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ABSTRACT This paper studies the Ethernet passive optical network (EPON) with limited service. The
transmission window (TW) is limited in this system to guarantee a bounded delay experienced by disciplined
users and to constrain malicious users from monopolizing the transmission channel. Thus, selecting an
appropriate TW size is critical to the performance of EPON with limited service discipline. In this paper,
we develop an M/G/1 queuing model with vacation times and limited-service discipline to investigate the
impact of TW size on packet delay. A distinguishing feature of this model is that there are two queues in the
buffer of each optical network unit (ONU): one queue is inside the gate and the other one is outside the gate,
from which we derive the generalized formula of mean waiting time. Furthermore, based on the service-
level agreements of users and the Chernoff bound of queue length, we provide a simple rule to determine an
optimum TW size for limited-service EPONs. The analytic results reported in this paper are all verified by
simulations.

INDEX TERMS Ethernet passive optical network (EPON), limited service, M/G/1.

I. INTRODUCTION
The ever-growing Internet traffic generated by emerging
services, including video on demand, remote e-learning,
and online gaming, continues to exacerbate the last mile
bottleneck problem [1]. Ethernet Passive Optical Network
(EPON) has been considered as an attractive solution to
this problem due to its low cost, large capacity and ease of
upgrade to higher bit rates [2]. It has been widely deployed
in many access networks such as Fiber-To-The-Home
(FTTH), Fiber-To-The-Building (FTTB) and Fiber-To-The-
Curb (FTTC) [3]–[5]. In particular, today FTTH is a predom-
inate deployment because it provides high bandwidth for each
end-user [6], [7].

A typical EPON is plotted in FIGURE 1. An EPON is a
point-to-multipoint network, where one optical line terminal
(OLT) in the central office is connected to multiple optical
network units (ONUs) located at the users’ premises via an
optical passive splitter. In the downstream direction, the OLT
broadcasts the packets to all ONUs, and each ONU only
accepts the packets destined to it. In the upstream direc-
tion, the OLT schedules the ONUs to share the bandwidth
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FIGURE 1. Upstream transmission in the EPON.

in a time division multiplexing (TDM) manner. The OLT
assigns transmission windows (TWs) to each ONU by send-
ing GATEmessages in a round-robin fashion. Upon receiving
the GATE message, the ONU transmits upstream data in
the allocated TW. The number of packets that the ONU can
send during a TW is called the TW size in this paper. After
data transmission, the ONU generates a REPORT message
to inform the OLT of its buffer status [2]. The TWs of two
successive ONUs are separated by a guard time to avoid data
overlapping. The sizes of TWs that the OLT allocates to each
ONU depend on the service discipline that the OLT adopts.

The gated-service discipline has been widely studied in
previous works [8]–[15]. In gated service, each ONU is
authorized to transmit the amount of data that it requests in
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the REPORT [16]. Thus, the gated service may lead to the
phenomenon called the ‘‘capture effect’’ [17], when an ONU
with heavy traffic monopolizes the upstream channel for a
long time and transmits an excessive amount of data. This is
especially true in the application scenario of FTTH, where the
ONU is installed in the user’s home and the user can easily
manipulate the input traffic rate of the ONU. The capture
effect imposes a large delay on other ONUs and, thus, impairs
the quality of service (QoS) of other ONUs.

The limited-service discipline was then used to solve this
problem [8]. With limited service, EPON users sign a service
level agreement (SLA) with the network operator to specify
the upstream traffic rate, and the OLT typically sets a limit
of the maximum TW size to guarantee the QoS of each
ONU according to the signed SLA. In this case, the TW size
allocated by the OLT to an ONU is not larger than this preset
maximum TW size, and thus the ‘‘capture effect’’ can be
suppressed, even if some users inject more traffic than what
they have agreed to with the network operator.

The selection of the maximum TW size is a critical
choice in the limited-service EPON. On one hand, if the
maximum TW size is set too small, the backlog of the
ONUs cannot be cleaned up quickly and the upstream band-
width is wasted by many guard times and REPORT mes-
sages. In this case, the ONU will suffer from a large delay.
On the other hand, if the maximum TW size is set too
large, the capture effect cannot be suppressed effectively.
An extreme case is that the limited-service discipline will
change to the gated-service discipline when the limit goes to
infinity.

In the literature, only a few previous works have studied
the selection of the maximum TW size via simulations. The
impact of the maximum TW size on delay performance of
an ONU is discussed in [18], in which the author points out
that the maximum TW size for each ONU can be fixed based
on the SLA, but doesn’t provide any concrete scheme for the
selection of the maximum TW size. The aim of our paper is
to develop a systematic method to select a proper maximum
TW size for limited-service EPONs.

The upstream transmission process of each ONU can be
described by a vacation queuing system, in which each TW
of the ONU is considered as a busy period while the time
between two successive TWs of the ONU is treated as a
vacation period. In general, the modeling of a vacation queu-
ing system with limited-service discipline is quite difficult.
As we show in Section II, the traditional method to solve the
mean waiting time is via a complex embeddedMarkov chain,
in which the embedded points are defined at the epochs when
a packet departs andwhen a vacation finishes [19], [20]. Thus,
there is still no simple way to derive the mean waiting time
for limited-service EPONs, and only an approximate result is
currently available in [8].

In this paper, we focus on the investigation of limited-
service EPONs for FTTH applications. Our goal is to develop
an insightful model to describe the delay performance of
limited-service EPONs and find a systematic method of

selecting the maximum TW size for each ONU based on
the SLA.

First, we propose a simple method to obtain a generalized
formula of the mean waiting time. The distinguishing feature
of our modeling approach is that we divide the buffer of the
limited-service queue into two virtual queues: one is inside
the gate and the other one is outside the gate. Based on this
approach, we find a key parameter, the average number of
whole vacations that a packet has to experience before it
receives service, so that we can obtain a generalized formula
of the mean waiting time simply by extending the geometric
model in [21]. This formula clearly indicates how the mean
waiting time depends on the parameters, such as service
time, vacation time, and the first and second moments of the
number of packets served in a busy period.

Next, we apply the Chernoff bound of queue length to
select the optimum TW size. According to the SLA, the delay
performance of an ONU shouldn’t be influenced by the
TW size limit if its traffic rate does not exceed the subscribed
rate. Thus, the criterion of selecting the optimum TW size
is to choose the smallest integer that makes the probability
of the queue length exceeding the TW size limit negligible.
That is, when an ONU operates in the subscripted region, its
buffer can be emptied with a high probability at the end of
every busy period. Otherwise, the ONU will suffer from a
large delay when the input traffic rate exceeds the subscribed
rate. Our specific contributions are summarized as follows:
1. We develop a simple method to derive a generalized for-

mula of mean waiting time for an M/G/1 queue with vaca-
tion time and limited-service discipline, which includes
the mean waiting times of two virtual queues: one is inside
the gate and the other one is outside the gate.

2. We provide a simple rule to determine a proper optimum
TW size for ONUs of the limited-service EPON based on
their SLAs, which is proved to be effective by simulations.
The remainder of this paper is organized as follows.

In Section II, we describe the works related to the study
of limited-service EPONs. In Section III, we provide an
overview of the polling process between the OLT and ONUs
of a limited-service EPON and derive the mean waiting time.
Section IV discusses the method of selecting the optimum
TW size and demonstrates the performance of a limited-
service EPON under the selected TW size. Section V con-
cludes this paper.

II. RELATED WORKS
A limited-service EPON is a polling system where a single
servermanages a set of queues in a cyclic order, using limited-
service discipline. On the other hand, each ONU is actually
a vacation queuing system with limited-service discipline,
where each duration that the OLT serves the queue of the
ONU can be treated as a busy period while the duration
that OLT polls other ONUs can be considered as a vacation.
A large number of previous works studied the different types
of limited-service vacation queuing systems, including the
exhaustive type [19], [22]–[24] and the gated type [20], [25].
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The exhaustive-type k-limited vacation queuing systems
were studied in [19], [22]–[24], where the server takes a
vacation when either a queue has been emptied or a pre-
defined number of k customers have been served during
the visit. In [19], the distributions of queue length, waiting
time and busy period were obtained by using the embedded
Markov chain, in which the embedded points are defined at
the epochs when a packet departs or a vacation finishes, and
a combination of the supplementary variables and sample
biasing techniques. This kind of method is quite complex.
In [22], [23], the authors used matrix-analytic techniques to
iteratively calculate the queue length distribution. In [24],
a polling system with two priority queues and k-limited ser-
vice discipline was analyzed, where the high priority queue
is served with queue length dependent service time while the
low priority queue is served with constant service time. The
high priority queue length distribution at departure instants
was derived by the embedded Markov chain. However, these
models cannot be directly applied to limited-service EPONs,
in which the OLT only serves the packets that arrived before
the last REPORT message of an ONU up to a predefined
number, regardless if the buffer is empty or not.

The gated-type k-limited service vacation queuing systems
were considered in [20], [25], where the server manages
at most k customers that present at a queue upon visiting
and then begins a vacation. A queuing model based on an
embeddedMarkov chain was developed in [20], [25] to derive
the Laplace-Stieltjes transforms of waiting time and busy
period distributions, but the computation is too complex to
give a clear physical insight into the performance of the entire
system. To resolve this problem, a simple geometric approach
was proposed in [21] to obtain the mean waiting time, but
this approach can only solve a special case when the user is
allowed to transmit one packet in each busy period.

Each ONU of a limited-service EPON is a kind of gated-
type limited-service vacation queuing system [20]. However,
only a few works in literature were devoted to the model-
ing of limited-service EPONs. In [8], the authors gave an
approximate expression of mean waiting time for a limited-
service EPON under the assumption that the maximum
TW size in terms of time (instead of the number of packets)
is quite large, which is actually similar to the analysis of the
gated-service EPON. In [10], an approximate mean delay of
limited-service EPONs is derived by using a discrete Markov
chain, which is invalid when the traffic load is high.

In summary, no previous work has obtained a useful for-
mula formeanwaiting time in general limited-service EPONs
where the maximum TW size is finite and larger than one.
No previous work has discussed how to select a proper max-
imum TW size for each ONU of limited-service EPONs,
which will be studied in this paper.

III. MODELING LIMITED-SERVICE EPONS
In this section, we analyze the mean waiting time of an ONU
in limited-service EPONs. In Section III-A, we introduce the
working process of the limited-service EPON and show that

each ONU in the EPON can be modeled by a limited-service
vacation queuing system. In Section III-B, we derive themean
waiting time of a general limited-service vacation queuing
system, based on which we obtain the mean waiting time of
the packet in the limited-service EPON in Section III-C.

A. WORKING PROCESS OF LIMITED-SERVICE EPON
In an EPON system with N ONUs that adopts the limited-
service discipline, the packets waiting in the buffer of each
ONU are divided into two groups by a fictitious gate. The
number of packets inside the gate is bounded by themaximum
TW size, denoted by M . An arrival packet first waits outside
the gate and then enters the gate before it can be transmitted.
As FIGURE 2 illustrates, the buffer status is represented by
a two-tuple state (n,m), where n is the number of packets
waiting outside the gate, and m is that waiting inside the
gate. The number n increases by 1 upon a new arrival, and
m decreases by 1 when a packet inside the gate begins to be
transmitted by the ONU.

FIGURE 2 plots the polling process of an EPON, where
N = 2 and M = 3. The OLT employs a 64-Byte GATE to
notify an ONU about the start time and the length of each
allocated TW. Upon receiving the GATE message, the ONU
transmits all packets inside the gate during the TW. At the end
of the TW, the ONU sends a 64-Byte REPORT to the OLT,
which reports the number of packets waiting outside the gate.
According to the number n stated in the REPORT, the OLT
determines the TW size for this ONU in the next cycle, which
equals the smaller of M and n. Thus, the message REPORT
offers the admission for packets waiting outside the gate to
enter the gate.

After ONU 1 issued the first REPORT, as FIGURE 2
shows, the buffer state changes from (2, 0) to (0, 2), which
means two packets entered the gate. Then ONU 1 becomes
idle while the OLT polls the next ONU. When the OLT
finishes the polling of all other (N−1)ONUs, it sends aGATE
message to ONU 1 again to repeat the process. To avoid data
overlapping induced by the clock synchronization problem
between the OLT and the ONUs [26], two successive TWs are
separated by a guard time. As FIGURE 2 depicts, the constant
interval G includes the guard time and the transmission time
of a REPORT.

As FIGURE 2 shows, an ONU is busy with packet trans-
mission during the TW, followed by a vacation period with
a duration that is equal to the sum of NG and the TWs of
other (N − 1) ONUs if the propagation delay between the
OLT and ONUs is not considered. At the end of each busy
period, a predominate number of packets that an ONU reports
to theOLT attributes to the number of arrivals during the vaca-
tion period before it. Hence, there are dependencies among
TW sizes of ONUs. However, in the analysis of multiple
access systems, such as Aloha or CSMA, this kind of depen-
dency is weak and can be neglectedwhenN is large [27], [28].
Thus, we can treat each ONU independently. We make
the following assumptions in the modeling of limited-
service EPONs:
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FIGURE 2. Polling process of an EPON where N = 2 and M = 3.

A1. All ONUs in the EPON are statistically identical.
A2. The number of ONUs N is sufficiently large, say

N > 10, such that the TWs of the ONUs can be
considered as i.i.d. random variables. That is justified,
since the number of ONUs in a 10-Gb/s FTTH network
is usually 32 or 64 in practice [29], [30], much larger
than 10.

A3. The packet arrival process of the EPON is Poisson, as is
the arrival process of each ONU.

A4. The packets are transmitted in a first-in-first-out (FIFO)
manner, and the transmission times of the packets are
i.i.d. random variables with a general distribution.

A5. The round-trip time (RTT) from the OLT to different
ONUs is identical, as we consider the FTTH access
network in this paper. To facilitate our analysis, we first
ignore the RTT before Section IV-C, and call it back in
Section IV-D.

Under these assumptions, each ONU can be considered
as an M/G/1 queue with vacations and limited service.
In Section III-B, we derive the mean waiting time of this
queuing system, which provides the key to analyze the
limited-service EPON in Section III-C.

B. M/G/1 QUEUE WITH VACATIONS AND LIMITED
SERVICE
To facilitate our discussion, we adopt the following notations
in the analysis of the M/G/1 queue with vacations and limited
service:
(1) the packet-arrival rate, which is defined as the number of

packets that arrive at the user per second, is λ packets/s,
(2) the service times of the packets X1, X2, · · · are i.i.d.

random variables with the first moment X and the second
moment X2, and

(3) the vacation times V1, V2, · · · are i.i.d. random variables
with the first moment V and the second moment V 2.

Under the limited-service discipline, up toM packets wait-
ing outside the gate will enter the gate at the end of each
busy period, and they will be served in the next busy period.
After each busy period, the server takes a vacation. When the
vacation terminates, the server returns to serve the packets if
the buffer inside the gate is not empty; otherwise, the server
takes another vacation.

A cycle starts at the end of a busy period. A cycle con-
sists of a vacation period followed by another busy period.
As FIGURE 3 illustrates, the i-th packet Ai may arrive at the
system during a busy period or a vacation period. The follow-
ing definitions pertaining to busy periods will be adopted in
the derivation of mean waiting time of the packets:

B A busy period.
K The number of packets served in a busy period,

where K = 0, 1, 2, · · · ,M .
Bk A busy period, during which k packets are served,

where k = 0, 1, 2, · · · ,M (B0 happens when a
vacation finishes while the buffer inside the gate is
empty).

bk The probability that a busy period is a Bk .
Pk The probability that a packet is served in a Bk ,

where k = 0, 1, 2, · · · ,M .
1i The number of packets served ahead of the i-th

packet Ai in the same busy period.

We need the following two lemmas to facilitate the deriva-
tion of the mean waiting time of packets.
Lemma 1: The probability that the i-th packet Ai is served

in a busy period Bk is given by

Pk =
kbk
K

(1)

Proof: Suppose there are θk busy periods Bk dur-
ing a time interval [0,T ], where k = 0, 1, 2, · · · ,M .
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FIGURE 3. Waiting time of the i -th packet Ai , where M = 3. (a) Ai arrives during a busy period. (b) Ai arrives during a vacation period.

The probability bk that a busy period is a Bk is defined by

bk = lim
T→∞

θk∑M
k=0 θk

During the time interval [0,T ], the number of packets that are
served in all θk busy periods Bk is kθk , and the total number of
packets served in the interval [0,T ] is

∑M
k=1 kθk . It follows

that the probability Pk that the i-th packet Ai is served in a
busy period Bk can be obtained as follows

Pk = lim
T→∞

kθk∑M
k=1 kθk

= lim
T→∞

k× θk∑M
k=0 θk∑M

k=1 k×
θk∑M
k=0 θk

=
kbk∑M
k=1 kbk

=
kbk
K
.

Lemma 2: The mean number of packets served ahead of
the i-th packet Ai in the same busy period is given by

E [1i] =
K 2 − K

2K
. (2)

Proof: Conditioning on the event that packetAi is served
in a busy period Bk , we have

E [1i] =
M∑
k=1

E [1i|Ai is served in a Bk ]Pk

=

M∑
k=1

0+ 1+ · · · + (k − 1)
k

kbk
K

=

M∑
k=1

(
k2 − k

)
bk

2K
=
K 2 − K

2K
.

As FIGURE 3 shows, it may take the server several busy
periods to clear all packets waiting in the buffer ahead
of packet Ai. Since the server can only transmit up to
M packets in each busy period, before the starting of ser-
vice, the waiting time of packet Ai includes the following
components:
(1) The time to complete current service or current vacation.

When packet Ai arrives, the residual time, either residual
service time or residual vacation time, seen by Ai is
denoted by Ri.

(2) The service times of all Ni packets found waiting in the
buffer when Ai arrives.

(3) Besides residual vacation time, the duration of the whole
vacation times experienced by Ai before the starting of
service is denoted by Yi.

It follows from the similar argument given in [21], we have

W = R+ NQX + Y , (3)

and

R = E [Ri] =
λX2

2
+
(1− ρ)V 2

2V
, (4)

where NQ = E [Ni] = λW is the mean queue length, and
ρ = λX is the traffic load. The key to derive the mean waiting
time (3) is the third term Y = E [Yi], which is given in the
proof of the following theorem.
Theorem 1: The mean waiting time of an M/G/1 queue

with vacations and limited-service discipline is given by

W =

λX2

2 +
(1−ρ)V 2

2V
+

[
1−

(1+ρ)
(
K2−K

)
2MK

−
λV
M

]
V

1− ρ − λV
M

. (5)
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Proof: Suppose the system is in state (ni,mi) when
packet Ai arrives, meaning that the number of packets waiting
in the buffer are ni outside and mi inside the gate. After
Ai arrives, all mi packets inside the gate are sent out during
the first busy period, at the end of which the first M of the
ni packets enters the gate. Packet Ai enters the gate at the end
of the

(
bni
/
M c + 1

)
-th busy period, and is sent out during

the
(
bni
/
M c + 2

)
-th busy period. That is, the number of

whole vacations that Ai has to experience before the starting
of service is bni

/
M c + 1, where bxc is the largest integer

smaller than x.
For example, as FIGURE 3(a) shows, the state of system

is (ni,mi) = (4, 2) upon the arrival of Ai andM is three, thus
Ai has to wait for bni

/
M c + 1 = b4/3c + 1 = 2 whole

vacation times in the buffer before it can be transmitted.
It’s the same as that in FIGURE 3(b). Thus, we have

Y =
(
1+ E

[⌊ ni
M

⌋])
V . (6)

In the
(
bni
/
M c + 2

)
-th busy period, the number of packets

transmitted ahead of Ai is given by 1i = ni − b
ni
M cM . For

example, as FIGURE 3(a) shows, packet Ai is the second
packet served in the third busy period. Since ni = 4 upon the
arrival of Ai and M = 3, it follows that 1i = ni − b

ni
M cM =

4 − 3 = 1. However, in FIGURE 3(b), there is no packet
transmitted before Ai in the third busy period since the system
state is (ni,mi) = (3, 3) when Ai arrives, and in this case
1i = ni − b

ni
M cM = 3 − 3 = 0. Therefore, by definition,

we have

E
[⌊ ni
M

⌋]
=
E [ni]− E [1i]

M
. (7)

Notice that the mean queue length NQ is the sum of the mean
number of packets waiting outside the gate n = E[ni] and
that waiting inside the gate m = E[mi]. It follows that

n = E[ni] = NQ − m. (8)

Since the packet Ai is moved into the gate at the end
of the

(
bni
/
M c + 1

)
-th busy period and served in the(

bni
/
M c + 2

)
-th busy period, the waiting time of Ai inside

the gate, denoted as W i
in, includes the vacation time V

between these two busy periods, and the total service time
of1i packets transmitted ahead of Ai in the

(
bni
/
M c + 2

)
-th

busy period. Thus, the mean waiting time of Ai inside the gate
is given by

W in = E
[
W i
in

]
= V + E [1i]X .

From Little’s Law and Lemma 2, we obtain the following
mean number of packets waiting inside the gate:

m = λW in = λV +
ρ
(
K 2 − K

)
2K

. (9)

The theorem is established by combining (3)-(4) and (6)-(9).

Suppose the distribution of service time X is given. The
evaluation of the mean waiting time (5) requires the first

two moments of the vacation time V and the number of pack-
etsK transmitted in a busy period. Intuitively, they are related
to each other because the random variable K depends on
the number of arrivals during the vacation time V . Focusing
on the application of the above theorem to EPONs, we will
discuss the relationship between the first two moments of V
and K in the next subsection.

C. MEAN WAITING TIME OF EPONS WITH
LIMITED-SERVICE DISCIPLINE
In this subsection, we apply the result of Theorem 1 to
calculate the mean waiting time of a limited-service EPON,
where the rate of packet input to the network is λE packets/s
and to each ONU is λ packets/s. The distribution of packet
transmission time can be derived from Ethernet frame size
distribution.

1) Moments of Vacation Time V of An ONU: An ONU is
busy with probability ρ = λX and idle with probability 1−ρ.
The mean busy period of an ONU is given by

B = E[B] =
ρV
1− ρ

. (10)

In an EPONwithN ONUs where RTT is negligible, the vaca-
tion time of an ONU equals the TWs of other (N − 1) ONUs
plus NG. According to our assumption A2, the TWs are i.i.d.
random variables. By definition, we have

V = (N − 1)B+ NG = (N − 1)
ρE
N V

1− ρE
N
+ NG,

where ρE = λEX = Nρ is the offered load to the EPON.
After some reconfiguration, the first moment of vacation
time V for an ONU is given by

V =
N − ρE
1− ρE

G. (11)

Similarly, the second moment of vacation time V for an
ONU is defined as follows

V 2 = V
2
+ σ 2

V = V
2
+ (N − 1)σ 2

B, (12)

where σ 2
V and σ 2

B are the variances of V and B, respectively.
Recall that Bk is a busy period during which k packets
are transmitted. It follows that Bk =

∑k
i=1 Xi, in which

X1,X2, · · · ,Xk are i.i.d. random variables. Let X∗(θ ) and
B∗(θ ) be the Laplace-Stieltjes transforms of the probability
density function (PDF) of service time X and busy period B,
respectively. They are related as follows:

B∗(θ ) = E
[
e−θB

]
= E

[
E
[
e−θB|B = Bk

]]
=

M∑
k=0

E
[
e−θBk

]
bk =

M∑
k=0

(
k∏
i=1

E
[
e−θXi

])
bk

=

M∑
k=0

[
X∗(θ )

]kbk = F
[
X∗(θ )

]
,
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FIGURE 4. Upstream transmission process of an ONU, where M = 3.

where F(z) =
∑M

k=0 bkz
k is the generating function of bk .

Therefore, the variance of busy period σ 2
B can be obtained by

σ 2
B = B∗′′(0)−

[
−B∗′(0)

]2
= F ′′(1)

[
X∗′(0)

]2
+ F ′(1)X∗′′(0)−

[
F ′(1)X∗′(0)

]2
=

(
K 2 − K

)
X
2
+ KX2 −

(
KX

)2
= X

2
(
K 2 − K

2
)
+ K

(
X2 − X

2
)
. (13)

Substituting (13) into (12), we obtain the following expres-
sion of V 2:

V 2 = V
2
+ (N − 1)

[
X
2
(
K 2 − K

)
+ K

(
X2 − X

)]
. (14)

From (5), (11) and (14), we know that the mean waiting time
of the EPON can now be determined by the first twomoments
K and K 2 of the number of packets transmitted in a busy
period.

2)Moments of Number of Packets K Transmitted in A Busy
Period: The first moment ofK can be easily derived from (10)
and (11), and is given as follows:

K =
B

X
=

λV
1− ρ

=

λE
N V

1− ρE
N
=

λEG
1− ρE

. (15)

The derivation of the second moment K 2, however, has to
resort to the discrete time Markov chain embedded in the
epochs at the end of busy periods. As FIGURE 4 shows,
the upstream transmission process of anONU is a sequence of
cycles. For example, at the end of cycle j−1 and the beginning
of cycle j, the ONU reports its queue length, denoted as lj,
to the OLT. According to this report, the OLT determines the
size of the TW in cycle j, denoted as kj, as follows: kj = M if
lj ≥ M , and kj = lj, if lj < M . That is, the TW size kj in
cycle j is determined by the queue length lj at the start of
cycle j and is given as follows

kj = lj −
(
lj −M

)+
, (16)

where
(
lj −M

)+
,max

{
lj −M , 0

}
is the number of reported

packets that are not transmitted in cycle j.
Let qn = limj→∞ Pr{lj = n}. Recall that bk is the prob-

ability that k packets are served in a busy period. According
to (16), we have

bk =

{
qk , k = 0, 1, · · · ,M − 1

1−
∑M−1

k=0
qk , k = M

(17)

Thus, the second moment of K can be obtained based on the
distribution of the queue length qn as follows

K 2 =

M∑
k=0

k2bk =
M−1∑
k=0

k2qk +M2

(
1−

M−1∑
k=0

qk

)
. (18)

On the other hand, the queue length lj+1 at the start point
of cycle j + 1 is determined by the number of packets kj
transmitted during the busy period of cycle j and the number
of arrivals aj during cycle j. Thus, from (16), the queue
length at the start point of each cycle satisfies the following
Lindley’s equation:

lj+1 = lj − kj + aj =
(
lj −M

)+
+ aj. (19)

Let hn = limj→∞ Pr{aj = n} be the probability that there
are n arrivals during a cycle time C . We immediately derive
the following equilibrium equation from (19):

qn =
M−1∑
i=0

qihn +
M+n∑
i=M

qihn+M−i,

from which we obtain the generating function of queue
length:

Q(z) ,
∞∑
n=0

qnzn =

[∑M−1
i=0 qi

(
zM − zi

)]
H (z)

zM − H (z)
, (20)

where H (z),
∑
∞

n=0 hnz
n is the generating function of hn.

According to our assumption A3 that the packet arrival
process of each ONU is a Poisson process, the distribution
hn is completely determined by the cycle time distribution.
Let c(t) be the PDF of the cycle time C . We have

H (z) =
∞∑
n=0

[∫
∞

0

(λt)n

n!
e−λtc (t) dt

]
zn = C∗ [λ (1− z)] .

(21)

A cycle consists of a vacation period and a busy period,
which means that the cycle time is the sum of NG and the
duration of the TWs of N ONUs, which are i.i.d. random
variables according to our assumption A2. It follows that
the distribution of cycle time is approximately a Gaussian
distribution according to the central limit theorem [31]. The
Laplace-Stieltjes transform of the cycle time distribution is
given by

C∗(θ ) = exp
[
−µCθ +

1
2
σ 2
Cθ

2
]
, (22)

where the mean cycle time can be obtained from (11), and is
given as follows:

µC =
V

1− ρ
=

(N−ρE )G
1−ρE

1− ρE
N
=

NG
1− ρE

, (23)

while the variance of cycle time C is determined by the
variance of busy period (13):

σ 2
C = Nσ 2

B = N
[
X
2
(
K 2 − K

2
)
+ K

(
X2 − X

2
)]
. (24)
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We know that the second moment K 2 in (18) is coupled to
the queue length probability qn, for n = 0, 1, · · · ,M−1. For
a given K 2, according to Rouche’s theorem and Lagrange’s
theorem [20], we can first solve qn (n = 0, 1, · · · ,M − 1)
from (20)-(24), and then update K 2 by substituting qn
into (18). Repeatedly applying this iterative procedure,
we can obtain the value of K 2 and then obtain the mean
waiting time (5) of an ONU by combining (11), (14), (15),
and K 2. APPENDIX A gives the procedure that numerically
calculates K 2 and the mean waiting time. In the next section,
we seek a systematic rule to select the optimum TW size for
each ONU of the EPON that satisfies the practical operational
requirements of limited-service EPONs.

IV. OPTIMUM TRANSMISSION WINDOW SIZE
In limited-service EPONs, each user signs a service level
agreement (SLA) with the network operator to subscribe
to a traffic rate, denoted by r∗, in units of Bytes/s or B/s.
When the subscribed traffic rate r∗ is specified, the maximal
number of packets that the user can inject into the network
per second, called the subscribed packet-arrival rate of the
user and denoted by λ∗, is determined accordingly. Let R be
the upstream transmission capacity of the EPON in units
of B/s. Recall that the mean service time of packets is
X second, thus the subscribed packet-arrival rate is

λ∗ =
r∗

RX
packets/s. (25)

Let r be the input traffic rate of each ONU in units
of B/s. An ONU is a disciplined user and its QoS should be
guaranteed if its input traffic rate or the packet-arrival rate is
in the subscribed region, that is r ∈ [0, r∗] or λ = λE/N ∈
[0, λ∗]. Otherwise, it is a malicious user. In a homogenous
EPON, an ONU is either a disciplined user or a malicious
user. An EPON system is regular if all the ONUs are dis-
ciplined users. In this section, we describe the methodology
and procedure to select an optimum TW sizeM based on the
analytical result in Section III, given the subscribed traffic
rate r∗ or the subscribed packet-arrival rate λ∗ of each ONU.

As previously stated, the purpose of limiting the TW size
is to guarantee the QoS of disciplined users and to penalize
malicious users. The TW sizeM limits the maximum number
of packets that can be served in a busy period. Ideally, a proper
TW size M ensures that all packets arrived at a disciplined
ONU during a cycle time can be completely served in the
next busy period. To achieve this goal, the probability that the
queue length at the beginning of a cycle exceeds the limit M
should be kept very small. Thus, the criterion for the selection
of TW size M is given by

Pr{l ≥ M} = lim
j→∞

Pr{lj ≥ M} ≤ ε, (26)

for some positive ε � 1, when λ = λE/N ∈
[
0, λ∗

]
. In the

following, we show an optimum TW size M that satisfies
criterion (26) can be selected by using the Chernoff bound
of queue length.

A. CHERNOFF BOUND OF QUEUE LENGTH
The Chernoff bound of the tail distribution of queue length l
at the beginning of a cycle is given as follows [32]:

Pr{l ≥ µl + t} = Pr{zl ≥ zµl+t } ≤
E
[
zl
]

zµl+t
, (27)

for any z > 1, where E[zl] = Q(z) is the generating function
of the queue length distribution and µl = E[l] is the mean
queue length.

Suppose all the ONUs are disciplined users with packet-
arrival rate λ = λE/N ∈

[
0, λ∗

]
, and the TW sizeM satisfies

criterion (26), then each time the queue length reported by
an ONU should be typically smaller than M with a high
probability 1 − ε. It follows that equations (16) and (19)
will respectively degenerate to the following approximate
equations:

lj ≈ kj, (28)

lj+1 ≈ aj, (29)

which implies that the following generating functions of lj, kj
and aj are approximately equal:

Q(z) ≈ F(z)≈H (z). (30)

Thus, according to (21)-(24), we have

Q(z)≈H (z) = exp
[
−λµC (1− z)+

1
2
λ2σ 2

C (1− z)
2
]

= exp
{
−
λEG (1− z)

1− ρE
+

[
X
2(
K 2 − K

2)
+K

(
X2 − X

2)] λ2E (1− z)2
2N

}
. (31)

In this equation, the second moment of the number of packets
served in each busy period can be obtained by

K 2 = F ′′(1)+ F ′(1)≈H ′′(1)+ H ′(1). (32)

Substituting (31) into (32), we have

K 2 =

(
λEG

1− ρE

)2

+
ρ2E

N

[
K 2 −

(
λEG

1− ρE

)2
]

+
λ3EG

N (1− ρE )

(
X2 − X

2
)
+

λEG
1− ρE

,

which yields

K 2 =

(
λEG

1− ρE

)2

+

λ3EG
N (1−ρE )

(
X2 − X

2
)
+

λEG
1−ρE

1− ρ2E
N

. (33)

Substituting (33) into (31), we obtainQ(z) in the regular case
as follows:

Q(z) ≈ exp
[
−
λEG

1− ρE
(1− z)

+
λ3EGX

2

2 (1− ρE )
(
N − ρ2E

) (1− z)2] . (34)
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The mean and variance of queue length l are respectively
given as follows:

µl = Q′ (1) = λµC =
λEG

1− ρE
, (35)

and

σ 2
l = Q′′(1)+ Q′(1)−

[
Q′(1)

]2
= λ2σ 2

C + λµC

=
λ3EGX

2

(1− ρE )
(
N − ρ2E

) + λEG
1− ρE

. (36)

It follows from the first equation of generating function of
queue length in (31), the Chernoff bound (27) is given by

Pr{l ≥ µl + t}

≤ exp
[
− (µl + t) logz+λµC (z−1)+

1
2
λ2σ 2

C (z− 1)2
]
,

for any z > 1. Substituting t = M − µl into the above
Chernoff bound, then criterion (26) can be fulfilled if M is
the smallest integer that satisfies the following inequality:

Pr{l ≥ M}

≤ inf
z>1

{
exp
[
−M logz+ λµC (z− 1)+

1
2
λ2σ 2

C (z− 1)2
]}

≤ ε, (37)

where λ = λE/N∈
[
0, λ∗

]
. We discuss the procedure to

find the optimum TW size M∗ that satisfies (37) in the next
subsection.

B. PROCEDURE OF DETERMINING OPTIMUM TW SIZE
Solving the optimum TW size M∗ from (37) involves a
complicated transcendental equation, therefore it can only be
solved numerically. To initialize the computation procedure,
we provide a lower boundM1 and an upper boundM2 ofM∗

in the following theorem.
Theorem 2: The optimum TW size M∗ that satisfies (37) is

bounded by⌈
µl + λσC

√
2α
⌉
= M1 ≤ M∗ ≤ M2

=

⌈
µl + α +

√
α2 + 2ασ 2

l

⌉
(38)

where α = log ε−1 and λ = λE/N∈
[
0, λ∗

]
. �

APPENDIX B gives the proof of the above theorem.
An accurate approximation of the optimum TW size M∗ can
be derived from the upper deviation inequality of normal
random variables. We know that cycle time C approaches
a normal random variable N (µC , σ 2

C ) when N is large. The
relation (29) indicates that the queue length at the beginning
of each cycle is approximately equal to the number of arrivals
during a cycle time C , or l ∼ λC . As expected, the mean
queue length µl given by (35) is the product of packet-arrival
rate λ and mean cycle time µC . It is also interesting to
note that the variance of the queue length σ 2

l given by (36)
is the sum of λ2σ 2

C and the variance of a Poisson random
variable with parameter µl . Thus, the queue length l can

be approximated by a normal random variable N
(
µl, σ

2
l

)
that is ‘‘discretized’’ by a Poisson process with rate λ. That
is, we adopt the following approximation of queue length
distribution:

qn∼=q′n =
1

√
2πσl

∫ n+ 1
2

n− 1
2

e
−
(x−µl )

2

2σ2l dx. (39)

In this paper, we consider a typical FTTH network in
which the split ratio is up to 1:64 and the service capac-
ity of the upstream link is 10 Gb/s, which is equivalently
1.25 GB/s or 1250 MB/s [29], [30]. TABLE 1 lists the other
parameters. As FIGURE 5 illustrates, the bigger the gap
between these two distributions, the smaller the probabil-
ity qn, where qn is obtained through the inverse transform
of Q(z) in (34).
It is well-known that any normal random variable

X∼N (µ, σ 2) satisfies the following upper deviation
inequality [33]:

Pr{X ≥ µ+ t} ≤ exp
[
−

t2

2σ 2

]
,

for t ≥ 0. Since the distribution of queue length l is close
to that of the normal random variable N

(
µl, σ

2
l

)
, from the

above inequality, the optimum TW sizeM∗ can be estimated
by the smallest integer M̂ that satisfies the following relation:

Pr{l ≥ M̂} ≤ exp

−
(
M̂ − µl

)2
2σ 2

l

 ≤ ε,
Let λE = Nλ∗ = Nr∗

RX
, substituting (35) and (36) into

above inequality, M̂ can be explicitly given by the fol-
lowing equation (40), as shown at the bottom of the next
page.

The following inequality immediately follows from (36)
and (40):⌈

µl + λσC
√
2α
⌉
≤ M̂ ≤

⌈
µl + α +

√
α2 + 2ασ 2

l

⌉
.

That is, the approximation M̂ of the optimum TW size M∗

also lies between the two bounds M1 and M2.
As previously mentioned, the optimum TW size M∗ that

satisfies the inequality (37) can only be solved numerically
from the following equation:

f
(
t, z∗

)
= exp

[
− (µl + t) log z∗ + λµC

(
z∗ − 1

)
+

1
2
λ2σ 2

C
(
z∗ − 1

)2]
= ε,

where z∗ is obtained from the proof of Theorem 2 in
APPENDIX B and is given as follows:

z∗=

√(
λµC − λ2σ

2
C

)2
+4 (µl + t) λ2σ 2

C−
(
λµC − λ

2σ 2
C

)
2λ2σ 2

C

.

(41)
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FIGURE 5. Probability distribution qn and q′n with λ = r
RX
= 1.6× 104

packets/s.

The following procedure is used to solve the optimum TW
size M∗ that satisfies the inequality (37).

Step 1: λ = λ∗ = r∗/RX ,M = M̂ , low = M1, up = M2;
Step 2: t = M − µl , calculate z∗ by (41);
Step 3: If f (t, z∗) > ε, low = M ; else up = M ;

/* If f (t, z∗) is too large, we update the lower bound
of searching region to decrease f (t, z∗), otherwise we
update the upper bound. */

Step 4: If dlowe< dupe, M = (low+ up) /2, go to Step 2;
Step 5: M∗ = dlowe = dupe, output M∗.

In the practical operation of EPON, the parameter ε can be
selected from the region [0.001, 0.1], which implies that the
buffered packets of an ONU can be emptied with a probability
1 − ε between 0.9 to 0.999 at the end of every busy period.
A too large ε causes a too small M that impairs the delay
performance of disciplined users. On the other hand, a too
small ε causes a too largeM that cannot effectively suppress
the capture effect.

FIGURE 6(a) and 6(b) respectively illustrate that the opti-
mum TW size M∗, its lower bound M1, upper bound M2,
and approximation M̂ , vary with the tail bound ε and the
subscribed traffic rate r∗ of each ONU. In these figures,
we find that both approximate and optimum TW sizes,
M̂ and M∗, are always bounded between M1 and M2.

FIGURE 6. TW sizes vary with tail bound ε and subscribed traffic rate r∗
respectively: (a) TW sizes v.s. ε where r∗ = 10 MB/s and (b) TW sizes v.s.
r∗ where ε = 0.05.

Moreover, the approximation M̂ is uniformly smaller
than M∗, which can be readily seen from the distributions
illustrated in FIGURE 5. The convergence rate of normal
distribution q′n is faster than that of qn, thus a smaller
TW size is needed to achieve the same probability of tail
distribution. In spite of that, as FIGURE 6(a) shows, the
difference between M̂ and M∗ is very small in the region

M̂ =
⌈
µl + σl

√
2α
⌉
=

 λEG
1− ρE

+

√√√√2α

[
λ3EGX

2

(1− ρE )
(
N − ρ2E

) + λEG
1− ρE

]
=


Nλ∗G

1− Nλ∗X
+

√√√√√2 log ε−1

 N 2λ∗3GX2(
1− Nλ∗X

) (
1− Nλ∗2X

2
) + Nλ∗G

1− Nλ∗X




=

 Nr∗G

RX − Nr∗X
+

√√√√2 log ε−1
[

N 2r∗3GX2

(R− Nr∗)
(
R2 − Nr∗2

)
X
3 +

Nr∗G

RX − Nr∗X

] (40)
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FIGURE 7. Tail distributions of qn and q′n with r = 10 MB/s.

ε ∈ [0.001, 0.1] of our interest in practice. Besides, the selec-
tion of TW size is very sensitive to the traffic rate a user
subscribes to, as illustrated in FIGURE 6(b). With the growth
of r∗, the TW size also increases greatly.

The tail distribution of queue length,
∑
∞

n=M qn, and that
of approximation,

∑
∞

n=M q′n, are plotted in FIGURE 7 where
each ONU inputs traffic with the rate of 10 MB/s. In our
interested region ε ∈ [0.001, 0.1], the difference between
the TW sizes selected by tail distributions of qn and q′n is
quite small. When their gap is large, such as in the area
ε ∈ [10−5, 10−4], ε would be extremely small and far below
the region of our interest in the practical operation of EPON.

For a fixed ε = 0.05, as FIGURE 7 shows, despite that
M̂ < M∗, the probability Pr{l ≥ M̂} is still below ε, which
means the approximation M̂ also satisfies criterion (26). If the
TW size is set to equal the lower boundM1, criterion Pr{l ≥
M} ≤ ε could be violated and packets may experience longer
delay than expected. On the other hand, if the TW size is
set to equal the upper bound M2, the criterion can be easily
satisfied because Pr{l ≥ M2} is negligible in comparison
with ε. However, the upper bound M2 would be too large to
be an effective constraint on malicious users. As a compro-
mise, the approximation M̂ can serve as a practical TW size
for EPONs.

C. STABILITY AND DELAY PERFORMANCE OF
LIMITED-SERVICE EPON
In this subsection, we study the delay performance of disci-
plined ONUs in a limited-service EPON with the TW size
limit M given by (40). The gated-service discipline is a
special case of the limited-service discipline with infinite
TW size, thus the mean waiting time in gated service is the
lower bound of that in limited service.

The EPON systemwith gated service is stable if the offered
load ρ = λX = r/R of each ONU is less than 1/N ,
i.e., r < R/N , which guarantees that input packets will be
transmitted steadily and their mean waiting time, or mean
queue length, is bounded. However, a bounded mean queue

TABLE 1. Simulation parameters.

length is not sufficient to guarantee that a regular EPON with
limited service is stable due to the limitation of TW size M .
From the mean queue length formula (35) of an ONU, the sta-
ble condition of the limited service EPON is given by

µl = λµC =
r

RX
·

NG
1− ρE

< M , (42)

where ρE = Nρ = Nr/R. After some algebraic manipula-
tion, a stable input traffic rate r should be bounded by r̂ that
is defined as follows:

r < r̂ =
MRX

N
(
MX + G

) (43)

It’s evident that whenM→∞, the saturated input traffic rate
r̂→R/N . Furthermore, the TW size limitM is selected based
on criterion (26), which guarantees a very small probability ε
that the queue lengthwill exceed limitM . This is amuchmore
stringent condition than the stable condition (42). Therefore,
in a regular EPON with limited service, disciplined ONUs
with input traffic rate in the region r ∈

[
0, r∗

]
must be all

stable, which implies r∗ ≤ r̂ .
According to the conditions described above, the perfor-

mance of an ONU in a limited-service EPON can be charac-
terized in the following three traffic regions:
1) Subscripted region r ∈

[
0, r∗

]
. In the subscripted region,

the QoS of each ONU in terms of mean delay is guaran-
teed by the SLA signed with the network operator.

2) Overloaded region r ∈
(
r∗, r̂

)
. If an ONU inputs the

packets with the rate higher than its subscripted rate and in
the overloaded region, the mean delay is impaired by the
limit of the maximum TW size M , but it is still bounded.
This region provides an adjustment period for the ONU to
decrease its input traffic rate when the user experiences a
larger than expected delay.

3) Saturated region r ∈
[
r̂, RN

)
. In the saturated region,

the arrival rate is too high for the OLT to handle. The ONU
is unstable when the queue length outside the gate of the
buffer becomes unbounded.
In the subscripted region r ∈

[
0, r∗

]
or in the overloaded

region r ∈
(
r∗, r̂

)
, the mean waiting time of an ONU can

be calculated by the procedure described in APPENDIX A.
In the saturated region r ∈

[
r̂, RN

)
, the mean waiting time is

unbounded.
The analytical results of mean waiting times in these traffic

regions are verified by simulations, where the simulation
parameters are listed in TABLE 1. According to the packet
size distribution, we can easily obtain the first and second
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FIGURE 8. Variance of busy periods versus input traffic rate of an ONU
where ε = 0.05 and r∗ = 8 MB/s.

moment of service time as X = 0.5µs and X2 = 0.5µs2. The
guard time plus the transmission time of a 64-Byte REPORT
message constitute a constant interval G = 1.0512µs. The
service capacity of the EPON is 1250 MB/s, evenly divided
into 19.53125 MB/s for each of 64 ONUs. We study a sce-
nario, where each user subscribes to a traffic rate of 8 MB/s.
According to formula (40), for a fixed ε = 0.05, we should
set the maximum TW size M to 5.

FIGURE 8 illustrates the variance of busy periods for
each ONU. It is evident that the analytical result given
in APPENDIX A is consistent with the simulation result,
which validates the accuracy of our analysis in Section III.
If we adopt the gated-service discipline (i.e., M is infinite),
FIGURE 8 shows that the variance of busy periods monoton-
ically increases with input traffic rate up to infinity. However,
with limited-service discipline (i.e.,M is finite), the variance
of busy periods approaches toM (X2−X

2
) according to (13),

because each ONU transmits a constant number ofM packets
in each busy period when the traffic rate is high.

In the subscripted region, as FIGURE 9 shows, the disci-
plined users in the limited-service EPON experience the same
mean waiting time as that in the gated-service EPON. This
desirable property is due to the criterion Pr{l ≥ M} ≤ ε of
selecting the TW size ę, which is sufficiently large to empty
the buffered packets almost in every busy period.

In the overloaded region, the ONUwill suffer a larger mean
delay than expected, which serves as a precaution measure
for the ONU to reduce the loading back to the subscripted
region. If the ONU continues increasing the input traffic rate
to the saturated region, its mean delay tends to infinity, and
the service is collapsed to prevent its malicious behavior from
impacting the QoS of other disciplined users.

D. IMPACT OF RTT
In the practical EPON, there is a RTT, denoted by TRTT ,
between the OLT and ONUs, as we mentioned in Section III.

FIGURE 9. Mean waiting time versus input traffic rate of an ONU where
ε = 0.05 and r∗ = 8 MB/s.

In this subsection, we discuss the influence of the RTT on
the mean waiting time and the TW-size selection. In general,
the impact of the RTT on the mean waiting time and the TW-
size selection is significant only when the traffic load of the
network is small.

1) IMPACT ON THE MEAN WAITING TIME
The RTT between the ONUs and the OLT has remarkable
impact on the mean cycle time, and thus the mean waiting
time when the traffic load is low. As Section III describes,
an ONU takes a vacation after it sends an REPORT to the
OLT at the end of a busy period. The vacation time of an
ONU terminates when all other N − 1 ONUs have finished
transmission and this ONU receives the GATE message from
the OLT. Recall that the ONU can receive the GATE mes-
sage at the earliest after the RTT since this ONU sends the
REPORT. Thus, the vacation time is the maximum of TRTT
and the sum of the TWs of other N − 1 ONUs plus NG. For
example, the vacation time of ONU 1 is

V = max

TRTT ,NG+
N∑
j=2

Bj

 , (44)

where Bj is the busy period of the j-th ONU. It is clear that

V = TRTT , (45)

if and only if

TRTT ≥ NG+
N∑
j=2

Bj.

Under this situation, we have

TRTT ≥ E

NG+ N∑
j=2

Bj

 = NG+
(N − 1)ρV

1− ρ

= NG+
(N − 1)ρTRTT

1− ρ
,
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which implies

ρ =
r
R
≤

TRTT − NG
NTRTT − NG

,

or

r ≤
(
TRTT − NG
NTRTT − NG

)
R. (46)

In the following, we discuss the mean waiting time by divid-
ing the input traffic rate of an ONU into two regions with
respect to r =

(
TRTT−NG
NTRTT−NG

)
R.

On one hand, if the input traffic rate r of each ONU is
smaller than

(
TRTT−NG
NTRTT−NG

)
R such that TRTT > NG+

∑N
j=2 Bj

with high probability, the vacation time is approximately a
constant V≈TRTT , which means

V = TRTT , (47)

V 2 = T 2
RTT . (48)

In this case, the cycle time is also approximately a constant
C = B+V≈TRTT , since the busy period is much smaller than
the vacation time V . In this case, from equation (5), we obtain
the following mean waiting time

W T =

λX2

2 +
(1−ρ)TRTT

2

1− ρ − λTRTT
M

+

[
1− (1+ρ)(K2−K )

2MK
−

λTRTT
M

]
TRTT

1− ρ − λTRTT
M

, (49)

where the first moment of the number of packets served in a
busy period is given by

K =
λV

1− ρ
≈
λTRTT
1− ρ

,

and the second moment K 2 can be calculated by using the
method given in APPENDIX A.

On the other hand, if the input traffic rate r of each ONU is
larger than

(
TRTT−NG
NTRTT−NG

)
R such that TRTT < NG +

∑N
j=2 Bj

with high probability, the vacation time is V≈NG+
∑N

j=2 Bj.
In this case, the mean waiting time, denoted by W , can be
obtained by the procedure described at the end of Section III.

In summary, taking the RTT into consideration, the mean
waiting time WRTT is approximately given by:

WRTT ≈


W T , r <

(
TRTT − NG
NTRTT − NG

)
R

W , r >
(
TRTT − NG
NTRTT − NG

)
R.

(50)

As an example, we consider a 64-ONUFTTH, in which the
distance between the OLT andONUs is about 10 km such that
the RTT is 100 µs [34]. The other parameters are the same as
that listed in TABLE 1. As FIGURE 10 shows, the result of
(50) agrees with the simulation under different values of M .

FIGURE 10. Mean waiting time versus with input traffic rate of an ONU
where N = 64 and TRTT = 100µs.

In particular, the mean waiting time WRTT is equal to W T
when

r <
(

TRTT − NG
NTRTT − NG

)
R

=
100− 64× 1.0512

64× 100− 64× 1.0512
× 1250 = 6.46 MB/s,

and it is equal to W when input traffic rate r > 6.46 MB/s.
Please note that the upstream capacity that can be provided to
each ONU is about 20 MB/s. This indicates that the RTT has
a significant impact on the mean waiting time only in a small
region of the input traffic rate in a typical FTTH network
with 64 ONUs.

2) IMPACT ON THE TW-SIZE SELECTION RULE
The RTT also has a remarkable impact on the TW-size selec-
tion only when the subscribed traffic rate r∗ is small. Recall
that, we select the TW size M according to the Chernoff
bound of the queue length at the beginning of a cycle. As we
described above, when r∗ is small, e.g., r∗ <

(
TRTT−NG
NTRTT−NG

)
R,

the RTT has a profound influence on the cycle time and the
queue length at the beginning of a cycle. Thus, the selection
rule (40) does not work when r∗ is small. On the other hand,
if r∗ >

(
TRTT−NG
NTRTT−NG

)
R, the cycle time almost does not depend

on the RTT and it is approximately equal to NG +
∑N

j=2 Bj.
In this case, we can use (40) to determine M . To verify this
point, we reconsider the example in FIGURE 11, under the
scenario where the subscribed traffic rate of each ONU is
r∗ = 8 MB/s. Since r∗ is larger than 6.46 MB/s, we select
M = 5 using (40). As FIGURE 11 shows, the mean waiting
time of the limited-service EPON is the same as that of the
gated-service EPON when the input traffic rate r < r∗, while
it is larger than that of the gated-service EPON when r > r∗.
Once the input traffic rate r exceeds the saturated traffic
rate r̂ , the mean waiting time of the limited-service EPON
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FIGURE 11. Mean waiting time of an ONU under that case where
r∗ = 8 MB/s and TRTT = 100µs.

skyrockets to infinity immediately. We observed the same
phenomenon in FIGURE 9, in which the RTT is ignored.

V. CONCLUSION
In this paper, we study the problem of the optimum TW-
size selection for limited-service EPON. We first model each
ONU as an M/G/1 queue with vacations and limited-service
discipline. We extend the traditional geometric approach to
obtain the mean waiting time formula. Based on the mean
waiting time and the Chernoff bound of the queue length,
we provide a selection rule of the optimum TW size. Our
results show that the limited-service EPON with our TW-size
selection rule can ensure the QoS of the discipline users while
punishing the malicious users in terms of mean waiting time.

Currently, we focus our study on EPONs with statistically
identical ONUs and almost the same RTT between ONUs and
the OLT. Moreover, we only consider the traditional EPON
with one-thread DBA algorithm in our analysis. In the future,
it would be interesting to extend our model to analyze cases
that are more sophisticated. These cases include the EPON
with ONUs that are not statistically identical, the EPON in
which the RTTs of various ONUs are different, or the EPON
that employs multi-thread DBA algorithms for very large
RTTs [35]–[37].

APPENDIX A
ITERATIVE PROCEDURE OF CALCULATING MEAN
WAITING TIME W AND VARIANCE OF BUSY
PERIODS σ2

B
As analyzed in Section III, it is critical to obtain the second
moment of the number of packets served in a busy period K 2

when calculating the mean waiting time and variance of busy
periods. However, the value of K 2 and that of distribution
qn (n = 0, 1, · · · ,M − 1) depend on each other, and we can
only solve them numerically.

According to Rouche’s theorem, the denominator of (20)
hasM zeros inside and on |z| = 1, one of them is z = 1. Then
by Lagrange’s theorem [20], the other (M − 1) zeros inside
|z| = 1 are given by

zm =
∞∑
n=1

e2πmni/M

n!
dn−1

dzn−1

[
H
(
z
)]n/M ∣∣∣∣

z=0
, (51)

for m = 1, 2, · · · ,M − 1. Since Q(z) is analytic in |z| ≤ 1,
the numerator of (20) must also be zero at z = zm. Therefore,
qn (n = 0, 1, · · · ,M−1) satisfy the following (M−1) linear
equations:

M−1∑
n=0

qn
(
zMm − z

n
m

)
= 0, m = 1, 2, · · · ,M − 1. (52)

Another equation is given as follows by the condition
Q(1) = 1:

M−1∑
n=0

qn (M − n) = M − λµC = M −
λEG

1− ρE
. (53)

Thus, if we know the expression ofH (z), we can solve qn (n =
0, 1, · · · ,M − 1) by combining (51)-(53), then obtain K 2

based on (18), which is

K 2 =

M−1∑
n=0

n2qn +M2

(
1−

M−1∑
n=0

qn

)
.

However, the expression of H (z) is instead dependent
on K 2. Therefore, given a calculation accuracy δ, we can
numerically solve K 2 through the following iteration
procedure:
Step 1: K 2 = 0;
Step 2: Calculate H (z) by combining (15), (21)-(24);
Step 3: Solve zm,m = 1, 2, · · · ,M − 1 by (51);
Step 4: Solve qn, n = 0, 1, · · · ,M − 1 by combining (52)

and (53);
Step 5: If

∣∣∣∑M−1
n=0 n2 qn +M2

(
1−

∑M−1
n=0 qn

)
− K 2

∣∣∣ > δ,

K 2 =
∑M−1

n=0 n2qn+M2
(
1−

∑M−1
n=0 qn

)
, go to Step

2;
Step 6: Output K 2.
Then, we can easily obtain the variance of busy periods for
an ONU by substituting K 2 and (15) into (13), and the mean
waiting time by combining (5), (11), (14), (15) and K 2.

APPENDIX B
PROOF OF THEOREM 2
Define the following function:

f (t, z) = exp
[
−
(
µl + t

)
logz+ λµC

(
z− 1

)
+
1
2
λ2σ 2

C
(
z− 1

)2]
, (54)

where z > 1 and t ≥ 0.We know that the following inequality
holds for all x ≥ 0:

−x ≤ −log (1+ x) ≤ −
(
x −

1
2
x2
)
. (55)
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Let x = z − 1, and apply (55) to (54), then we have the
following inequality:

f1(t, z) ≤ f (t, z) ≤ f2(t, z), (56)

where the two functions f1(t, z) and f2(t, z) are defined as
follows:

f1(t, z) = exp
[
− t
(
z− 1

)
+

1
2
λ2σ 2

C
(
z− 1

)2]
, (57)

and

f2(t, z) = exp
[
− t
(
z− 1

)
+

1
2

(
σ 2
l + t

)(
z− 1

)2]
. (58)

Take the derivatives of (54), (57) and (58), we obtain

−
µl + t
z∗
+ λµC + λ

2σ 2
C
(
z∗ − 1

)
= 0, (59)

−t + λ2σ 2
C (z1 − 1) = 0, (60)

and

−t +
(
σ 2
l + t

)
(z2 − 1) = 0. (61)

It follows from (56), the following inequalities should hold:

inf
z>1

f1(t, z) = f1(t, z1) ≤ f1(t, z∗) ≤ f (t, z∗), (62)

inf
z>1

f (t, z) = f (t, z∗) ≤ f (t, z2) ≤ f2(t, z2). (63)

Combining (62) and (63), the following expression can be
obtained from z1 and z2 given by (60) and (61) respectively,

f1(t, z1) = exp

[
−

t2

2λ2σ 2
C

]
≤ f (t, z∗)

≤ exp

[
−

t2

2
(
σ 2
l + t

)] = f2(t, z2). (64)

Let t∗, t1 and t2 be the solutions that respectively satisfy
the following three equations:

exp

[
−

t21
2λ2σ 2

C

]
= f (t∗, z∗) = exp

[
−

t22
2
(
σ 2
l + t2

)] = ε.
Then, according to (64), we have

exp

[
−

t∗2

2λ2σ 2
C

]
≤ f (t∗, z∗) = exp

[
−

t21
2λ2σ 2

C

]

= exp

[
−

t22
2
(
σ 2
l + t2

)] ≤ exp[− t∗2

2
(
σ 2
l + t

∗
)] . (65)

Since those exponential functions in (65) are monotonically
decreasing with t , we have

t1 ≤ t∗ ≤ t2. (66)

Substituting t = M − µl into (66), we obtain

M1 ≤ M∗ ≤ M2. (67)

Hence, the smallest integer M1 that satisfies the following
inequality is a lower bound of M∗:

exp

[
−
(M1 − µl)

2

2λ2σ 2
C

]
≤ ε,

and it can be explicitly expressed as follows:

M1 =

⌈
µl + λσC

√
2 log ε−1

⌉
=

⌈
µl + λσC

√
2α
⌉
. (68)

Similarly, the smallest integerM2 that satisfies the following
inequality is an upper bound of M∗:

exp

[
−

(M2 − µl)
2

2
(
λ2σ 2

C +M2
)] ≤ ε,

and it can be given as follows:

M2 =

⌈
µl+log ε−1+

√(
log ε−1

)2
+2 log ε−1

(
µl+λ2σ

2
C

)⌉
=

⌈
µl + α +

√
α2 + 2ασ 2

l

⌉
. (69)

We obtain (38) by combining (67)-(69).
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