
SPECIAL SECTION ON AI-DRIVEN BIG DATA PROCESSING:
THEORY, METHODOLOGY, AND APPLICATIONS

Received March 30, 2019, accepted April 26, 2019, date of publication May 2, 2019, date of current version May 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2914455

Shoe-Print Image Retrieval With
Multi-Part Weighted CNN
ZHANYU MA 1, (Senior Member, IEEE), YIFENG DING1,
SHAOGUO WEN2, JIYANG XIE 1, (Student Member, IEEE), YIFENG JIN3,
ZHONGWEI SI 2, AND HAINING WANG4
1Pattern Recognition and Intelligent Systems Laboratory, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
3Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
4School of Police Administration, People’s Public Security University of China, Beijing 100038, China

Corresponding author: Yifeng Ding (dingyf@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61773071, in part by the
Beijing Nova Program under Grant Z171100001117049, in part by the Beijing Nova Program Interdisciplinary Cooperation Project under
Grant Z181100006218137, in part by the Open Projects of National Engineering Laboratory for Forensic Science under Grant
2018NELKFKT04, and in part by the BUPT Excellent Ph.D. Students Foundation under Grant CX2019109 and Grant XTCX201804.

ABSTRACT Identifying shoe-print impressions in the scene of crime (SoC) from database images is a
challenging problem in forensic science due to the complicated impressing surface, the partial absence
of on-site impressions, and the huge domain gap between the query and the gallery images. The existing
approaches pay much attention to feature extraction while ignoring its distinctive characteristics. In this
paper, we propose a novel multi-part weighted convolutional neural network (MP-CNN) for shoe-print
image retrieval. Specifically, the proposed CNNmodel processes images in three steps: 1) dividing the input
images vertically into two parts and extracting sub-features by a parameter-shared network individually;
2) calculating the importance weight matrix of the sub-features based on the informative pixels they
contained and concatenating them as the final feature, and; 3) using the triplet loss function to measure
the similarity between the query and the gallery images. In addition to the proposed network, we adopt an
effective strategy to enhance the quality of the images and to reduce the domain gap using theU-Net structure.
The experimental evaluations demonstrate that our proposed method significantly outperforms other fine-
grained cross-domain methods on SPID dataset and obtains comparative results with the state-of-the-art
shoe-print retrieval methods on FID300 dataset.

INDEX TERMS Cross-domain, image retrieval, shoe-print, scene of crime.

I. INTRODUCTION
Shoe-print identification is an important issue in forensics
science, as the shoe marks are the most frequently left clues
in a crime scene. This recognition problem is challenging due
to the diversity in various types of crime scene (ranging from
variety of impressing surface to partial absence) and the huge
domainmargin between the scene of crime (SoC) impressions
and the shoe-print databases. Examples in Fig. 1 illustrates
these challenges.

Given a SoC impression, in order to find the cor-
rect matches among a large set of candidates in a shoe-
print database, three major tasks need to be addressed:
1) removing the distortions and enhancing the quality of
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images by pre-processing, 2) generating the discriminative
features of both the query and the gallery images, and
3) matching the query samples with the whole database
using suitable similarity metrics [1]. In addition to the
aforementioned image pre-processing, a large group of
works [2]–[6] have paid much attention to discriminative
features generation using feature extraction techniques. Some
other works [7]–[9] proposed new similarity metrics to mea-
sure the distance between the query samples and the gallery
images. Recently with the progress in machine learning tech-
niques, several learning-based techniques have been pro-
posed. References [7], [10], [11] extract deep features using
base models (e.g., VGG19 [12], Resnet50 [13]) and train the
networks for matching. However, the main problem of these
methods is that few special structures have been designed for
identifying shoe-print characteristics.
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FIGURE 1. Shoe-print identification is challenging due to (a) variety of impressing surface (ceramic,
leather, soil, and wood), (b) partial absence (the missing part is marked out in red dashed boxes), and
(c) large domain gap when retrieving the database images.

Nowadays, fine-grained cross-domain image retrieval
methods have been introduced in related fields like
matching aerial photos with geographic information sys-
tem (GIS) map data [14]–[16], hand drawn sketches to
real world images [17], [18], and historical architectural
paintings to 3D models [19]. Generally speaking, these
methods can also be applied in shoe-print identification.
References [20], [21] improved the Siamese network [22] to
achieve fine-grained retrieval across the sketch/image gap.
Although promising results have been reported, the sketch
based image retrieval (SBIR) task differs from the shoe-
print identification in two aspects: 1) the SoC impressions
often contain more noises in background than the hand draw
sketches; 2) all sketches in the SBIR task are complete in
shape while in SoC impressions, partial absence is a notable
character that needs to be taken into consideration.

To deal with these challenges, we propose a novel multi-
part weighted convolutional neural network (MP-CNN) for
shoe-print image retrieval. The MP-CNN uses the Siamese
network [22] as the base structure and adopts the triplet
loss function as the similarity metrics. Given the partial
absence on SoC impressions, we divide the input query
images into top and bottom slices and individually send
them into the VGG19 [12] models which share the same
parameter set to extract their features. Next, we calculate
the importance weight matrix of these two parts depending
on the informative pixels they contained. By multiplying the
weights on two sub-features, we concatenate them together
as the final features which are then applied for similarity
calculation. Through this operation, the triplet loss function
can focus on matching the informative part of the query
impressions with samples from the database. As a result, the
MP-CNN can generate more discriminative features distinct
from each other and improve the retrieval accuracy. Further-
more, in order to decrease the domain difference between
the SoC impressions and the database, we propose a new
strategy which utilizes U-Net [23] to enhance the qual-
ity of images. The SoC impressions are then converted to

binary images (Bi-SoC) with environmental noises removed.
Though some valuable information is lost through this
procedure inevitably, the profit is markedly enormous as
the aforementioned cross-domain problem is greatly solved.
Note that this strategy only works in certain conditions since
the U-Net structure requires precise pixel-level masks of
shoe-print images in the training steps.

The main contributions of this paper are as follows: 1) we
propose a novel MP-CNN architecture that focuses on the
informative parts of the input images and 2) we introduce a
new strategy to decrease the domain gap between the SoC
and the shoe-print database. Experimental results on two
datasets (our own shoe-print identification database (SPID)
and footwear impression database (FID300)) show that the
proposed method can achieve significant improvement on
shoe-print identification tasks.

The rest of the paper is organized as follows. Section II
describes the related work. Section III introduces the
proposed method. Section IV provides the evaluation and
analysis, followed by the conclusions in Section V.

II. RELATED WORK
In this Section, we briefly review the previous works regard-
ing both shoe-print identification and some related fine-
grained cross-domain image retrieval methods.

A. SHOE-PRINT IDENTIFICATION
The widespread success of automatic fingerprint identifica-
tions systems [24] has inspired many attempts to similarly
automate shoe-print identification. Existing state-of-the-art
techniques mainly differ in the way to extracted features.

Some methods seek to process shoe-print image in a holis-
tic way. De Chazal et al. [25] calculated the 2D discrete
Fourier transform (DFT) features to yield a periodogram esti-
mate of the power spectral density (PSD). Gueham et al. [26]
exploited Fourier-Mellin transformed features obtained by
a log-polar mapping followed by a DFT. In addition,
Zhang and Allinson [2] introduced multiresolution features
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FIGURE 2. Illustration of the proposed MP-CNN framework. The proposed network is a Siamese network of three CNN
branches with different input, corresponding to the anchor SoC impression, the positive database image and the negative
database image, respectively. For each branch, the input image is divided into two slices to extract features individually.
We concatenate these two features together with weights and send three new features to triplet loss layer to measure the
similarity between them. Please refer to Section III for details.

using Gabor transform. Li et al. [5] combined the integral
histogram of the Gabor features with the Euclidean distance
and histogram intersection. Kong et al. [27] extracted Gabor
and Zernike features combined with normalized correlation
for matching. With the progress in machine learning tech-
niques, several learning-based techniques have been pro-
posed. Kortylewski and Vetter [7] suggested a probabilistic
compositional active basis model for shoe-print identifica-
tion. The recent study of Kong et al. [10], [11] introduced
a multi-channel normalized cross-correlation to match multi-
channel deep features extracted by pre-trained convolutional
neural networks.

Another group of works tried to extract some dis-
criminative features from local shoe-print regions. Pavlou
and Allinson [28] exploited the maximally stable extremal
region (MSER) to detect the points of interest from the
gradient location, the orientation histogram (GLOH) and
the scale invariant feature transform (SIFT) features. In the
same context, Rathinavel and Arumugam [29] extracted
the discrete cosine transform (DCT) coefficients for over-
lapped blocks, further combined with the principal compo-
nent analysis (PCA) and the Fisher linear discriminant (FLD).
Wei et al. [30] combined SIFT features with cross-correlation
matching. Wang et al. [31] exploited the Wavelet-Fourier
transform features. Almaadeed et al. [8] combined the Harris
and the Hessian point of interest detectors with SIFT descrip-
tors.

B. SIMILARITY METRIC
The similarity metrics in shoe-print identification task
including the Euclidean distance [2], [5], [6], [29], [32],

the 2D correlation [25], [26], [31], the mean square
noise error method (MSNE) [33], and the normalized
cross-correlation (NCC) [10], [11]. Other methods in per-
son re-identification and face recognition usually use the
cosine distance or the vector angle to measure feature
similarity.

C. FINE-GRAINED CROSS-DOMAIN IMAGE RETRIEVAL
Differentiating shoe-prints from each other is much harder
when compared with the conventional category-level clas-
sifications, since the visual differences between the shoe-
print images are often subtle. Meanwhile, huge domain
gap occurs from SoC impressions to database samples.
So this problem can be considered as an implementation
in the area of fine-grained cross-domain image retrieval
tasks. Li et al. [34] solved the fine-grained sketch-based
image retrieval (FG-SBIR) task by employing deformable
part-based model (DPM) which learns mid-level represen-
tation for both sketches and images. Yu et al. [20] and
Sangkloy et al. [35] evaluated the two-branch CNNs with
pairwise verification loss and three-branch CNNs with triplet
ranking loss aims to learn both the feature representation and
the cross-domain matching function jointly. Song et al. [21]
proposed a deep spatial semantic attention model for
FG-SBIR by introducing an attentionmodeling and a shortcut
connections on it. While all these methods suggest good ways
to deal with the fine-grained cross-domain tasks, the SoC
images are more complex that requires more complicated
networks.

Our proposed MP-CNN model differs from the aforemen-
tioned methods by introducing a novel way to deal with
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the absence in the SoC impressions. Through the proposed
model, more discriminative features can be learned and
higher accuracy can be reached.

III. APPROACH
The main characteristics that make the shoe-print identifi-
cation distinct from other fine-grained cross-domain image
retrieval task are two-folds: 1) SoC impressions often con-
tains more complex noise in the background and 2) scat-
tered SoC impression is common in real world cases. In this
section, we adopt a new strategy which uses the U-Net [23]
to enhance the quality of the images and to reduce the
domain gap between the SoC impressions and the database
images. Furthermore, we propose a novel multi-part weighted
CNN named as MP-CNN to cut input images into pieces
and extract features individually. By providing the sub-
features with different weights, we enforce the similarity
metric to pay more attention on the most informative parts of
the query.

A. TWO STRATEGIES
For shoe-print image retrieval task, one natural thought is
following the fine-grained sketch-based image retrieval (FG-
SBIR) problems to treat it as a cross-domain task. A Siamese
network with base networks like VGG [12], ResNet [13]
is proven effective in extracting images from different
domains [22]. Therefore, the first strategy directly uses the
SoC impressions to match the images in the database through
a siamese liked framework. We choose the VGG19 as the
base network to extract the features of images from two
domains and use the triplet loss function to measure their
similarities. Moreover, we propose another strategy using
U-Net to enhance the quality of images and then conduct
image retrieval. The procedure of these two strategies is
shown in Fig. 3. The U-Net architecture contains a con-
volutional auto-encoder with lateral connections between
corresponding layers from the encoder to the decoder.
It can be trained end-to-end with very few images and per-
forms significant result in segmentation task. In this paper,
we use U-Net to extract the meaningful information from
the SoC impressions, which is then converted to binary
images (Bi-SoC) with the environmental noises removed.
Implementation details are shown in Section IV-B. Though
some valuable information are lost through this procedure
inevitably, the profit is markedly enormous as the cross-
domain problems are solved. We compared this strategy with
the origin one to demonstrate its significance. Note that this
strategy only works in certain conditions since the U-Net net-
work requires precise pixel-level masks of shoe-print images
in the training steps.

B. MULTI-PART WEIGHTED CNN
The architecture of the proposed multi-part weighted convo-
lutional neural network (MP-CNN) is illustrated in Fig. 2.
It is a triplet training network with three branches which
share the same parameter set. Each branch contains a VGG19

FIGURE 3. The procedure of two aforementioned strategies. Strategy 1 (in
blue dashed box) directly uses the SoC impressions to match the images
in the database. Strategy 2 (in red dashed box) uses U-Net to convert the
SoC impressions to Bi-SoC images and then conduct image retrieval.

network with a single fully-connected (FC) layer which
extracts features and converts them into a 128-dimensional
vectors. Three input images correspond to an anchor SoC
impression, a positive database image and a negative database
image, respectively. The anchor-positive-negative triplet
which is defined as {XXXo,XXX+,XXX−} is selected according to the
matching relationship, i.e., the true match image is the posi-
tive and any false match can be used as the negative. Take the
anchor branch for example, given an input imageXXX ∈ RW×H

(W andH are the width and height ofXXX respectively), we first
divide it vertically into two sub-parts xxx1,xxx2 ∈ RW×(H/2)

and extract the deep features by feeding them into convo-
lutional layers and the FC layer individually. The extracted
sub-features are denoted as fff 1 and fff 2. Meanwhile, we set an
extra stream which takes the anchor impression XXXo as input
and calculate a weight matrix WWW o

=
{
W o

1 ,W
o
2

}
depending

on the amount of information these two sub-parts contains.
The weight matrixWWW o can be defined as:

W o
i =

g(xxxoi )∑2
j=1 g(xxx

o
j )
, i = 1, 2, (1)

where g(·) computes the percentage of informative pixels
which is defined as

g(xxxoi ) =

∑W
j=1

∑H/2
k=1 xxx

o
i,j,k

W × H/2
. (2)

Intuitively, W reflects the importance weight of two sub-
parts. We multiply the sub-features with the weight matrix
and concatenate them to generate the final representation
feature of X as

fff ξ = [fff ξ1 ·W
o
1 , fff

ξ
2 ·W

o
2 ]

T, ξ = o,+,−. (3)

With the same process on other two branches we obtain
the triplet feature {fff o, fff +, fff −} and send them into the triplet
loss metric. The similarities between the triplet images are
measured by the Euclidean distances between fff o, fff +, fff −. The
triplet loss function requires that distance of pair (fff o, fff −) be
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TABLE 1. Statistics of datasets.

larger than that of the pair (fff o, fff +) by a predefined margin.
In this work, the triplet loss is calculated as

L = d(fff o, fff +)− d(fff o, fff −)+ α, (4)

where α is the predefined margin and the distance function
d(·, ·) is the Euclidean distance defined as

d(fff o, fff +) = ‖fff o − fff +‖2. (5)

The MP-CNN structure provides a large weight on the infor-
mative part while ignoring the scattered part in a SoC impres-
sion, through which the triplet loss function can focus on
comparing the subtle difference of informative part on SoC
impressions with database images.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. DATASETS AND SETTINGS
1) DATASETS
We evaluate the proposed MP-CNN network on two datasets.
One is the shoe-print identification database (SPID). The
other is the footwear impression database (FID300). Detailed
information of the datasets is provided in Table 1. In shoe-
print retrieval task, there exists many-to-many relationship
between the SoC impressions and the database images.
In SPID we group the SoC impressions with same matches
into one class and get 1843 classes in total. Thenwe randomly
divide them into training group with 1614 classes and test
groupwith 229 classes. As for FID300, the probe images have
been digitized with a scanner after being lifted with a gel foil
from the ground. Therefore, the relationship turns to bemany-
to-one, i.e., every query only has one image matched in the
gallery. So we simply using an 8/2 splitting ratio for training
and test.

2) IMPLEMENTATION DETAILS
To make fair comparison, we conducted experiments with
the same settings. Especially, in order to maintain the rough
ratio of the Shoe-print images, we resized every input to a
size of 128 × 256 and conducted flipping with 0.5 proba-
bility. Next, we extracted features with VGG19 pretrained
on the ImageNet classification dataset. We added a fully-
connected (FC) layer and converted the features into a
128-dimensional vectors. We chose the batch-all strategy for
triplet loss function and set the margin α in Equation (4)
as 0.3. The learning rates of all layers are initially set as 0.001,
and it is multiplied by 0.9 every 20 epochs. We trained our
model for 500 epochs and the weight decay value is kept
as 1× 10−4.

FIGURE 4. Example of (a) the SoC impressions in SPID, (b) the probe
shoe-print images in FID300, and (c) the Bi-SoC images obtained by
strategy 2.

B. PERFORMANCE COMPARISON WITH
TWO STRATEGIES
The results on SPID are displayed in Table 2. Two typ-
ical baseline models in FG-SBIR task were chosen for
comparison, namely the Sketch-a-Net (SAN) and the deep
spatial-semantic attention (DSSA) network. We used the
ratio of correctly predicting the true match at top1%, top5%
and top10% as the evaluation metrics. Test time argumen-
tation (TTA) performs random modifications to the test
images, and takes the average of the predictions of each
corresponding image as the final prediction. We both test
our model with/without TTA operation to judge its perfor-
mance in this task. The results suggest that 1) strategy 2
using U-Net to segment shoe-print from background which
convert SoC to Bi-SoC can largely improve the perfor-
mance on all the algorithms (SAN, DSSA, and MP-CNN)
and 2) the proposed model significantly outperforms all
the baseline models on all the evaluation metrics. The MP-
CNN is trained with strategy 1 achieves the best accu-
racy of 62.69% at top5% while MP-CNN trained with
strategy 2 outperforms corresponding baseline by a margin
of 10%.

The results obtained by two proposed strategies demon-
strate that strategy 2 is not absolutely better than strategy 1.
Though the U-Net converts SoC to Bi-SoC which helps in
reducing the domain gap between the query images and the
gallery images, some valuable information are lost during this
procedure. Note that we conduct image annotation on SoC
impressions to get the dataset for the U-Net training. Hence
the performance largely depends on the amount of training
data and the annotation quality. In Fig. 5 (a), we visualize
the top-15 retrieved test impressions on our MP-CNN model
from SPID.
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TABLE 2. Experimental results on the SPID dataset, the best results are marked in bold fonts.

TABLE 3. Experimental results on FID300 dataset, the best results are marked in bold fonts.

C. EXPERIMENTS ON FID300
In addition to the internal dataset SPID described in
Section IV-B, we also evaluated our approach on a pub-
licly available dataset (FID300) [4]. This database contains
1175 gallery and 300 probe shoe-print images. The results on
FID300 are displayed in Table 3. Note that the probe shoe-
print images in FID300 have been digitized with a scanner
after being lifted with a gel foil from the ground, which is
different from SPID. In this case, we conducted two exper-
iments for comparison. Firstly we directly tested the pre-
trained models on the FID300 benchmark without retraining
(refer to ‘‘MP-CNN w/o retrain’’ in Table 3). In addition,
we divided FID300 using an 8/2 splitting ratio and trained
it by ourselves (refer to ‘‘MP-CNN w retrain’’ in Table 3).
The MP-CNN achieves 61.02%, 81.36%, 89.83% accura-
cies on top1%, top5%, top10% evaluations, respectively.
The results significantly outperform existing approaches
(ACCV [4], BMVC [7], LoG [36]) with a considerable
margin. At the meantime, it also achieves an competitive
accuracy compared with MCNCC [10], [11]. One rea-
son that the MP-CNN does not perform the best on the
FID300 dataset can be explained by the retraining opera-
tion. If we test the model without retraining, the results
largely depend on the similarity between the training
dataset and the test dataset. The query images in FID300
can be considered as the middle state from SoC to Bi-
SoC (shown in Fig. 4) which has effect on the perfor-
mance. In Fig. 5 (b), we visualize the top-15 retrieved test
impressions for a subset of crime scene query prints from
FID300.

TABLE 4. Effect of two strategies, the results presented in top1%
accuracy.

D. ABLATION STUDY
We conduct ablation studies to show the effect of our
proposed multi-part weighted structure and U-Net based
strategy. The experiments are based on the SPID dataset.

1) EFFECT OF STRATEGY 2
We investigate the effect of Section III-A by adopting two
strategies on different networks (SAN, DSSA, MP-CNN).
The results are displayed in Table 4. Strategy 2 uses U-Net to
convert the SoC images to Bi-SoC images. It largely reduces
the difficulty on comparing the similarity with images from
two domains which are extremely different. The top1% accu-
racy has been increased by 0.80%, 1.56% and 1.51% on three
test structures, respectively.

2) EFFECT OF MULTI-WEIGHTS
In order to judge the influence of multi-weights on two
sub-features, we set 1) MP-CNN with equal weight on two
sub-features which are set as 1. 2) MP-CNN with a weight
matrix Wo mentioned in Section III-B. The results are dis-
played in Table 5. The MP-CNN with weighted features
achieves a overall improvement upon the one with equal
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FIGURE 5. Retrieval results on (a) SPID and (b) FID dataset. Red boxes indicate the corresponding ground truth test
impression.

TABLE 5. Effect of weight on sub-features.

weight by 4.81%, 5.24% and 4.81% on top1%, top5%,
top10% accuracy, respectively. The results confirm that, with
different weight on sub-features, the network can concentrate
on the informative part of the input images, and therefore,
learns more discriminative representation which achieves
better performance.

V. CONCLUSIONS
In this paper, we propose a novel multi-part weighted convo-
lutional network (MP-CNN) for shoe-print image retrieval.
By extracting the sub-features individually using a two-
stream structure, we multiply them with the importance
weights which reflect the amount of meaningful information
contained by their corresponding sub-images. The proposed
MP-CNN pays more attention on the subtle differences from
the informative part of images. In addition, we adopt a new
strategy to deal with this task that can reduce domain gap
by removing background noise from the crime scene images.
Experimental results on two datasets demonstrated the good

performance of our methods. In the future, we will further
study the proposed MP-CNN on two directions: 1) adopting
flexible division strategies upon different inputs instead of the
fixed two-parts division, and 2) extending our framework to
other tasks such as the sketch based image retrieval problem.
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