in classical FA,
the firefly, which is gloomier than others can be attracted by any one of them and 2) FA cannot fully utilize
the information of objective function and its fitness. In this paper, to overcome these shortcomings, based on
specific probability pfit, a new modified firefly algorithm (pFA) is proposed. In this algorithm, for speeding
up the convergence, the specific probability pfit determined by the value of fitness of the firefly is used to
choose a neighbor among the better fireflies compared with the predefined firefly, which helps the predefined
firefly to move toward a better direction. If there is no neighbor, the opposite learning strategy is employed
to lead the firefly to move. The performance of pFA is tested on some well-known benchmark functions. The
findings of the test show that pFA is outperformed to FA and some other state-of-the-art algorithms. Finally,
we apply pFA to solve four engineering applications.

INDEX TERMS Firefly algorithm, specific probability, opposite learning, engineering application.

I. INTRODUCTION
The swarm intelligence algorithm is computational intelli-
gence algorithm by simulating collective intelligence of bio-
logical groups. It came into being and developed rapidly,
since the traditional optimization technics, namely determin-
istic algorithms, like branch and bound algorithms, is inca-
pable of solving complex practical problems, such as data
mining [1], [2], 0-1 knapsack problems [3], [4], vehicle rout-
ing problem [5], [6]. For a deterministic algorithm, it can
not solve complex practical problems mainly because it often
requires these problems have some good properties, such as
continuous, smooth, convex, monotonic, etc. However, many
of these problems do not have such properties. Different
from the deterministic methods, a stochastic algorithm has
less requirements on these problems, so it has good per-
formance to solve these problems with little information of
objective function, higher dimensional, multiobjective opti-
mization and even no concrete form of objective function.

The associate editor coordinating the review of this manuscript and
approving it for publication was Khalid Aamir.

What’s more, it mainly simulates collective behavior of bio-
logical groups to solve optimization problems. Up to now,
many swarm intelligence algorithms have been proposed, e.g.
Artificial Bee Colony (ABC) [7]–[9], Ant Colony Optimiza-
tion (ACO) [10], Particle Swarm Optimization (PSO) [11],
Simulated Annealing (SA) [12], Cuckoo Search (CS) [13],
Tabu Search (TS) [14], Harmony Search (HS) [15], Firefly
Algorithm (FA) [16]–[18] and so on.

As one of swarm intelligence algorithms, firefly algorithm
(FA) has captured much attention of many scholars since it
was proposed by Yang in 2008 [19]. And it was applied to
solve many problems, including network reconfiguration of
unbalanced distribution networks [20], visual tracking [21],
vision-based railway overhead inspection system [22], job
shop scheduling problem [23] and so forth.

Since FA was presented, it has many variants, which can
be divided into three aspects: (1) the fixed step α easily
makes the algorithm getting into the local optima, in order
to overcome such drawback, variable strategies for step set-
ting were utilized to modify it [24]–[27]. (2) FA is good at
exploiting, while PSO prefers to explore. It is a good idea
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that make up for FA with PSO in terms of performance. Thus,
Sivaranjani and Kumar [28] proposed hybrid particle swarm
optimization-firefly algorithm (HPSOFA) to solve combina-
torial optimization of non-slicing VLSI floorplanning. In FA,
except the darker firefly, the brighter firefly almost does not
move, only the brightest one move at random. Xia et al. [29]
employed three novel operators in a hybrid optimizer based
on the two algorithms. In [30], pattern search algorithm was
utilized as a local optimization method to improve firefly
algorithm. In order to enhance the search of the brighter one,
Wang et al. [31] hybridize firefly algorithm with differential
evolution (DE). To solve the capacitated facility location
problem, Rahmani and Mirhassani [32] proposed a hybrid
firefly-Genetic Algorithm. In order to solve vehicle routing
problems, Goel andMaini [33] combined ant colony and fire-
fly algorithm to improve the performance of firefly algorithm.
(3) in order to further improve the performance of FA, some
authors combine FA with classical optimization techniques.
For example, Gandomi et al. [34] combined chaos with FA
to improve its exploration and the robustness of solution.
Kotteeswaran and Sivakumar [35] introduced Lévy -flight
into FA to enhance the performance of FA.

Furthermore, in classical FA, for any darker firefly, it can
be allured by all the fireflies that are brighter than it. Thus,
it can make the computation complexity of time higher and
be easy to cause oscillations in the search process. In order
to alleviating its negative effects, in 2016, Wang et al. [36]
proposed a new FA: firefly algorithm with random attrac-
tion (RaFA). In the paper, each firefly xi is only attracted
by the firefly xj, which is randomly selected from others
except xi, rather than all fireflies. Therefore, to a large extent,
the time complexity is reduced. However, it can’t guarantee
that there is a better direction to direct xi, it may reduce the
accuracy and convergence speed of the algorithm. In order to
overcome such disadvantage, Wang et al. [37] introduced an
improved FA: firefly algorithm with neighborhood attraction
(NaFA). xi identified k-neighbor around it to compose a circle
topology, and then if xj, which belongs to the k-neighbor,
is brighter than xi, xi will move toward xj.
Although the aforementioned FA variants have a better

performance than the classical FA, there is still room for
improvement. Based on the above considerations, we propose
an improved FA algorithm(pFA). The contributions of this
paper are given as follows:

(1) We put these fireflies, whose values of fitness are
bigger than x ′is, into a set K , and then we randomly select a
firefly in the K as its neighbor with pfit , which can reduce
computational time complexity, speed up the convergence,
and avoid oscillation in the iteration.

(2) To deal with the situation that there is no neighbor,
we take the opposite learning strategy into account to help the
firefly jump out of a local position and increase the diversity
of the population.

The rest of the paper is composed as follows. FA algorithm
is described in Section 2. And then, the proposed algorithm
pFA is depicted in Section 3. Section 4-Section 5 show the

corresponding experimental results. In Section 6, we apply
pFA to solve four practical problems. Finally, in Section 8,
there are some conclusions.

II. CLASSICAL FIREFLY ALGORITHM
In FA, it mainly imitates the flashing behavior among fire-
flies. Each firefly is considered as a potential solution in
search space, and the move behavior among fireflies stands
for solutions’s upgrading to find a better solution. Moreover,
in order to guarantee the algorithm on the right road, it is
idealized by 3 hypotheses which are depicted as follows:

(1) Fireflies are asexual; namely, they can be attracted with
each other regardless of gender.

(2) The size of the attraction is proportional to the bright-
ness of the flashing. For two random fireflies xi and xj, if xi is
gloomier than xj, then xi is attracted by xj. If xi is the best one
among all fireflies, it will move randomly in search space.

(3) The brightness of fireflies is relative with the value of
objective function.

A. BASIC PARAMETERS
In FA, both brightness (I ) and attractiveness (β) play an
important role. In general, for maximum problem, the bright-
ness of a firefly is positively relative with the value of objec-
tive function, and for minimum problem, they are negatively
relative with each other.

Prior to defining the attractiveness(namely β), firstly,
the Euclidean distance of xi and xj should be calculated as
follows:

rij =

√√√√ D∑
t=1

(xit − xjt )2, (1)

where D is the dimension of the problem.
Then, attractiveness is described as follows:

β = β0 × e
−γ×r2ij , (2)

where β0 is the maximum attractiveness, and γ is the absorp-
tion coefficient.

B. THE MOVEMENT OF THE FIREFLY
Supposed that xi is attracted by xj, and then, xi will move as
following formula:

x t+1i = x ti + β × (x tj − x
t
i )+ α × (rand − 0.5), (3)

where x ti represents the position of xi at the t-th iteration.
rand ∈ [0, 1], α is the random step, and α ∈ [0, 1].

C. THE DETAILED STEP OF THE FA
Step 1: Initialize population NP, and set parameters, such

as β0 and α.
Step 2:Calculate rij and β with formula (1) and (2), respec-

tively.
Step 3: Upgrade solution with formula (3).
Step 4: Generate a better solution by comparing the previ-

ous solution with the current solution.
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Step 5: For the new solution, calculate its value of objective
function.
Step 6: Judge whether the algorithm satisfies the terminate

condition(up to the max number of iterations(ItMax)). If sat-
isfied, the algorithm end, and output optimal solution; else,
return to Step 2.

III. THE IMPROVED FA: PFA
In FA, each firefly can be attracted many times by the brighter
fireflies, which may cause severe oscillation. Thus, in order
to alleviate this disadvantage, we proposed an improved algo-
rithm abbreviated as pFA. In pFA, the attraction among fire-
flies is reduced greatly, and it can also reduce computational
time complexity and increase the accuracy of solution. The
detailed description is as follows.

In pFA, firstly, we calculate the value of fitness(fit) of each
firefly xi with formula (4):

fit =


1

1+ f (xi)
, if f (xi) ≥ 0,

1+ | f (xi) |, else,
(4)

where f (xi) is the objective function of firefly xi. And then,
those values of fitness are bigger than x ′is(namely i − th
firefly’s) are put into a set K . Finally, we utilize the roulette
wheel selection to choose its neighbor, the formula is shown
as the following:

pfit =
fit(xk )∑
xt∈K fit(xt )

. (5)

For xi, we randomly select a firefly xk as its neighbor with pfit
in setK , not in all fireflies. By this way, the worse fireflies are
sifted out, and the remainders are better than xi. Furthermore,
from (5), we can see that, the better the firefly is, the more
chances to be chosen it has. Thus, no matter which one is
selected, the chosen one will always give a good direction to
lead xi rightly. Obviously, this strategy can not only speed up
the convergence and guarantee the diversity of population, but
also reduce selection pressure for fireflies.

However, there exists such case that no firefly is better
than xi, that is to say xi is the best one in the whole population.
Thus, it falls into local optimum easily. To deal with this
case, the opposite learning skill is adopted by utilizing the
information of xi.
Based on the above discussion, we can rewrite formula (3)

as follows:

x t+1i =


x ti + β0e

−γ r2ij (x tk − x
t
i )

+α(rand − 0.5), if K 6= ∅,
l + u− x ti , else,

(6)

where l and u are the lower bound and upper bound of
variables, respectivey; xk is chosen from set K with pfit .

As far as the step α, this paper employs the following
formula to update:

αt = α0αt−1, (7)

FIGURE 1. The flow chart of pFA.

where α0 = 0.7. And the α0’s scope should be between
0 and 1, α1 = 0.25.

The detailed description of pFA is given in algorithm 1.

Algorithm 1 Pseudo-Code of pFA
01:Initialize the population size NP, {xi|i = 1, 2, · · ·,NP},
the maximum number of iterations ItMax.

02: while t <= ItMax do
03: for i = 1 to NP do
04: Calculate the value of fitness of xi.
05: better fireflies are chosen to form the set K .
06: Choose a firefly xk from set K with probability pfit
07: Move xi according to (6).
08: Compute the fitness value of the new xi.
08: end;
09: Rank the fireflies and find the current best;
10: t = t + 1;
11: end

The flow chart of pFA is shown in Fig. 1

A. TIME COMPLEXITY
For the optimization problem (f ), suppose that O(f ) is com-
putational time complexity of evaluating its function value.
Thus, the computational time complexity of FA is O(ItMax ∗
NP2 ∗ f ), while the computational time complexity of RaFA
and NaFA are O(ItMax ∗ NP ∗ f ) and O(ItMax ∗ k ∗
NP ∗ f ), respectively, k is the number of neighbor in NaFA.
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TABLE 1. Benchmark functions.

In this paper, for pFA, its computational time complexity is
O(ItMax ∗ NP ∗ f ). Apparently, when it comes to computa-
tional time complexity, NaFA is equal to pFA, however, con-
sidering the accuracy and convergence speed of the algorithm,
pFA is still better than NaFA.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the performance of pFA is tested on 21 com-
mon benchmark functions derived from CEC 2005 and com-
pared with FA, RaFA, and NaFA. Here, f1 − f9 are unimodal
functions, f10 is noise function, f11 − f18 are multimodal
functions, f19 and f20 are orthogonal functions and f21 is
shifted sphere function. The specific descriptions of these
functions are given in Table 1.

A. PARAMETER SETTING
To make it fair, for all algorithms, the population size NP is
set to 40, and the maximum iterations(ItMax) is set to 2500.
Both the initial β0 and γ are set to 1, and except for pFA, α =
0.25. The α in pFA is discussed in Experiment 1. Moreover,

for NaFA, K is set to 3(the number of neighbors). Further-
more, to deeply analyze the performance of pFA statistically,
all algorithms run 30 times on 30, 50 and 100 dimension,
respectively, and we take minimum, mean and deviation as
the evaluation criterion to analyze the statistical results.

B. EXPERIMENT 1: DETERMINE THE VALUE OF THE
α0 AND α1 IN FORMULA (7)
In our algorithm, the values of α0 and α1 in formula (7) play a
vital role. In the early stages of the iteration, the larger value
ofα can enhance the global search capability of the algorithm.
As the iteration progresses, the smaller value of α can give the
algorithm a strong local search ability. Thus, the α should be
regressive with iterating, To determine which value is better
for pFA, we set α0 to 0.1, 0.3, 0.5, 0.7, 0.9, and α1 to 0.15,
0.35, 0.55, 0.75, 0.95, respectively. And compare them on
21 benchmark functions with 30 dimension. The results are
given in Table 2 and Table 3.

According to the data given in Table 2, for most functions,
the best value of α0 is chosen in [0.5, 0.7]. For f18, α0 = 0.9 is
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TABLE 2. Results obtained by pFA with different values of α0 and α1 on 30-dimension.

TABLE 3. Results obtained by pFA with different values of α0, and α1 on 30-dimension.

best, and for f19, f21, α0 = 0.7 is better than others. In Table 3,
for f3 and f14, α1 = 0.55/0.75 is best, except them, its better
that the value of α1 is chosen in [0.15, 0.35] based on overall
consideration. Thus, it is recommended that this combination,
α0 = 0.7, α1 = 0.25, should be selected.

C. EXPERIMENT 2: COMPARISON WITH OTHER FAS ON
MIN, WORST, MEAN AND STANDARD DEVIATION
In this part, to verify the superiority of pFA, we compare it
with FA, RaFA and NaFA on 21 benchmark functions, which
are described in Table 1.

When the dimension of the problem is 30, the compu-
tational results of FA, RaFA and NaFA and pFA are given
in Table 4. From the table, it can be seen that, for the mean,
minimum and standard deviation, pFA is better than others on
f2− f21. Among them, for f5− f9, f11, f13, f17 and f20, pFA can
find the minimum value of 0, and even the mean and standard
deviation are 0, which demonstrates its high accuracy and

better robustness; For f3, f4, f10, f12, f16 and f19, the minimum
value found by pFA is close to 0. Moreover, both of FA and
pFA can find theminimum value of 0 on f1 and f6, while RaFA
and NaFA fail to find it. Finally, for f14, f15, f18 and f21, pFA
is nearly equal to others.

The computational results on 50 and 100 dimension are
given in Tables 5 and 6. Comparing with the results in Table 4,
we can see, with dimension increasing, the mean, minimum
and standard deviation of FA, RaFA and NaFA are all get-
ting worse, while the results of pFA is almost invariable.
It shows that pFA is still effective in solving high dimensional
problems.

In order to further analyze the performance of pFA, we give
some convergent curve graphs of f3, f7, f11, f15, f19 and f21 on
30, 50 and 100 dimension, respectively. The results are shown
in Figs. 2-4. In Fig. 2, for f3, pFA almost converge to 0 when
the iteration ends, and all of FA,RaFA and NaFA present slow
increasing trend throughout the iteration process. For f7, f11
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TABLE 4. Computational results of FA, RaFA, NaFA, and pFA for each function on 30 dimension.
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TABLE 5. Computational results of FA, RaFA, NaFA, and pFA for each function on 50 dimension.
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TABLE 6. Computational results of FA, RaFA, NaFA, and pFA for each function on 100 dimension.
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FIGURE 2. Convergence curves of f3, f7, f11, f15, f19, and f21 on 30 dimension.

and f19, pFA is able to converge to 0 within the iteration
process, while others change little. For f15, RaFA is better
slightly than others, and for f21, pFA is worse than others
at the beginning, with the iteration goes, it quickly caught
up with others. As shown in Figs. 3 and 4, as the dimension
increase, the convergence of pFA becomes slower in f3. For
f7, f11 and f21, all of them remain unchanged, and for f15 and
f19, pFA becomes better, while others change little.

In summary, the performance of pFA is better than FA,
RaFA and NaFA on most functions, and for majority func-
tions, pFA can find the minimum value of 0. And it also
effectively for solving higher dimension problem.

V. EXPERIMENT 3: COMPARISON WITH OTHER FAS
BASED ON A PROBABILISTIC METRIC
In [48], Gomes et al. proposed a new way of comparison
among metaheuristic optimization algorithms. In this way,
it can be clearly seen which algorithm is better. In this paper,
as shown in [48], we regard Pbetter as the probability that
represents pFA is better than FA, RaFA and NaFA. If pFA
is worse than FA, RaFA and NaFA, we regard Pworse as the
probability, and if pFA is equal to FA, RaFA and NaFA,
we regard Pequal as the probability. Here, the population size,
dimension and the maximum iterations are set to 40, 50 and
2500, respectively. Moreover, we select f3, f7, f11, f15, f19 and
f21 as benchmark functions, and for each algorithm, it was run
30 times. The results are shown in Table 7.

As shown in Table 7, for f3, f7, f11 and f19, pFA is the
best, and it is 100% likely to find the optimal value in a
single run. For f15, it can be seen that pFA is worse than FA,
RaFA and NaFAwith the probability of 100%, 72% and 99%,
respectively. And for f21, pFA is better than FA, RaFA and
NaFA with the probability of 100%.

VI. EXPERIMENT 4: COMPARISON WITH DE AND DES
In this part, the validity of the improved algorithm is fur-
ther tested by comparing with DE, chDE [49], jDE [50],
aDE [51] and IMMSADE [52] on f1 − f9, f11, f13, f15, f17,
f19 and f21. These benchmark functions are consistent with
literature [52]. For the sake of fairness, all parameter settings
are derived from literature [52]. For each algorithm, it runs
30 times independently. The dimension D and the population
size NP are set to 30, 100, respectively, and the maximum
iterations(ItMax) is set to 3000. We utilize the statistics of
average value(mean) and standard deviation(std) to evaluate
the performance of algorithms after 30 times running. The
statistical results are displayed in Table 8. And except for
the statistics of pFA, statistics of others are derived from
their original papers. For example, the parameter settings of
IMMSADE algorithm are the same as literature [52]: all of
λ0i ,F

0
i andCR

0
i are randomly chosen from [0.7, 1.0], [0.1, 0.8]

and [0.3, 1.0], respectively. Besides, the parameter settings
of DE originate from literature [49], in Which CR is set
to 0.9 and F is set to 0.9, 0.5. For pFA, β0, and γ are set
to 1.
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TABLE 7. Computational results of FA, RaFA, NaFA, and pFA based on a probabilistic metric for f3, fa7, f11, f15, f19, and f21.

FIGURE 3. Convergence curves of f3, f7, f11, f15, f19, and f21 on 50 dimension.

As shown in Table 8, for f1, f3 − f7 and f9, both mean
and std of pFA are superior to others’. In particular, both of
them are 0 on f1, f3, f6 and f7. For f8 and f15, the values of
mean and std of all algorithms are 0. For f13, pFA is as good
as aDE and IMMSADE, of which mean and std are 0. For
f2 and f17, the performance of pFA is worse than others’.
Furthermore, mean and std of pFA is slightly lower than
others’ in f21. In conclusion, The results show that pFA is
reliable and effective.

VII. APPLICATION OF PFA
In the engineering field, many practical problems can be
boiled down to the optimization problem under a certain
mathematical model. Many practices prove: the intelligent

algorithm is introduced into the field of engineering opti-
mization to solve all kinds of complex problems, which will
obtain lots of economic and social benefits. In this part,
in order to further verify the superiority of pFA, we use pFA
to solve the four major engineering problems: pressure vessel
design, the structure design of tension-pressure spring, Three-
bar truss design and I-beam vertical deflection. Besides,
the results are compared with those results obtained by some
other algorithms.

Moreover, first of all, we need to solve the inequal-
ity constraints of the following problems. In this paper,
we adopt Deb’s rules [53] to solve constraint condi-
tions. The detailed description of Deb’s rules is given as
follows:
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TABLE 8. Computational results of DE and DEs.
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FIGURE 4. Convergence curves of f3, f7, f11, f15, f19, and f21 on 100 dimension.

(1) Between a feasible solution and an infeasible solution,
the feasible solution is preferred.

(2) The infeasible solution is regarded as a feasible solu-
tion, when the infeasible solution violates the constraints very
rarely.

(3) For two feasible solutions, the solution with better
objective function value is better.

(4) For two infeasible solutions, the solution violating
constraints very little is better.

A. PRESSURE VESSEL DESIGN
The pressure vessel design is from literature [38] and belongs
to the widely used structural design benchmark problem.
It minimize mainly the total costf (x), which includes the cost
of materials, forming and welding. In this problem, there are
some parameters: the thickness of shell (Ts), the thickness
of the head (Th), the inner radius (R) and the head (L).
The detailed description is shown in Fig. 5 [38]. In this
paper, we let x1, x2, x3 and x4 represents Ts, Th, R and
L, respectively. Thus, the variable vector can be written as
x = [x1, x2, x3, x4].
The optimization problem can be written as follows:

min f (x) = 0.6224x1x3x4 + 1.7781x2x23
+ 3.1661x21x4 + 19.84x21x3

subject to

g1(x) = −x1 + 0.0193x3 ≤ 0,

FIGURE 5. Pressure vessel design problem.

g2(x) = −x3 + 0.00954x3 ≤ 0,

g3(x) = −πx23x4 − 4/3(πx33 )+ 1296000 ≤ 0,

g4(x) = x4 − 240 ≤ 0,

where

0 ≤ x1 ≤ 99,

0 ≤ x2 ≤ 99,

10 ≤ x3 ≤ 200,

10 ≤ x4 ≤ 200,

For this optimization problem, there are many scholars
utilize different algorithms to solve it, such as memory based
Hybrid Dragonfly algorithm(MHDA) [38], Cuckoo Search
algorithm (CS) [39], improved Particle Swarm Optimizer
(IPSO) [40], Artificial Bee Colony algorithm (ABC) [41] and
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TABLE 9. Comparison the best solution obtained by different algorithms for pressure vessel design.

TABLE 10. The statistical results obtained by different algorithms for pressure vessel design.

TABLE 11. Comparison the best solution obtained by different algorithms for structure design of tension-pressure spring.

penalty guided ABC (PGABC) [42]. To be fair, the maximum
iteration is set to 1500, and the population size is set to 50.
For each algorithm, program runs 30 times independently.
The best solutions obtained by different algorithms are shown
in Table 9. In order to verify the performance of pFA, we com-
pare different algorithms by min, worst, mean and std. The
results are given in Table 10. And except for the statistics of
pFA, statistics of others are derived from literature [38].

Frm Table 11, we can see that, for pressure vessel design
problem, pFA can obtain the best result. In Table 10, con-
sidering min, worst and mean, we can know that the results
obtained by pFA are superior apparently to others, and for
standard deviation, pFA is worse than other algorithms. Based
on above analysis, we can draw a conclusion: the perfor-
mance of pFA is superior to others, and it is more applicable
to solve the pressure vessel design problem.

B. STRUCTURE DESIGN OF TENSION-PRESSURE SPRING
The structure design of tension-pressure spring problems
(see Fig. 6) is chosen from literature [43], it aimed mainly at
minimizing its quality under satisfying the constraint condi-
tions. The constraint conditions include minimum deflection,
shear stress, surge frequency, limits on outside diameter and
on design variables. There are three design variables: coil
diameter of spring (d(x1)), average diameter of spring coil
(D(x2)) and the effective number of circles (P(x3)).

The optimization problem can be written as follows:

min f (x) = (x3 + 2)x2x21

subject to g1(x) = 1−
x32x3

71785x41
≤ 0,

g2(x) =
4x22 − x1x2

12566(x2x31 − x
4
1 )
+

1

5108x21
− 1 ≤ 0,

FIGURE 6. Structure design of tension-pressure spring.

g3(x) = 1−
140.45x1
x22x3

≤ 0,

g4(x) =
x1 + x2
1.5

− 1 ≤ 0,

where

0.05 ≤ x1 ≤ 2,

0.25 ≤ x2 ≤ 1.3,

2 ≤ x3 ≤ 15,

For this optimization problem, it was solved by
different algorithms, such as an effective co-evolutionary
particle swarm optimization (CPSO) [43], a study of math-
ematical programming methods (MPM) [44], introduction
to Optimum Design (IOD) [45], a self-adaptive penalty
approach (SPA) [46] and genetic algorithms through the
use of dominance-based tournament selection (TGA) [47].
For each algorithm, program runs 30 times independently.
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TABLE 12. The statistical results obtained by different algorithms for structure design of tension-pressure spring.

TABLE 13. Comparison the best solution obtained by different algorithms for three-bar truss design.

TABLE 14. Comparison the best solution obtained by different algorithms for I-beam vertical deflection.

FIGURE 7. Three-bar truss design.

The best solutions obtained by different algorithms are shown
in Table 11. In order to verify the performance of pFA,
we compare different algorithms bymin, worst, mean and std.
The results are given in Table 12. And except for the statistics
of pFA, statistics of others are derived from literature [43].

As shown in Tables 11 and 12, for the structure design
of tension-pressure spring, compared with other algorithms,
pFA can find the best solution and obtain the best objective
function value. For pFA, its worst solution is better than the
best solution obtained by other algorithms, and its mean and
standard deviation are also better than others. That is to say,
the pFA is better than others in solving this problem.

C. THREE-BAR TRUSS DESIGN
For this problem, to minimize the weight subject to stress,
deflection, and buckling constraints, the two parameters
A1(x1) and A2(x2) should be optimized(see Fig. 7). The
problem of three-bar truss design has been studied by many
scholars. In order to solve this case, Chen [54] proposed

the balanced variant of WOA, that is BWOA. Sadollah [55]
utilized Mine blast algorithm (MBA) to solve this problem.
Moreover, there are other algorithms used to optimize it.
Such as, Mirjalili [56], Zhang [57] and Gandomi [58] adopted
MFO, DEDS and CS, respectively.

The optimization problem can be written as follows:

min f (x) = (2
√
2x1 + x2)× l

subject to g1(x) = P(
√
2x1+x2)/(

√
2x21+2x1x2)−σ ≤0,

g2(x) = Px2/(
√
2x21 + 2x1x2)− σ ≤ 0,

g3(x) = P/(
√
2x2 + x1)− σ ≤ 0,

where

0 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 1,

l = 100cm, P = 2kN/cm2, σ = 2kN/cm2.

For each algorithm, it runs 30 times independently.
NP is set 20. The results of the above-mentioned algorithms
are given in Table 13. Observing the Table 13, we can see
that the best weight of the problem of three-bar truss design
is 263.8958433 when x1 and x2 are set as 0.788676772,
0.408243657, respectively, which is obtained by pFA. For
BWOA, MBA, MFO, DEDS and CS, the results obtained by
them are worse than that of pFA’s.

D. I-BEAM VERTICAL DEFLECTION
For I-beam vertical deflection problem(see Fig. 8), its aim
is to minimize the vertical deflection of an I-beam. More-
over, The cross-sectional area and stress constraints should
be satisfied at the same time. For this problem, there are

VOLUME 7, 2019 57437



C. Wang, X. Chu: Improved Firefly Algorithm With Specific Probability and Its Engineering Application

FIGURE 8. I-beam vertical deflection.

4 variables: length(b), height(h), and two thick-nesses of this
problem(tw,tf ). For convenience, we set this 4 variables as x1,
x2, x3 and x4, respectively.
The optimization problem can be written as follows:

min f (x) = 5000/(x3(x2 − 2x4)/12+ x1x34/6

+ 2x1x4((x2 − x4)/2)2)

subject to g1(x) = 2x1x3 + x3(x2 − 2x4 − 300 ≤ 0,

g2(x) = 18x2 × 104/(x3(x2 − 2x4)3 + 2x1x3(4x24
+ 3x2(x2 − 2x4)))+ 15x1 × 103/((x2 − 2x4)x33
+ 2x3x31 )− 56 ≤ 0,

where

10 ≤ x1 ≤ 50,

10 ≤ x2 ≤ 80,

0.9 ≤ x3 ≤ 5,

0.9 ≤ x4 ≤ 5,

For each algorithm, it runs 30 times independently;
NP is set to 20. The results obtained by ARSM[59], improved
ARSM[59], CS[58], SOS[60] and pFA are given in Table 14.
From the statistical data in Table 14, it can be seen that the
optimal value of this problem is 0.007100, which is obtained
by pFA. Meanwhile, for ARSM, improved ARSM, CS and
SOS, the best result is 0.0130741, which is much worse than
that of pFA’s.

VIII. CONCLUSION
In this paper, in order to reduce computational time complex-
ity, speed up the convergence, avoid oscillation in the iteration
and overstep the local optimum, a novel firefly algorithm
(pFA) was proposed. First, it utilizes the probability pfit to
choose a firefly with high quality, and then the opposite
learning skill is employed to generate a new firefly in this
situation, where all fireflies are worse than xi.
In pFA, we use the probability selection to determine the

firefly that xi move towards to. In this way, the attraction
among fireflies can be reduced, thus, it can avoid oscillation,
Improve the precision of solution and speed up convergence.
And the usage of opposite learning strategy makes the diver-
sity of population increased and enhance exploration. The
comparison results show that the performance of pFA is supe-
rior to others. Furthermore, it also obtains satisfying results
when pFA is applied to solve four engineering optimization
problems.

In the future, we will do more experiments to test the
performance of pFA, for example, we can use it to deal with
multi-objective optimization problems and cluster.
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