SPECIAL SECTION ON AI-DRIVEN BIG DATA PROCESSING:
THEORY, METHODOLOGY, AND APPLICATIONS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 6, 2019, accepted April 28, 2019, date of publication May 2, 2019, date of current version May 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2914429

Toward Empirically Investigating Non-Functional
Requirements of i0S Developers on

Stack Overflow

ARSHAD AHMAD"“12, CHONG FENG "1, KAN LI, SYED MOHAMMAD ASIM3,

AND TINGTING SUN!

!School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China

2Departmf:nt of Computer Science, University of Swabi, Ambar 25000, Pakistan
3Department of Statistics, University of Peshawar, Peshawar 75190, Pakistan

Corresponding author: Chong Feng (fengchong @bit.edu.cn)

This work was supported in part by the National Science Foundation of China (NSFC) under Project U1636203, and in part by the National
Key Research and Development Program of China (NKRDPC) under Project 2017YFB1002101.

ABSTRACT Context: Mobile application developers are getting more concerned due to the importance of
quality requirements or non-functional requirements (NFR) in software quality. Developers around the globe
are actively asking a question(s) and sharing solutions to the problems related to software development on
Stack Overflow (SO). The knowledge shared by developers on SO contains useful information related to
software development such as feature requests (functional/non-functional), code snippets, reporting bugs or
sentiments. Extracting the NFRs shared by iOS developers on programming Q&A website SO has become a
challenge and a less researched area. Objective: To identify and understand the real problems, needs, trends,
and the critical NFRs or quality requirements discussed on Stack Overflow related to iOS mobile application
development. Method: We extracted and used only the iOS posts data of SO. We applied the well-known
statistical topical model Latent Dirichlet Allocation (LDA) to identify the main topics in iOS posts on SO.
Then, we labeled the extracted topics with quality requirements or NFRs by using the wordlists to assess
the trend, evolution, hot and unresolved NFRs in all iOS discussions. Results: Our findings revealed that
the highly frequent topics the iOS developers discussed are related to usability, reliability, and functionality
followed by efficiency. Interestingly, the most problematic areas unresolved are also usability, reliability,
and functionality though followed by portability. Besides, the evolution trend of each of the six different
quality requirements or NFRs over time is depicted through comprehensive visualization. Conclusion: Our
first empirical investigation on approximately 1.5 million iOS posts and comments of SO gives insight on
comprehending the NFRs in iOS application development through the lens of real-world practitioners.

INDEX TERMS Non-functional requirements (NFRs), quality requirements, i0S, Latent Dirichlet allocation
(LDA), Stack Overflow.

I. INTRODUCTION

Requirements Engineering (RE) plays a vital role in the
success of any software development process. RE is quite
challenging, and there are many activities associated with it
that are required to be adequately addressed in every soft-
ware development life cycle. Requirements need to be ade-
quately elicited, stated, verified & validated, and maintained
as needed [1]-[4]. In recent years, the RE community started

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhanyu Ma.

considering the user feedback available on different social
media and online platforms as one of the potential sources
of user requirements for fostering open innovation [5]-[9].
Chesbrough [10] defined open innovation as “‘a paradigm
that assumes that firms can and should use external ideas
as well as internal ideas, and internal and external paths to
market, as they look to advance their technology.” Open inno-
vation paradigm has been recognized as a novel strategy for
software development organizations to benefit from the shar-
ing of novel ideas and embracing value creation processes
across and outside the software development organizations

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission.

61145

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3576-8365
https://orcid.org/0000-0001-6260-7906
https://orcid.org/0000-0003-3528-4739

IEEE Access

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

boundaries. Some of the available sources of open innova-
tion include social media technologies, online platforms such
as the Stack Overflow Q&A community [11], Twitter, issue
tracking systems, and mobile application stores like Google’s
Play Store, and Apple’s Play Store [12]. Stack Overflow
Q&A community enables software developers to participate
in social learning and sharing innovative ideas [13].

Typically, software requirements are of two types:
functional requirements (FRs) and non-functional require-
ments (NFRs) or quality requirements. Concerning the first
type, new FRs can be elicited directly from a user through
software feature requests [14]. The second type of software
requirements (NFRs or quality requirements) can be extracted
from the user content shared on different social media plat-
forms like Stack Overflow Q&A site, Twitter, and feedback
on different mobile application stores may be of interest
since users are directly influenced by different NFRs/quality
characteristics, e.g., usability, performance efficiency, and
security. Stack Overflow is the most popular and widely
used online Q&A forums by software developers around
the globe for learning and sharing knowledge on a diverse
range of software development related topics. These Q&A
are asking help on some problem, reporting a problem/bug in
a development tool and requesting a new feature (functional
or non-functional requirement) missing in the existing devel-
opment tools or applications which is ignored in previous
research [15]. It is highly probable that the content shared
on Stack Overflow posts contain statements about mobile
application development, tools, and product qualities [12],
and will ultimately help software organizations in fostering
open innovation.

The research effort on NFRs or quality requirements is
significant, as they are vital to the success of software product
development. These NFRs are the architectural drivers [16],
and inadequately addressing them will mostly result in
project failure and increase in rework cost [1], [4]. Thus,
NFRs should be addressed in the early stages of any software
development to avoid any underlying problems. However,
eliciting an entirely complete and precise set of NFRs or
quality requirements is challenging [17], [18].

The recent years have witnessed enormous growth in
usage of mobile devices. Consequently, this rapid interest has
drawn mobile application developers’ attention too recently.
The research shows that mobile application development is
entirely different from traditional software development due
to diversity in development practices, tools, evolving user
needs, and platforms [19]-[21]. Some of the research studies
considered the issues faced by mobile application developers
(e.g., [19], [22— [24]), and others have focused on general
software developers issues (e.g. [11], [25]-[28]). However,
all of these studies are either too broad or lacks explicitly clas-
sification of the iOS mobile application development issues
with the ISO9126 quality model.

The discussions made on Stack Overflow represent the real
views and needs of software developers across the globe. The
posts data extracted from Stack Overflow encompass millions

61146

of various posts shared by numerous software developers
and professionals. There are millions of posts and comments
available on Stack Overflow. However, we have used the data
from 315 July 2008 till 315 August 2017 in this paper. More
specifically, we merely focused on iOS mobile application
development and extracted data tagged with “i0OS” approx-
imately 525K posts and 925K comments in total. There
are numerous challenges associated with analyzing such
large-scale textual content repository. For instance, manual
analysis is not possible, and the majority of the conventional
data mining techniques are not so capable. Thus, the well-
known statistical topic model Latent Dirichlet Allocation
(LDA) [29], can assist in comprehending the unstructured
natural language text data. We applied topic modeling LDA
as a means to summarize them.

Previously, topic modeling method has been widely
applied to summarize large corpora in certain domains includ-
ing Software Engineering [19], [22], [25], [30]. Some of the
research works on topic analysis also depicts that topics
extraction can be helpful to comprehend software mainte-
nance activities [31], [32] better. The topics mined from the
repository summarize the main concepts in the repository,
for instance, source code, text descriptions, and commit com-
ments. The statistical topic model LDA can identify the topics
of the repository. It generates multinomial distributions of the
words to characterize the topics.

As the topics extracted are considerably abstract and
challenging to comprehend fully, we require suggesting
suitable labels for these topics to use it efficiently in dis-
cussion and analysis. The extracted topics made sense to
real-world practitioners and matched their view of what has
occurred [33]. We annotate them with the list of NFRs since
the topic trends mostly corresponded to NFRs [34]. Through
that, we determine the focus and needs of the iOS mobile
application developers and represent visualizations of NFRs
that iOS mobile application developers discussed during the
development activities. Managers can also understand the
topic-related activities of the iOS application developers more
conveniently.

In this paper, we mine the topics of the repository using the
statistical topic model LDA, and afterward annotate the topics
with different NFRs labels using an available wordlist. Then,
we examine the NFRs in all iOS discussions and specific i0OS
development technologies or categories. The NFRs analysis
in all iOS discussions comprised of hot NFRs, unresolved
issues, and evolution trend. The NFRs analysis in certain
iOS technologies or categories comprises of hot NFRs, hard
NFRs, and the trend of NFRs difficulty. We split the reposi-
tory into time-windows when mining the topics of the reposi-
tory. We divide the repository into 30 day periods (one month)
and afterward applied the statistical topic model LDA to each
of these time-windows. We partitioned the repository into
time-windows rather than considering it as a whole since
many topics are pretty local. Besides, this enabled us to
examine the evolving trend of the NFRs and difficulty over
time. For annotating the NFRs, we use the quality standard of

VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

IEEE Access

ISO9126 [35], which defines six high-level NFRs including;
maintainability, functionality, portability, efficiency, usabil-
ity, and reliability.

For our analysis, we utilize the iOS posts data from
Stack Overflow. Besides, we also differentiated between i0OS
posts were having comments (a combination of information
sources) or without comments (single information source) to
match the outcomes between the two different settings. In this
empirical research study, we set out to determine whether
user content shared on Stack Overflow can also be a useful
source of statements to support the elicitation of NFRs or
quality requirements about iOS mobile application develop-
ment. We specifically restrict the scope of our study to iOS
mobile application development only. We have formulated
the following research questions which will be addressed in
this empirical study:

RQ1: What are the most important non-functional require-
ments discussed in all i0OS discussions and specific i0S tech-
nologies or categories on Stack Overflow?

RQ2: Which non-functional requirements questions
remain unanswered the most in iOS Stack Overflow posts?

RQ3: What is the trend of the non-functional requirements
over time in all iOS Stack Overflow posts?

RQ4: What are the most difficult non-functional require-
ments the software developers face in specific iOS technolo-
gies or categories in Stack Overflow posts?

RQS5: How does the non-functional requirements difficulty
in different 10S specific technologies or categories changes
over time?

The research questions aim to identify the critical NFRs or
quality requirements discussed on Stack Overflow related to
iOS mobile application development. We use a massive scale
of i0S posts data available on Stack Overflow to investigate
not only the essential NFRs along with their trend but also the
common problems faced by iOS developers. Since thousands
of experienced software developers daily use Stack Overflow,
their discussions trends mostly represent the current needs
of users and market trends. This will ultimately help 1) i0OS
developers to know what are the most critical NFRs and issues
that need to be addressed first so that they can plan for them
accordingly, 2) the evolution of NFRs and developers inter-
ests will aid iOS platform providers in providing more desired
development support (e.g., offer a new API), 3) the evolution
of NFRs trend will also help iOS developers, managers and
vendors in comprehending the usage history of their prod-
ucts, 4) fostering open innovation in software development
organizations, and 5) assist software engineering academics
and industry in identifying the problematic areas for iOS
developers that need further research and attention.

The remainder of this paper is organized as follows:
Section 2 describes the related work, Section 3 describes
in detail the planning and execution of the experimental
approach used for this study. The analysis of the results of
the study is explained in Section 4. Section 5 discusses the
validity threats of this study. Finally, Section 6 provides the
conclusion and point out avenues for future research.

VOLUME 7, 2019

The current empirical research work is the extension of
our previous research work [36]. The main extensions in
this study are the four refined investigations to examine the
quality requirements or NFRs in specific iOS technologies or
categories, which enable us to know iOS developers interests
at a deeper level:

- We assessed the hot quality requirements or NFRs in
specific iOS technologies or categories, the associations, and
dissimilarities between them.

- We examine the correlation between quality requirements
or NFRs significance and time in specific iOS technologies
or categories.

- We explored the approach to characterize the difficulty of
quality requirements or NFRs and assessed the challenging
domains of quality requirements or NFRs the programmers
come across in different specific i0OS technologies or cate-
gories.

- We assessed the evolving trends of quality requirements
or NFRs difficulty with time in specific iOS technologies or
categories.

Il. RELATED WORK

In this section, we shortly summarize the most relevant
related work to this study in four different categories: the
studies generally focusing on different aspects on Q&A web-
site Stack Overflow; app store analysis focusing on user
feedback analysis; the various studies of NFRs; and the
diverse use of statistical topic model LDA aimed to study the
emphasis and trends in software engineering data.

A. STACK OVERFLOW

There are number research efforts that have investigated dif-
ferent aspects of Stack Overflow. Ahmad et al. [15] recently
presented the first comprehensive literature survey on mining
Stack Overflow. They briefly summarized the different work
on Stack Overflow about software development into two
categories “SO Design and Usage” and *“SO applications.”
Treude et al. [11] categorized SO questions through qualita-
tive coding and thoroughly examined the pivotal role of SO in
software development. Yang et al. [37] performed a study by
explicitly exploring the questions related to security on SO.
They used LDA topic model tuned using Genetic Algorithm,
aimed to group diverse security-related Q’s based on their
texts. The results revealed that questions related to security on
SO cover a diverse range of topics, i.e., web security, mobile
security, cryptography, software security, and system security
were the most discussed topics in the questions posted on SO.
Pinto and Kamei [38] investigated SO posts for categoriz-
ing posts related to some refactoring tools. Fontdo et al. [39]
assessed 1,568,377 technical questions from SO those were
related to Android, iOS, and Windows Phone platforms to
identify the activity level of developers and hot topics dis-
cussed. In contrast, our work aims to identify the issues and
most essential NFRs discussed only in iOS posts. We then
evaluated the identified NFRs with the ISO9126 quality
model which is missing in their work.

61147

IEEE Access

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

Martinez and Lecomte [40] investigated what mobile
developers primarily discuss when they develop and main-
tain cross-platform mobile applications. Specifically, they
remained focus on Xamarin framework by using two
datasets of Q&A sites: Xamarin Forum and Stack Overflow.
Mamykina et al. [41] examined the design features of Stack-
Overflow. Asaduzzaman et al. [42] investigated the reasons
behind questions are left unanswered on SO. Some of the sig-
nificant reasons revealed are: unable to find suitable experts,
unclear questions, and examples without code snippets.
Bosu et al. [43] and Bazelli et al. [44] examined the different
personality traits of SO users and mechanism for building a
reputation on SO community. Bajaj et al. [28] investigated the
misunderstandings and common issues among web develop-
ers through using SO posts. Jin et al. [45] studied specific
gamified metrics linked with the response time of posts on
Stack Overflow.

The work of Goderie et al. [46] presented a tag-based
approach to forecasting the response time in SO posts.
Calefato et al. [47] investigated and proposed how SO users
can enhance the quality of their contribution to have more
chances of acceptance. Novielli et al. [48] examined the idea
of a sentiment analysis tool to identify the sentimental expres-
sions in the posts of SO. The work by Anderson et al. [49]
examined the dynamics of the long-lasting value of ques-
tions on Stack Overflow. The works of Anderson et al. [50],
Grant and Betts [51], and Marder [52] examined significant
aspects of user performance after getting badges, and specif-
ically for evaluating how badges can push users to change
their behavior on SO. Slag et al. [53] investigated one-day
flies users to know why these users contribute only once
on SO. Nasehi et al. [54] manually conducted a qualitative
assessment to explore the salient features of perfect code
examples in SO posts.

Honsel et al. [55] evaluated common myths about SO posts
to discover whether the perception of software developers is
accurate. Chowdhury and Hindle [56] proposed an approach
to classify off-topic SO posts in programming-related internet
relay chat channels. Li et al. [57] empirically investigated
to identify the diverse needs and problems software devel-
opers face. Parnin et al. [58] empirically studied how SO
enables crowd documentation for three popular APIs, namely,
Android, GWT, and Java. Linares-Vasquez et al. [22] exam-
ined SO posts to classify the hot issues related to mobile
application development. However, our work focuses on the
perspective of non-functional requirements present in SO
posts, to get detailed insights to better comprehend the identi-
fied non-functional requirements through mobile developers’
eyes. Besides, our work also differs from them as we focus
on more diverse technology categories to determine more
aspects of iOS mobile development activities.

B. APP STORE ANALYSIS

There are several works done on extracting and analyzing
user feedback on different app stores (i.e., Google Play Store,
Apple i0S). One of the comprehensive literature survey

61148

done by Martin et al. [S9] which systematically classifies
the work done on different app stores for different software
engineering purposes. Harman et al. [60] assessed differ-
ent technical and business aspects of mobile apps by min-
ing app features from the app descriptions discussed on
app stores. lacob and Harrison [61] retrieved and grouped
app feature requests or requirements from the user reviews on
the app store using some linguistic rules and statistical topic
model LDA. The work of Galvis Carrefio and Winbladh [62]
also extracted and summarized the different user review made
on the app store through using LDA topic model.

Pagano and Maalej [63] examined the useful feedback of
users extracted from app reviews productive for app develop-
ers. Other works done are on feature-based sentiment analysis
of app reviews [14], [64], [65], identifying user satisfaction
in the app stores through similar words or phrases with
a predefined dictionary [66], identifying incorrectly rated
app reviews [67], categorizing the types of complaints by
users and assess how complaints affect the ratings on the
Apple iOS App Store [68], and the empirical investigation
of association between the success of mobile apps, and the
change and fault-proneness of the APIs [69]. All of these
works extracted and assessed user feedback available on
app stores for different purposes, i.e., identifying features
requests, bugs, or classifying user feedback to improve the
quality of future release of the apps. However, our work is
focused on identifying NFRs or quality requirements present
in 108 posts on Stack Overflow.

C. NON-FUNCTIONAL REQUIREMENTS
The work of Chung and Nixon [70] considered to be the
first work that examined how to handle non-functional
requirements in the software development process.
Eventually, they conclude that a non-functional requirements
framework proposed in [71] would be quite useful for soft-
ware developers and users. Chung et al. [72], by reviewing
on dealing with non-functional requirements conducted a
well systematic and noticeable exploration on non-functional
requirements in the Software Engineering domain. The
work of Mairiza et al. [73] focused on the non-functional
requirements on three vital aspects, comprising; definition
and terminology, kinds, and non-functional requirements in
several types of systems and diverse application domains.
The work by Doerr et al. [18] conducted an industrial study
on non-functional requirements via a hierarchical quality
model. The emphasis of Glinz [74] remained on presenting
a comprehensive survey on the definitions of non-functional
requirements and identified their issues, and eventually came
up with some notions for overcoming these issues/challenges.
The work by Umar and Khan [75] assessed numer-
ous methods, practices, and frameworks of non-functional
requirements suitable for software development. The research
efforts of Galster and Bucherer [76] emphasized on identi-
fying and classifying non-functional requirements for spe-
cific service-oriented systems. Ameller [77] investigated
how different software architects consider non-functional

VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

IEEE Access

FIGURE 1. Overview of the steps followed.

requirements in practice. Later on, Ameller et al.[78]
concerning model-driven development (MDD) combined
non-functional requirements into the MDD process. The
work of Kugele et al. [79] presented a unified model-driven
development process for the deployment of certain real-time
systems. The work of Ahmad et al. [80] remained on pre-
senting an approach for modeling and verification of both
functional and non-functional requirements. The study of
Borg et al. [81] revealed that most software development
organizations emphasis on functional requirements while
non-functional requirements are hard to elicit effectively. The
work by Damm et al. [82] developed a rich component model
that combines functional and non-functional requirements
based on the UML.

The research work by Cleland-Huang et al. [83] presented
a unique approach to identify and categorize the non-
functional requirements by requirements documents. The
work by Eckhardt et al. [84] discussed the possibility of inte-
grating non-functional requirements in seamless modeling.
In another study by Eckhardt et al. [85], concerning the differ-
ence between the functional requirements and non-functional
requirements, revealed that most of the ‘“‘non-functional”
requirements are not non-functional. Besides, they also found
that many supposed non-functional requirements can be
tackled similarly like functional requirements. The work
of [26] focused on identifying non-functional requirements
in different development technologies. Noei et al. [86] work
investigated the association of both device qualities and
app qualities with the user-perceived quality of different
Android apps available on Google Play Store by examin-
ing 20 device features, for instance, CPU and the display
size, and 13 app features, for instance, code size and Ul
complexity. However, our work focus of research is differ-
ent from all these efforts. We conduct an empirical study
on non-functional requirements through mining program-
ming Q&A website Stack Overflow using topic analysis.
We thoroughly analyzed all iOS posts on SO for assessing
non-functional requirements focus, level of difficulty and
their evolving trends with the time, which is left unexplored
in prior research.

VOLUME 7, 2019

D. LATENT DIRICHLET ALLOCATION (LDA)

LDA is amongst the favorite techniques used in the
domain of Software Engineering successfully [87]-[89].
Barua et al. [25] proposed a technique to discover and assess
the diverse topics from the textual content of SO by
using LDA. The results revealed useful insights about top-
ics related to different technologies, for instance, mobile
application development, web development, version control
systems to C# syntax and data management. Afterward,
the different works of Linares-Vasquez et al. [22] and
Rosen and Shihab [19] precisely focused on mobile applica-
tion development related discussions made on SO using LDA.
Similarly, the work of Allamanis and Sutton [90] explored
topic modeling analysis to relate the questions with different
software development concepts and identifiers. The common
thing in our work and theirs is using the LDA model, how-
ever, is dissimilar from them due to focus and the kind of
information analyzed. We remained focused on identifying
and analyzing non-functional requirements iOS developers
are concerned about based on SO posts and discussions.

IIl. PLANNING AND EXECUTION

In this section, we describe how we carried out our study in
three steps. At first, we extracted the iOS posts data from
Stack Overflow, and then applied some preprocessing steps
on the extracted data. Then, we applied the topic model Latent
Dirichlet Allocation [29] to extract the topics of the corpus.
In the last step, we match and label the topics with the identi-
fied NFRs through the wordlists defined by Hindle et al. [34],
especially suitable for the domain of software engineering.
All the steps and the overall process followed in our empirical
study is depicted in Figure 1.

A. STEP 1: EXTRACTING AND SELECTING SO POSTS

To address the research questions of our study, we extracted
the posts and comments from 315 July 2008 up to
315t August 2017 provided by a programming/social Q&A
website Stack Overflow!. The Q&A on Stack Overflow

1 https://archive.org/details/stackexchange

61149

IEEE Access

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

TABLE 1. Questions categorization.

Category Count Related Stack Overflow tags
[Phone 100620 Iphone, iphone-sdk-3.0
Objective-C 159358 Objective-c, objective-c-literals
Swift 116401 Swift, swift4

Xcode 77900 Xcode, xcode-tools

Cocoa 24513 Cocoa, reactive-cocoa-3
Cordova 9678 Cordova, cordova-plugin-file
Core-data 14661 Core-data, core-data-migration
Ipad 18624 Ipad, iPad-mini

Uitableview 40485 Uitableview,uitableviewrowaction
Uiview 22520 Uiview, uiviewcontroller

munanswered Mposts ®comments

20000

18000

16000

14000

12000

10000

8000

6000

4000
0 . .|||||I||||‘|‘|||“H
O N I 0NN I X AN T 0 AN T 0N T 0NN T 0N T 0N T 0N T
S = O O —=H O QO = O O — O O — O O = O O — O O — QO O — O O
X X DO OO N = AN AN NN NN < T NN n OO O
O O OO O e e e e o e e p p e p e e e e e e e e e e e
S O o o o o o
[e BN o NN o NN o NN o NN o NN o\ NN o\ NN o\ NN o\ BN o\ BN o\ BN o\ BN o\ REN o\ N o\ BN o\ BN o BN o NN o NN e NN o NN o NN o NN o NI o\ BRI o\

FIGURE 2. Overall dataset used of each month.

consists of a diverse range of questions about software devel-
opment including mobile application development. These
Q&A discussed by developers can be seeking a solution to a
problem, knowledge sharing and reporting missing feature in
some development tool. The original posts data provided by
Stack Overflow is in XML format and have much redundant
information. Thus, the authors used the Python library Beau-
tiful Soup? and developed an automatic method to filter and
extract/select only those posts tagged “i0S,” approximately
about 525K posts and 985K comments in total. For instance,
a sample (Post ID #10848) Stack overflow posts storage in the
“Posts.xml” is illustrated in Figure 4. As it is already known

2https://Www.crummy.com/ software/BeautifulSoup/

61150

that the questions posted on the Stack Overflow website
must be tagged according to the desired category, e.g., i0S,
Android, and Java. To address the RQI, we mainly used
two types of the corpus: the first is the “title” & “body”
of i0S posts combined with the “text” of the comments
and the other only has the “title”” and “body” of the iOS
posts. We compare the outcomes between them, i.e., ““title” &
“body” of i0S posts combined with the “text” of the com-
ments and “title” and “body” of the iOS posts without the
text of the comments.

The second type of corpus is the category data extracted
from posts according to Table 1 following [90]. For address-
ing RQ2, we only extract the “title” and ‘“body” of the
unanswered questions from iOS posts totaling approximately

VOLUME 7, 2019

A. Ahmad et al.:

Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

IEEE Access

® iphone ® objective

4500

swift ®xcode ™ cocoa ™ cordova ™ coredata

ipad uitableview = uiview

4000

3500
3000

2500

2000
1500

1000

500

0 ...u\\\w\l‘”

200808
200812
200904
200908
200912
201004
201008
201012
201104
201108
201112
201204
201208
201212

201304
201308
201312
201404
201408
201412
201504
201508
201512
201604
201608
201612
201704
201708

FIGURE 3. Category dataset of each month.

228K. We assume the question as an unanswered question if
there is no answer found for the said question. For addressing
RQ3, we utilize both the “title” and “body”’ of iOS posts and
the “title”” and “body”” of the unanswered questions with the
aim to examine the trends of quality requirements or NFRs
in all iOS discussions, and utilize the posts category data
to examine the trends of quality requirements or NFRs in
specific i10S technologies or categories. Besides, to address
RQ4 and RQS5, the dataset we utilized is also the category
data mined from iOS posts. Figure 2 and Figure 3 depict the
overall data set and the category dataset of different technol-
ogy used each month respectively. They depict the details of
the data used of each month (period), the x-axis represents the
months, and the y-axis represents the number of posts or com-
ments, the highest among them reaches approximately 18K.

After the desired posts data are successfully extracted,
we preprocess the data following these two steps. First of
all, we remove all those periods (months) which have posts
less than 50, since fewer posts are unusable for the sake of
analysis. For example, in August 2008, there are only three
posts. Afterward, to further refine the information in the posts
data we performed tokenization (e.g., removed punctuations),
stop words removal (e.g., removed ““a,” “the” and ““is”), and
case unification respectively using Python language. All these
steps were applied to remove unnecessary information from
the posts data.

B. STEP 2: LDA TOPIC MODELING

In this research study, we use and construct the topic model
LDA by Python sklearn [91]. The topic model LDA is applied
to extract the topics of our corpus. LDA has been successfully
applied and one of the most suitable techniques for identi-
fying the topics of discussions in various natural language
text documents. Besides, it has also been successfully applied

VOLUME 7, 2019

for various purposes in Software Engineering domain, for
instance, software change message classification [92], soft-
ware defect prediction [93], bug localization [88], and com-
ponent assignment [87]. In LDA topic model, the topic
represents the conditional probability distribution of words
in a particular vocabulary. LDA uses not only the word
frequencies but also the co-occurrences of frequencies in
the text documents to build a model of semantically related
words [94]. LDA generates semantically related topics when
it identifies that there are sets of words that are likely to
co-occur frequently in the text documents of the corpus.
It is quite often that the words found in a topic are mostly
semantically related. For instance, the topics (mouse, click,
drag, right, left) and (user, account, password, authentication)
represent a group of words that frequently co-occur in the text
documents of a particular corpus [94]. Given a set of certain
documents of a corpus, the LDA identify the topics and topic
assignment for each document present in the corpus through
machine learning algorithms.

Applying LDA, it needs specific inputs, i.e., the desired
number of topics parameter K, the desired number of iteration
N to be carried out, and the Dirichlet parameters o and .
The number of topics K is a user-defined parameter which
regulates the granularity of the identified topics. « is a hyper-
parameter that regulates how much fuzziness is permitted
in a topic’s distribution across the words. 8 is the hyper-
parameter which regulates how much fuzziness is allowed
in a topic’s distribution across the documents of a corpus.
For our experimental work, we selected the number of topics
parameter K = 20 for each of the specified periods since the
same words from different topics are not so frequent when
the value of K = 20. However, the value of K = 20 is not
necessarily the best choice but proved to be an appropriate
value for NFRs analysis as reported in [31], [34]. Besides,

61151

IEEE Access

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

we did not change the default settings for N = 1000, ¢ =
0.05, and g = 0.05. In our experiment, the outcome of the
LDA is a matrix M where rows represent the K topics of
posts or comments, and the columns represent the words of
the topics respectively.

C. STEP 3: LABELING OF TOPICS WITH NFRs

To do NFRs analysis, we annotate the extracted topics
with NFRs labels by using the ISO9126 quality model as
the taxonomy of quality requirements or NFRs. We lack
evidence to claim that ISO9126 quality model is the only
correct and comprehensive standard available. Nevertheless,
the ISO9126 quality model is the most commonly practiced
software quality model at present. Thus, we deem it enough
representatives to use for this research. We linked each of the
quality requirement or NFR with a list of keywords, known as
wordlists. The wordlist used in this study is the exp2; espe-
cially suitable for the domain of software engineering [34]
is shown in Table 2. The wordlists are not projects specific,
i.e., independent which are derived from Boehm’s quality
model [95] and McCall’s quality model [96] respectively.
We match the words of the extracted topics with the words
in the wordlists. If a match is identified between them, then
the topic is labeled with the corresponding NFRs or quality
requirement. In case no match is identified between them,
then the topic is labeled with “none’ since the topic is not
related to any of the quality requirement or NFRs. Never-
theless, the extracted topics can also be labeled with one or
more quality requirement or NFRs. To better comprehend the
labeling process Table 3 illustrates some exemplary topics,
NFRs labeling, and the sample posts which possess these
topics as the most frequently occurred topics.

D. STEP 4: NFR’s METRIC

From the previous step, we acquired the labeled topics to
analyze the NFRs. For addressing the research questions,
we then define the NFRs metric called Ryrg; to specify the
rate of different NFRs. This metric calculates the proportion
of topics labeled by the respective NFRs and is given as:

1 M
Ryrrs = 2= 7 szle ey

K represents the exact number of topics extracted by our LDA
model in each period (per month). M represents the total
number of months that exists in our corpus. N, represents
the number of topics labeled with the respective NFRs in
the xth (particular) month. For instance, let’s assume that the
total number of topics in each month is 20, the total number
of months is 5, and the number(s) of topics labeled with
an NFR (e.g., reliability) from the 1% month to 5™ month
are 11, 9, 5, 7, and 8, the reliability has an Rypps metric
of 40%. This means that 40% of all the extracted topics
contain the reliability NFR. The Rypgs metric enables us to
calculate the relative popularity of a particular non-functional
requirement.

61152

E. STEP 5: VALIDATING THE CORPUS

For assessing the automated annotated results, four Ph.D.
students in software engineering were invited to do the task
of labeling the topics manually as a validation set. The
annotation was accomplished in two steps: first of all the
four annotators annotated the data from January 2016 till
to March 2016 to assess the inter-rater reliability among
them. Secondly, each of the four annotators labeled the data
(January 2016-December 2016) for three months without
annotating each other’s annotations as a validation set.
The participants looked at the extracted topics of each
period (month) and the words of each topic. Then, the par-
ticipants suggested the suitable label (using one or more
NFRs from ISO9126) to the topic based on their knowledge
and expertise in the Software Engineering domain. Neverthe-
less, the participants can also label the extracted topics with
“none” if they deem there is no NFRs related or linked to
the topics. Besides, all of the participants did not annotate
each other’s annotations. During the labeling task, the partic-
ipants also utilize the original data as supplementary infor-
mation associated with the extracted topics being annotated.
Moreover, we are quite confident that the manual labeling
of topics performed by the participants is correct since they
all have enough background and expertise in the Software
Engineering domain.

IV. ANALYSIS OF THE RESULTS

A. THE ACCURACY OF THE EVALUATION

To assess the accuracy of our NFRs labeling, we primarily
use the well-known metrics of recall and precision rates for
our study. We chose one-year post data from January 2016 to
December 2016 as the testing set and ran our approach on
it. Then, we compare the outcome with the results generated
through the manual validation set. The calculation criteria
for recall and precision rate are given in Equation 2 and 3
respectively.

Recall Rate = Ndetected/Ntotal 2)
Precision Rate = Ndetected/Ndetectedall 3)

where Ngerecreq represents the number of precise NFRs labels
(i.e., the NFRs or quality requirements label corresponds to
the manual annotation), Ny, represents the whole number
of the manual NFRs labels in our testing set, Ngetectedall
represents the whole number of NFRs labels (both correct
and incorrect) generated in the experimental results through
our automatic approach. For instance, if our approach labels
a topic with usability, reliability, and portability, and in the
manual validation set the participants labels the topic as
usability, reliability, and functionality. Then, in such case the
value of Ngerecrea 15 2 (usability and reliability), the value
of Nyyar is 3 (usability, reliability, and functionality), and
finally, the value of Ngerecreqann 1s 3 (usability, reliability,
and portability). After calculating, the values of recall rate
are 2/3 approximately 66.7%, and the precision rate is
2/3 approximately 66.7% respectively.

VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

IEEE Access

TABLE 2. NFR’s and their related wordlists.

Label Associated terms

analyzability, changeability, testability

Maintainability maintainability, modular, decentralized, encapsulation, dependency, interdependent,
understandability, modifiability, modularity, maintainable, maintain, stability,

accuracy, compliance, security

Functionality functionality, accuracy, correctness, vulnerability, secure, accurate, vulnerability,
vulnerable, trustworthy, malicious, policy, buffer, overflow, secured, certificate,
exploit, compliant, functionality, practicality, functional, suitability, interoperability,

Portability portability, transferability, interoperability, documentation, internationalization, i18n,
localization, 110n, standardized, migration, specification, portability, movability,
movableness, portable, installability, replaceability, adaptability, conformance

understandability, operability

Efficiency efficiency, optimization, fast, slow, faster, slower, penalty, factor, sluggish, optimize,
profiled, performance, efficiency, efficient, “time behavior,” “resource behavior.”
Usability usability, flexibility, interface, screen, user, friendly, convention, human, default, click,

guidelines, dialog, ugly, icons, ui, focus, feature, standard, convention, configure,
menu, accessibility, gui, usability, serviceability, serviceableness, usableness,
useableness, utility, usefulness, serviceable, usable, useable, learnability,

Reliability reliability, failure, error, redundancy, fails, bug, crash, stable, stability, integrity,
resilience, dependability, dependableness, reliability, reliableness, responsibility,
responsibleness, dependable, reliable, maturity, recoverability, “fault tolerance.”

programmatically send a

Touch?</p> "commentcount="3"creationdate="2008-08-
14T09:51:06.207"favoritecount="177"id="10848" lastactivitydate="2017-06-

ownerdisplayname="Marco" posttypeid="1"

score="463" tags="<ios><objective-c><cocoa-touch><sms>"
title="How to programmatically send SMS on the iPhone?"
viewcount="261050"></row>

<row answercount="18" body="<p>Does anybody know if it's possible, and how, to

SMS from the <code>iPhone</code>, with the official SDK / Cocoa

28T14:47:07.993"1asteditdate="2015-12-17T12:08:55.033" lasteditoruserid="1280373"

FIGURE 4. An example of iOS post.

FIGURE 5. Calculated percentage of recall and precision rate of NFRs labeling.

0.9 —
o.8 —
o.7 -
o.s
0.5 —
0.4
o.3 -
o.2
o.1
o -

ol 0 S & e~ Lo b o < Py [

™ 's-""e -{9"1@ ‘s‘s’kg -é"@‘b "s—‘—‘"\é = -{"'?9 s‘f?bc' '@pé'-?ﬁp -»'“9&

Il Recall M Precision

Figure 5 depicts the calculated recall rate and the precision We performed an inter-rater reliability test to minimize
rate for each period (month) of our results. It is evident the annotators’ NFRs labeling bias. We employed non-
in Figure 5 that the highest recall rate is 82%, and the pre- parametric Kendall’s coefficient of concordance (W) [97]
cision rate is 81% respectively of our study results averaging to assess the inter-rater agreement between four annotators
approximately 77% and 70.33% respectively. using the three months labeled data by four annotators.

VOLUME 7, 2019

61153

IEEE Access

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

TABLE 3. Sample identified topics, NFRs labeling, and posts.

Topics (Top 50 words)

NFR’s
Labeling

Sample posts

user facebook app ios
login api access profile
account sdk email post
password share identifier
users token link twitter
provisioning session
logged log application
error https authentication
developer dialog
username friends sign fb
message graph code
keychain friend
permission check
integration activity info
sharing deprecated valid
indicator bundle add
unable.........

xcode error project build
ios version app target
beta issue pod failed code

sdk command install
https ~ running errors
installed module

cocoapods swift release
maps compile posts pods

debug fast projects
application building
solve add wunity fine

archive slow linker ipa
targets apple built exit
clean option macos
update unable.........

Usability,
Reliability

Efficiency

#20182446: localstorage reliability with phonegap.i'm making a
phonegap app that needs to store some user data. on the initial
app startup, the user will be asked to type in a url. because the url
may potentially be long, i wish to save it on the user's device so
the he doesn't need to re-enter the entire string every time he
starts up the app.initially, i was planning on using localstorage for
this. however, i've heard that localstorage doesn't save data very
permanently. it would greatly hurt my app's usability if the user
had to type in the url more than once every month or so.should i
use sqlite instead of localstorage for this purpose, or is
localstorage reliable enough on most mobile devices for this kind
of usage?

#45341915: efficient way to display multiple arrays of data into
single tableview section.i have a data model as below:the model
will be fetched and parsed from api, i use another class data as a
sub-model to form model. and i need to display the model object
into a single table view section in the order: fieldl -> field2 ->
[field3] -> [field4]what i am planning to do is as below:}as my
point, it's a lot inefficient, since every time cellforrowat is called,
it has to calculate the array size again and again, but i have to
check the array to display them in the pre-defined order above.
however, that is the only way currently in my mind.i would like
to improve the code for better efficiency, may be the way the data
should be stored in the model(instead of an array or something
like that...) or how to populate data properly into the table view.
please help to point me out where should the code be improved
and how.thanks
#44921600: will there be efficiency issue if access to keychain
frequently?i have a tableview that row height needs to adjust
dynamically according to the value stored in keychain, so comes

the problem.just wondering how to verify it quantitatly.

Kendall’s coefficient of concordance (W) value has a scale
between 0 and 1, where O depicts full disagreement, and
1 depicts full agreement. In our study, Kendall’s coefficient
of concordance (W) for the labeling of the topics was 0.71,
which depicts a substantial level of agreement [98] between
the four annotators. Based on the depicted substantial agree-
ment between all of the annotators, our labeling of topics
is reasonably consistent. Nonetheless, based on the expe-
riences gained from annotators of this study, we suggest
other researchers have proper training and discuss the whole
annotation process comprehensively to get more significant
agreement among all of the annotators’ annotation.

B. RESULTS OF RQ1

For addressing the first research question, we primarily inves-
tigated which NFRs are discussed the most and less frequent
to discover the hot NFRs the mobile application developers

61154

Maintainability
Efficiency
Portability
Functionality
Reliability
Usability

0 0.2 0.4 0.6 0.8

FIGURE 6. Rate of distribution of different NFRs in posts only.

emphasis on. We study this from two main aspects. Firstly,
we determine the hot-NFRs in all iOS discussions. Then,
we investigate the hot-NFRs in specific iOS technologies or
categories.

Figure 6 depicts the rate of six different quality require-
ments or NFRs using the iOS posts data. The x-axis represents

VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

IEEE Access

o]
0.2 I I I
. I ol Ll

& b@ o’b R(s

|| I i 1
\"b

2 < . > KN N
N N 2)
) é\o C‘s\e & & & &P e,b'b K \QJA\Q' \~\>A\Q’
Y X2 ¢ o& ’50
O ¢ &
B Maintainability Efficiency Functionality Portability ~m Usability —m Reliability

FIGURE 7. Rate of distribution of different NFRs in specific technologies.

the rate or value of the Rnprs. The y-axis represents the
six respective quality requirements or NFRs. It is evident
in Figure 6 that the labels with the highly frequent topics
are usability, reliability, and functionality. Efficiency and
portability are less frequent NFRs or quality requirements.
We did not see the maintainability NFRs. This trend of six
different quality requirements or NFRs shows that mobile
application developers are more concerned about usability,
reliability, and functionality. It also reveals that they come
across several problems of usability, reliability, and function-
ality when developing iOS applications. On the other hand,
they are less concerned or face fewer problems of efficiency,
portability, and maintainability during iOS application devel-
opment. It specifies that the majority of the iOS developers’
worldwide lean towards discussing the usability of mobile
applications rather than maintainability. It also advises the
worldwide mobile applications vendors should comparatively
give more significance to the usability of the mobile applica-
tions. Besides, we also examine the rate of different NFRs in
posts with user comments. The results revealed that the rate
of different quality requirements or NFRs is almost similar to
the results of using posts only, i.e., the highly frequent topics
in descending order are usability, reliability, functionality,
efficiency, portability, and maintainability (none). Moreover,
it means that the generated results are identical exploring the
topics with and without comments.

As most of the mobile application developers’ work on
one or more iOS specific development technologies, they
might be concerned in the certain NFRs that emphasis in the
specific i0S development technologies or categories. In addi-
tion to identifying the hot NFRs in iOS discussions, we also
extracted the data of certain iOS technologies or categories
to discover the associations and dissimilarities of the NFRs
focusing on various sub-domains. We primarily were inter-
ested in recognizing whether some iOS development tech-
nologies or categories discuss certain quality requirements
comparatively more often than the others. It is useful for
project managers when deciding the initial design goals, or
to track the development objectives at a particular stage.
Figure 7 illustrates the rate of six different NFRs in different
i0S technologies or categories. It is evident from Figure 7 that

VOLUME 7, 2019

the hot NFRs label is usability, followed by the reliability
and functionality NFRs in the ten different iOS technologies
or categories. The NFRs labels efficiency and portability are
comparatively less discussed topics. These statistics depict
that the majority of the iOS mobile application developers
focus mostly on the usability aspect, and almost none on
the maintainability aspect, irrespective of the development
technologies or categories they are involved in. The i0OS
mobile application developers tend to give more value or
emphasis on usability more than any other NFRs while devel-
oping mobile applications. The comparative trends of the six
NFRs in ten different iOS categories are almost identical,
and the gap among the rates of each NFR on various i0S
technologies or categories is also minor. It ultimately recom-
mends that software quality issue also is of similar concern
amongst the different technologies or categories. Besides, it is
also evident that the relative trends of six different NFRs
in Figure 6 and Figure 7 are almost identical. These results
indicate that the difference in technology does not affect six
different NFR to be or not to be hot over time.

C. RESULTS OF RQ2

To address the RQ2, we primarily focused on all unanswered
i0S questions on Stack Overflow to investigate the unsolved
critical domains. It in return will be more helpful for the
iOS application developers to highlight the most challenging
issues they face during application development. Figure 8
depicts the distribution rate of six quality requirements or
NFRs about all iOS unanswered or unaddressed questions.
It is evident in Figure 8 that the most frequent topics remain
unresolved or unanswered are labeled with usability, relia-
bility, functionality, and portability. The less frequent topics
remain unanswered are labeled with efficiency and main-
tainability being the least frequent among all. It means that
the i0S developers are facing continuous critical problems
in handling usability and reliability issues. It warrants that
more focus should be put on usability and reliability of iOS
development since developers often unable to handle them.
The issues of functionality and portability are comparatively
less frequent but still needs attention to have successful i0OS
applications development. The least frequent are efficiency

61155

IEEE Access

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

FIGURE 8. Rate of distribution of different NFRs in unanswered posts or questions.

and maintainability problems in iOS development develop-
ers face, or they can better handle it easily those issues.
In the future, more research is needed in this area to inves-
tigate in detail the nature of all those critical issues so that
the academia and industry should come up with possible
solutions.

D. RESULTS OF RQ3

To address RQ3, we only use posts data because the outcome
of RQI determined that using posts alone and using posts
along with the comments have the same results. Through our
approach, we label the extracted topics of iOS posts, and
revealed that most of the topics are labeled with one NFR
is approximately 62.39%, more than one NFR are approxi-
mately 27.93%, and approximately 9.68% are labeled with
“none.” Table 4 illustrates the percentages of different NFRs
labeling.

TABLE 4. Non-functional requirements labeling percentages.

Percentage
One NFR 62.39%
Multi-NFRs 27.93%
None 9.68%

Figure 9 (a) & (b) depicts the gray-scale image of the six
different quality requirements or NFRs frequencies over the
timeline. The cell corresponds to 30 days period. The higher
intensity or deep color of a grid cell represents the lowest label
frequency, i.e., less count of all NFRs over the passage of
time. The lighter intensity of grid cell represents the higher
frequency of NFRs over time. Figure 9(a) & (b) not only
depicts the evolution of each of the six different NFRs visu-
ally with time but also depicts the trend of hot or not hot NFRs
in a particular timeframe. Figure 9(a) depicts the outcomes
of the iOS posts, and it is evident that almost all of the
quality requirements or NFRs evolve except maintainability.
Nevertheless, the trends of the NFRs are entirely different
from one another. The trend of usability is almost entirely
stable over the whole period having the highest frequency.
The frequency of reliability is higher at the start but then its
trend decrease over time. It is also evident that efficiency,
functionality, and portability frequency trends are up and

61156

down with time. The frequency of maintainability is least
among all and stays constant from the start until the end of
the period.

Figure 9(b) depicts the outcomes of the unanswered i0S
questions on SO. The frequency trend of efficiency, func-
tionality, portability, and reliability is quite low at the start
but then increase with time. The frequency trend of usability
is the highest at the start and remains quite stable except a
slight decrease is observed at the end. The frequency trend
of maintainability is again the least (almost none) among all
NFRs. To summarize the findings of both Figure 9(a) and
Figure 9(b), itis evident that the trend of reliability, portability
and functionality are interestingly growing not only in the iOS
posts but also in the unanswered iOS questions. The trend of
usability is having the highest frequency and is stable on both
i0S posts and unanswered iOS questions. All these findings
hints that reliability, portability, and functionality will raise
the attention of the iOS developers and the usability will most
probably stay hot in the coming years.

Besides, we also determine the correlation between the
significance of software quality requirements or NFRs and
time in specific iOS technologies or categories. We are pri-
marily interested in investigating whether some NFRs are of
more interest as the time evolves in specific iOS technologies
or categories. For addressing this question, we equally split
the whole dataset into eight non-overlapping frames (or win-
dows) by time. Each of the frame (or windows) has 12 months
posts data, to identify the NFRs trends from coarser time
granularity in specific iOS technologies or techniques. For
instance, Frame 0 has the feature requests data generated from
August 2008 to July 2009; Frame 1 has the feature requests
data generated from August 2009 to July 2010, and the list
goes on till Frame 7 has the feature requests data generated
from August 2016 to July 2017. Then, the rate of labeled
topics is acquired.

Figure 10 shows that the rate of different NFRs over
time in specific iOS technologies or categories. From Fig-
ure 10, it is evident that the rates of NFRs (especially usabil-
ity, reliability, and functionality) are generally increasing
with time for most of the iOS technologies or categories.
Besides, we also explore the relationship between the six
different NFRs and time by calculating their Spearman’s

VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

IEEE Access

@

(b)

FIGURE 9. Rate of frequencies of NFRs over time. (a) iOS Posts. (b) Unanswered iOS Posts.

coefficients. The purpose of calculating the Spearman’s coef-
ficients is to know the correlation between the importance
of six different NFRs and the time. The outcomes of Spear-
man’s coefficients are given in Table 5. The Spearman’s
rank correlation coefficients denoted by riand values are
constrained to +1, i.e., values closed to the =1 are deemed
as strongly correlated [98]-[100]. In the iOS technologies or
categories Cocoa, Cordova, iPad, iPhone, Objective-C, Swift,
and XCode the usability NFRs are strongly correlated. In the
iOS technologies or categories Core-data, efficiency NFRs
is strongly correlated, and in Ultableview portability NFRs
is strongly correlated. Moreover, in all of the ten iOS tech-
nologies categories, the usability, reliability, functionality and
efficiency NFRs are comparatively more correlated than the
rest of the portability NFRs. The NFRs maintainability is
not correlated since it has almost no values. The outcomes
indicate that the mobile application developers are concerned
more about these NFRs more and more with time. It hints
that the software quality requirements (usability, reliability,
functionality, and efficiency) are of more interest as time pro-
gresses, which recommends that the mobile apps developers,
managers, and researchers should give more consideration to
these NFRs.

E. RESULTS OF RQ4

For addressing RQ4, we were primarily interested in inves-
tigating whether certain NFRs are comparatively challeng-
ing than others in the diverse specific iOS technologies or

VOLUME 7, 2019

categories. Knowing the most challenging NFRs will help
software engineering researchers and real-world practitioners
determine the most demanding area to work on. To identify
the challenges, we primarily investigated how probable it is
for those problems to be successfully answered. As depicted
in Table 6, we utilize four metrics to identify the difficulty
of a topic from [19]. The four metrics used in our study
are; “meantime,” ‘“‘median time,” ‘‘Percentage Accepted,”
and ““Average number of Answers’ as illustrated in Table 6.
Usually, a question posted related to any topic or problem
on SO; the questioner accepts the answer as an acceptable
answer when it fulfills the desired needs of the questioner’s.
We examine the time it takes for a question(s) to obtain
an accepted answer by deducting the creation date of the
accepted answer and the question posts on SO. Then, we com-
pute the meantime and median time of questions on SO on a
particular topic. Once finding all the desired metrics, we cal-
culate the difficulty of each of the NFRs through ensemble
averaging and a linear combination via the NFRs labels of
topics.

Figure 11 illustrates the difficulty of each of the NFRs
in different specific iOS technologies or categories. It is
evident from Figure 11 that usability and reliability followed
by functionality and portability NFRs are commonly more
difficult than others in the majority of the iOS technolo-
gies or categories. In the ten different iOS categories, ten
out of ten are usability and reliability the most challenging
NFRs. Similarly, six out of ten is the functionality, and four

61157

lEEEACC@SS A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

b)

FIGURE 10. The rate of different NFRs over time in specific iOS technologies or categories. a) iPhone. b) Objective C. c) Swift. d) Xcode. e) Cocoa.
f) Cordova. g) Coredata. h) iPad. i) Ultableview. j) Ulview.

61158 VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO IEEEACC@SS

d)

e)

FIGURE 10. (Continued.) The rate of different NFRs over time in specific iOS technologies or categories. a) iPhone. b) Objective C. c) Swift. d) Xcode.
e) Cocoa. f) Cordova. g) Coredata. h) iPad. i) Ultableview. j) Ulview.

VOLUME 7, 2019 61159

lEEEACC@SS A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

g)

h)

i)

FIGURE 10. (Continued.) The rate of different NFRs over time in specific iOS technologies or categories. a) iPhone. b)
Objective C. c) Swift. d) Xcode. e) Cocoa. f) Cordova. g) Coredata. h) iPad. i) Ultableview. j) Ulview.

61160 VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

IEEE Access

0.4
0.3
0.2
0.1
0 - T —=il A= -
(4 C & (2
N & cob &
Q .e(‘}- C
60\

B Maintainability m Efficiency

B Portability

Usability

—om | | - - ——
> > N S
Q X) .
Y N K N g
N < N2 N
N Q0
o
S &
>

Functionality

Reliability

FIGURE 11. The difficulty of specific NFRs in different iOS technologies or categories.

out of ten is the portability the most difficult NFRs. The
average difficulty value of usability of the ten iOS categories
is the highest amongst all. It indicates that usability is the
most challenging NFRs followed by reliability among all
i0S technologies or categories. The SO questions related to
usability had a slightly above average time to obtain accepted
answers. Thus, put them in the lowest half for the average
ratio of SO questions with accepted answers, and also a less
average number of answers to the SO questions. Besides, it is
also found that efficiency and maintainability (almost none)
are the least difficult NFRs in all iOS categories. It recom-
mends the real world application developers and researchers
to invest more resources in usability and less on efficiency and
maintainability. Moreover, the results from RQ1 revealed that
usability is the hottest or most popular NFR and the results
from RQ4 indicate that the usability turns out to be the most
difficult NFRs amongst all iOS categories.

F. RESULTS OF RQ5

For addressing this research question, we explored the six
different NFRs difficulty over time in the iOS specific
technologies or categories. The heat map of six different
NFRs difficulty over time in iOS categories is illustrated
in Figure 12. The various trends of each of the six NFRs
difficulty in the respective iOS category are evident from
Figure 12, and it can be observed that most of the quality
requirements or NFRs evolve with time. It specifies that the
difficulty level evolves as time progresses. It is evident that
an upward difficulty trend is observed in usability NFRs in
some of the iOS categories. Nonetheless, the difficulty level
of usability NFR is still high in almost all iOS categories
which warrant that more emphasis should be put on it to solve
the issues raised in those questions. There are also some NFRs
that fluctuate as the time evolves like reliability and func-
tionality NFRs in most of the iOS categories. It depicts that
the difficulty in reliability and functionality NFRs fluctuation
possibly could be sporadic and reactive to external factors.
Generally, the heat map depicts that the difficulty of six
different NFRs in some of the iOS categories might become

VOLUME 7, 2019

more challenging as the time evolves. We also discover that
the difficulties of NFRs in the starting years are considerably
higher than the other years.

It possibly could be due to the proportion of the accepted
i0S answers and the aggregate numbers of iOS answers are
relatively fewer than the later years.

V. THREATS TO VALIDITY
Some of the potential validity threats [15], [21], [101]-[103]
of our study are discussed below:

A. INTERNAL VALIDITY

For our LDA model, we selected to use 20 as the number of
topics parameter (K) for each of the specified period since
same words from different topics are not so frequent when the
value of K = 20. However, the value of K = 20 is not nec-
essarily the best choice but proved to be an appropriate value
for NFRs analysis as reported in [104]-[106]. The motive is
to look for an optimal value between the available coarser
and finer grained values. To minimize this validity threat,
we tested with diverse values and selected the one that pro-
vided better outcomes by looking at the identical words from
diverse topics and the aggregate prevailing topic probabilities
specified by the LDA model. Also, to minimize the validity
threat of value of K = 20, in future, we plan and welcome
other researchers to use some machine learning method for
selecting the appropriate number of topics to be extracted by
the LDA. Nevertheless, K = 20 is not necessarily the ideal
selection, but it proved to be a suitable value for our NFRs
study analysis, and after testing several values of “K”” we are
confident enough that the value of K = 20 is appropriate for
our study.

The other validity threat is the reliability of the six different
NFRs labeling performed. To minimize this validity threat,
we assess the six different NFRs labeling on 12 months of iOS
data using the measure of recall and precision rates, and the
outcomes revealed it might not be precisely correct. Nonethe-
less, it is acceptable enough. While employing the LDA topic
model, LDA models the inside contents of iOS posts as plain

61161

IEEE Access

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

TABLE 5. Spearman’s coefficients results.

Categories NFRs Spearman’s Categories NFRs Spearman’s
coefficients (r,) coefficients (r,)
Cocoa Functionality .619 Objective-C Functionality 219
Portability 314 Portability .048
Maintainability -- Maintainability --
Efficiency .190 Efficiency 286
Reliability .633 Reliability .605
Usability .786 Usability 714
Cordova Functionality 333 Swift Functionality 433
Portability 262 Portability .180
Maintainability -- Maintainability --
Efficiency 333 Efficiency .190
Reliability .619 Reliability .619
Usability 714 Usability 905
Core-data Functionality 314 Ultableview Functionality 333
Portability 333 Portability 714
Maintainability -- Maintainability --
Efficiency 714 Efficiency 476
Reliability 310 Reliability 238
Usability 333 Usability .619
iPad Functionality 333 Ulview Functionality 362
Portability .143 Portability 238
Maintainability -- Maintainability --
Efficiency .524 Efficiency 310
Reliability .614 Reliability 457
Usability .786 Usability .619
iPhone Functionality 333 XCode Functionality .619
Portability .148 Portability 310
Maintainability -- Maintainability --
Efficiency 357 Efficiency 214
Reliability 357 Reliability .345
Usability .786 Usability 905
TABLE 6. The used metrics with an explanation.
Metrics Explanation
Mean Time Meantime is the questions posted on SO takes to have an accepted answer
Median Time Median time is the questions posted on SO takes to have an accepted answer
% Accepted It is the percentage of SO questions that obtained accepted answers
Avg. # of Answers It is the average number of answers on SO the questions in a certain topic obtain

text, comprising different source codes. As there might exist a
condition that iOS questions are containing more source code
than the plain text, the source code is comprised of different
words (i.e., classes, methods names, and variables) concern-
ing the application area that possibly could lead LDA model
to classify the concepts incorrectly. Nevertheless, in com-
parison with the number of words in total, there is a trivial
number of application area related words. The investigation
offers some form of generalization. We leave this as future
work to conduct an improved investigation by taking into
consideration source code removal from SO posts.

61162

For questions classification to the different iOS technolo-
gies or categories, we primarily used the tags of the iOS posts.
The possibility exists that the tags of iOS posts are left by the
mobile application developers or incorrectly labeled. To min-
imize this threat, we performed manual inspection of the i0S
posts related to the different technologies or categories and
verified that they possess the suitable iOS questions. The
other threat is related to the selection of ten iOS technologies
or categories, maybe there are other more comprehensive
categorizations which contain all the discussions in Stack
Overflow, but the categorization in the paper is reasonably

VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO IEEEACC@SS

a)

Naintainabitity |

04
Portability
Em .
Retiabitity]
1
Usability |

oy

Naimtainability, -]

o4
Tortabilin:
Efficienc:
Reliobility-|
1
Usability |
Maintaisabilit:
s
025
rortabant o2
0.1s
s
0.1
Eeliabisin |
vos
Trmanitiny
o
Maintainability
unctionalin
04

Portability

Reliabilin:-|

FIGURE 12. The difficulty level of six NFRs over time in iOS technologies or categories. a) iPhone. b) Objective C. c) Swift. d) Xcode. e) Cocoa. f)
Cordova. g) Coredata. h) iPad. i) Ultableview. j) Ulview.

VOLUME 7, 2019 61163

lEEEACC@SS A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

Mamtamablity -}

FIGURE 12. (Continued.) The difficulty level of six NFRs over time in i0S technologies or categories. a) iPhone. b) Objective C. c) Swift. d) Xcode.
e) Cocoa. f) Cordova. g) Coredata. h) iPad. i) Ultableview. j) Ulview.

61164 VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

IEEE Access

FIGURE 12. (Continued.) The difficulty level of six NFRs over time in iOS technologies or categories. a) iPhone. b) Objective C. c) Swift.
d) Xcode. e) Cocoa. f) Cordova. g) Coredata. h) iPad. i) Ultableview. j) Ulview.

diverse and representative. We specifically considered Stack
Overflow questions of different types to determine the NFRs
in different iOS technologies or categories. Thus, our selec-
tion is quite comprehensive as it covers different iOS tech-
nologies sufficiently.

While detecting if the iOS questions were effectively
answered in RQ4, we supposed that the question poser would
consider the answer as accepted if it resolves their issue.
Nonetheless, they are not required to perform this, and it is
quite likely that we could not catch all of the successfully
answered i0OS questions precisely. We divided the whole
corpus into certain time-windows by using the period size
equal to 30 days like [31]. We lack the proof to specify that
selecting 30 days period size is the appropriate distribution,
though it is a considerably suitable medium granularity value
for our six different NFRs analysis. The period comprising
excessively many posts and thus accumulating excessively
many words might cause the discrepancy between topics is
not apparent sufficiently, while the period comprising scarce
data is not enough for conducting the analysis. The 30 days
size is lesser than the period having excessively many posts
but considerably substantial for a sufficient number of posts
to examine. Besides, some other internal threats to the validity
of this study were minimized by utilizing certain available
developed tools for extracting the desired iOS posts data,

VOLUME 7, 2019

executing the LDA model, labeling topics with six differ-
ent NFRs and finally visualizing the results. We used the
Python library Beautiful Soup to extract and parse iOS posts
data, Python sklearn to build our LDA topic model, Python
for labeling the six different NFRs, Microsoft Excel and
plotly [107] for visualizing the figures.

B. EXTERNAL VALIDITY

One of the possible threats of this study is that we only used
Stack Overflow posts data. Nevertheless, SO is one of the
well-known and widely used programming Q&A website by
software developers across the globe. SO is populated with
thousands of diverse programming related questions daily.
In this study, we used the data dump from 315 July 2008 up
to 31% August 2017. The scale and diversity of SO give some
form of generalization. In the future, we plan to conduct and
welcome other researchers to do more enhanced analysis by
adding other similar programming Q&A sites and forums.
Besides, applying ISO9126 is also a threat to the validity
as there is lack of evidence to state that ISO9126 is the
only suitable standard. However, ISO9126 currently is the
most commonly used software quality model and delivers a
universally recognized terminology for software quality in
the software industry [35], [108]. Therefore, we consider it
is adequate to use it for this study. In the future, we would

61165

IEEE Access

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

take into consideration other commonly practiced software
quality models, for instance, ISO25010.

C. CONSTRUCT VALIDITY

The reason behind selecting SO as a Q&A data set is due
to the presence of a diverse set of developers who post
questions and answers related to the iOS mobile application
development. There is a possibility that some of the posts
could be posted by the end user which could be a threat to the
validity of the results. Nevertheless, the authors are confident
that the ratio of such posts are quite less as the majority of
the questions posted on Stack Overflow are by professional
programmers. Thus, the authors can confidently conclude
that the experiment iOS posts data was by in large discussed
by experts iOS programmers on SO and thus the results are
considered reliable. Moreover, to reduce this validity threat,
the authors plan and welcome other researchers to investigate
only those iOS posts which have gained more votes and
answers.

D. CONCLUSION VALIDITY

While building the validation corpus of this study, the anno-
tators might have some level of biases due to the difference
in understanding and subjectivity. To reduce the effect of this
threat to minimal, we invited four Ph.D. students in Software
Engineering to do the labeling task of the topics manually.
Besides, we also assessed the inter-rater reliability agree-
ments between the annotators labeling task using Kendall’s
coefficient of concordance (W) [97].

VI. CONCLUSION AND FUTURE WORK

We used LDA topic model to identify and evaluate the
different NFRs discussed in iOS application development
on Stack Overflow posts. This study offers an approximate
comprehension of the different NFRs through the contem-
porary diverse iOS practitioners’ eyes. It highlighted and
recommended the real problems and needs of the diverse i0S
application developers. We have primarily investigated the
different NFRs the iOS developers concentrated on, the NFRs
problems or difficulties the iOS developers confronted with,
and the evolving trends of different NFRs difficulty and focus
with the evolution of time. Our findings revealed that i0S
developers focus mostly on usability, reliability, and func-
tionality. They are found comparatively to be less focused
on efficiency and portability, while maintainability is almost
neglected. The outcomes of using posts alone in comparison
with the output of using posts along with the comments
yielded similar results. The most problematic areas left unre-
solved lies in usability, reliability, and functionality, which
hints of more work to do in the future in these areas to improve
iOS development.

We also examine the trends of the six quality requirements
or NFRs on the iOS posts and the unanswered i0S questions.
The trend analysis of the six different quality requirements or
NFRs yielded that they change over time. The evolution of
NFRs like reliability, portability, and functionality will raise

61166

the attention of the iOS developers, and the usability will most
probably stay hot in the coming years. Besides, we explore
the six NFRs in specific iOS technologies or categories and
examine the associations and discrepancies amongst them.
The outcome revealed that the quality NFR is considered as
a similar concern amongst diverse iOS technologies or cate-
gories as the i0S developers’ emphasis more on the usability
NFR, and less on the maintainability NFR. The results also
depicted that some of the NFRs are of more interest amongst
i0S developers as the time evolves. Furthermore, we examine
the difficulty of the six NFRs for each of the iOS categories
by using the four metrics. We find that usability is the most
challenging NFR, whereas efficiency and maintainability are
the least challenging NFRs faced by iOS developers. The out-
comes from examining the difficulty trend of NFRs with the
evolution of time in the ten iOS categories depicted that most
of the NFRs difficulties changes over time, and an upward
difficulty trend is observed in usability NFRs in some of the
i0S categories. Moreover, all these findings suggest that the
content shared on Stack Overflow posts should be considered
more thoroughly and thoughtfully as an elicitation source for
NFRs or quality requirements. In the future, we welcome
other researchers and would like to focus more intensely on
specific iOS development technologies to analyze the needs
and problems of i0S developers.

REFERENCES

[11 M. A. Alnuem, A. Ahmad, and H. Khan, “Requirements understanding:
A challenge in global software development, industrial surveys in king-
dom of Saudi Arabia,” in Proc. IEEE 36th Annu. Comput. Softw. Appl.
Conf., Izmir, Turkey, Jul. 2012, pp. 297-306.

[2] H. Khan, A. Ahmad, C. Johansson, and M. A. Al Nuem, ‘“‘Requirements
understanding in global software engineering: Industrial surveys,” in
Proc. Int. Conf. Comput. Softw. Modeling (IPCSIT), 2011, pp. 167-173.

[3] H. Khan, A. Ahmad, and M. A. Alnuem, “Knowledge management:
A solution to requirements understanding in global software engineer-
ing,” Res. J. Appl. Sci., Eng. Technol., vol. 7, no. 14, pp. 2087-2099,
2012.

[4] A. Ahmad and H. Khan, “The importance of knowledge management
practices in overcoming the global software engineering challenges
in requirements understanding,” M.S. thesis, Blekinge Inst. Technol.,
Karlskrona, Sweden, 2008.

[5] K. Wnuk, D. Pfahl, D. Callele, and E.-A. Karlsson, “How can open
source software development help requirements management gain the
potential of open innovation: An exploratory study,” in Proc. ESEM,
2012, pp. 271-279.

[6] M. Kauppinen, J. Savolainen, and T. Mannisto, ‘“‘Requirements engineer-
ing as a driver for innovations,” in Proc. 15th IEEE Int. Requirements
Eng. Conf., Oct. 2007, pp. 15-20.

[71 H. Munir, P. Runeson, and K. Wnuk, ““A theory of openness for software
engineering tools in software organizations,” Inf. Softw. Technol., vol. 97,
pp. 2645, May 2018.

[8] J.Linaker, B. Regnell, and H. Munir, “Requirements engineering in open
innovation: A research agenda,” in Proc. ICSSP, Tallinn, Estonia, 2015,
pp. 208-212.

[9]1 H.Munir, K. Wnuk, and P. Runeson, “Open innovation in software engi-
neering: A systematic mapping study,” Empirical Softw. Eng., vol. 21,
pp. 684-723, 2016.

[10] H. W. Chesbrough, Open Innovation: The New Imperative for Creating
and Profiting from Technology. Boston, MA, USA: Harvard Business
School Press, 2003.

[11] C.Treude, O. Barzilay, and M.-A. Storey, ‘““How do programmers ask and
answer questions on the web?: Nier track,” in Proc. 33rd Int. Conf. Softw.
Eng. (ICSE), May 2011, pp. 804-807.

VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

IEEE Access

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

E. C. Groen, S. Kopczynska, M. P. Hauer, T. D. Krafft, and J. Doerr,
“Users—The hidden software product quality experts?: A study on how
app users report quality aspects in online reviews,” in Proc. IEEE 25th
Int. Requirements Eng. Conf., Sep. 2017, pp. 80-89.

J. Vassileva, ““Toward social learning environments,” IEEE Trans. Learn.
Technol., vol. 1, no. 4, pp. 199-214, Oct. 2008.

E. Guzman and W. Maalej, “How do users like this feature? A fine grained
sentiment analysis of app reviews,” in Proc. IEEE 22nd Int. Requirements
Eng. Conf., Aug. 2014, pp. 153-162.

A. Ahmad, C. Feng, S. Ge, and A. Yousif, “A survey on mining stack
overflow: Question and answering (Q&A) community,” Data Technol.
Appl., vol. 52, 2, pp. 190-247, 2018.

D. Ameller, C. Ayala, J. Cabot, and X. Franch, “Non-functional require-
ments in architectural decision making,” IEEE Softw., vol. 30, no. 2,
pp. 61-67, Mar. 2013.

L. Chung and J. C. S. do Prado Leite, “‘On non-functional requirements
in software engineering,” in Conceptual Modeling: Foundations and
Applications, 2009.

J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki, “Non-
functional requirements in industry-three case studies adopting an
experience-based NFR method,” in Proc. 13th IEEE Int. Conf. Require-
ments Eng., Aug./Sep. 2005, pp. 373-382.

C. Rosen and E. Shihab, “What are mobile developers asking about? A
large scale study using stack overflow,” Empirical Softw. Eng., vol. 21,
pp. 1192-1223, Jun. 2016.

A. Ahmad, C. Feng, M. Tao, A. Yousif, and S. Ge, “Challenges of
mobile applications development: Initial results,” in Proc. 8th IEEE Int.
Conf. Softw. Eng. Service Sci. (ICSESS), Beijing, China, Nov. 2017,
pp. 464-469.

A. Ahmad, K. Li, C. Feng, S. M. Asim, A. Yousif, and S. Ge, “An empir-
ical study of investigating mobile applications development challenges,”
IEEE Access, vol. 6, pp. 17711-17728, 2018.

M. Linares-Vasquez, B. Dit, and D. Poshyvanyk, “An exploratory
analysis of mobile development issues using stack overflow,” in

Proc. 10th Work. Conf. Mining Softw. Repositories, May 2013,
pp. 93-96.
M. Rebougas, G. Pinto, F. Ebert, W. Torres, A. Serebrenik, and F. Castor,

“An empirical study on the usage of the swift programming language,”
in Proc. IEEE 23rd Int. Conf. Softw. Anal., Evol., Reeng. (SANER),
Mar. 2016, pp. 634—638.

I. K. Villanes, S. M. Ascate, J. Gomes, and A. C. Dias-Neto, ‘““What are
software engineers asking about android testing on stack overflow?” in
Proc. SBES, Rio de Janeiro, Brazil, 2017, pp. 104-113.

A. Barua, S. W. Thomas, and A. E. Hassan, ‘““What are developers talking
about? An analysis of topics and trends in stack overflow,” Empirical
Softw. Eng., vol. 19, no. 3, pp. 619-654, 2014.

J. Zou, L. Xu, W. Guo, M. Yan, D. Yang, and X. Zhang, “Which non-
functional requirements do developers focus on? An empirical study on
stack overflow using topic analysis,” in Proc. IEEE/ACM 12th Work.
Conf. Mining Softw. Repositories, May 2015, pp. 446—449.

G. Pinto, W. Torres, and F. Castor, “‘A study on the most popular questions
about concurrent programming,” in Proc. 6th Workshop Eval. Usability
Program. Lang. Tools, 2015, pp. 39-46.

K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked by
web developers,” in Proc. 11th Work. Conf. Mining Softw. Repositories,
2014, pp. 112-121.

D. M. Blei, A. Y. Ng, and M. L. Jordan, “Latent Dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993-1022, Mar. 2003.

@. Hauge, C. Ayala, and R. Conradi, “Adoption of open source
software in software-intensive organizations—A systematic
literature review,” Inf. Softw. Technol., vol. 52, pp.1133-1154,
Nov. 2010.

A. Hindle, M. W. Godfrey, and R. C. Holt, ““What’s hot and what’s not:
Windowed developer topic analysis,” in Proc. IEEE Int. Conf. Softw.
Maintenance, Sep. 2009, pp. 339-348.

A. Hindle, N. Ernst, M. W. Godfrey, R. C. Holt, and J. Mylopoulos,
“What’s in a name? On the automated topic naming of software main-
tenance activities,” Tech. Rep., 2010.

A. Hindle, C. Bird, T. Zimmermann, and N. Nagapan, ‘‘Relating require-
ments to implementation via topic analysis: Do topics extracted from
requirements make sense to managers and developers?” in Proc. 28th
IEEE Int. Conf. Softw. Maintenance (ICSM), Trento, Italy, Sep. 2012,
pp. 243-252.

VOLUME 7, 2019

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

A. Hindle, N. A. Ernst, M. W. Godfrey, and J. Mylopoulos, “Automated
topic naming to support cross-project analysis of software maintenance
activities,” in Proc. 8th Work. Conf. Mining Softw. Repositories, 2011,
pp. 163-172.

“9126 Software product evaluation-quality characteristics and guidelines
for their use,” Int. Standard Org., Geneva, Switzerland, Tech. Rep., 2001.
A. Ahmad, L. Kan, C. Feng, and T. Sun, “An empirical study on how iOS
developers report quality aspects on stack overflow,” Int. J. Mach. Learn.
Comput. (IJMLC), vol. 8, pp. 501-506, Oct. 2018.

X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? A large-scale study of stack overflow posts,”
J. Comput. Sci. Technol., vol. 31, pp. 910-924, Sep. 2016.

G. H. Pinto and F. Kamei, “What programmers say about refactoring
tools?: An empirical investigation of stack overflow,” in Proc. ACM
Workshop Workshop Refactoring Tools, 2013, pp. 33-36.

A. Fontdo et al., “Supporting governance of mobile application devel-
opers from mining and analyzing technical questions in stack overflow,”
J. Softw. Eng. Res. Develop., vol. 6, p. 8, Aug. 2018.

M. Martinez and S. Lecomte. (2017). “Discovering discussion topics
about development of cross-platform mobile applications using a cross-
compiler development framework.”

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest Q&A site in the west,” in Proc. SIGCHI
Conf. Hum. Factors Comput. Syst., 2011, pp. 2857-2866.

M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider,
“Answering questions about unanswered questions of stack overflow,”
in Proc. 10th Work. Conf. Mining Softw. Repositories, 2013, pp. 97-100.
A. Bosu, C. S. Corley, D. Heaton, D. Chatterji, J. C. Carver, and
N. A. Kraft, “Building reputation in stackoverflow: An empirical investi-
gation,” in Proc. 10th Work. Conf. Mining Softw. Repositories, May 2013,
pp. 89-92.

B. Bazelli, A. Hindle, and E. Stroulia, “On the Personality Traits of
StackOverflow Users,” in Proc. ICSM, Sep. 2013, pp. 460—463.

Y. Jin, X. Yang, R. G. Kula, E. Choi, K. Inoue, and H. lida, “Quick
trigger on stack overflow: A study of gamification-influenced member
tendencies,” in Proc. 12th Work. Conf. Mining Softw. Repositories, 2015,
pp. 434-437.

J. Goderie, B. M. Georgsson, B. Van Graafeiland, and A. Bacchelli, “Eta:
Estimated time of answer predicting response time in Stack Overflow,”
in Proc. IEEE/ACM 12th Work. Conf. Mining Softw. Repositories (MSR),
2015, pp. 414-417.

F. Calefato, F. Lanubile, M. C. Marasciulo, and N. Novielli, “Mining
successful answers in stack overflow,” in Proc. 12th Work. Conf. Mining
Softw. Repositories, 2015, pp. 430—433.

N. Novielli, F. Calefato, and F. Lanubile, “The challenges of sentiment
detection in the social programmer ecosystem,” in Proc. 7th Int. Work-
shop Social Softw. Eng., 2015, pp. 33-40.

A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, “Discover-
ing value from community activity on focused question answering sites:
A case study of stack overflow,” in Proc. 18th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2012, pp. 850-858.

A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec, *“Steering
user behavior with badges,” in Proc. 22nd Int. Conf. World Wide Web,
2013, pp. 95-106.

S. Grant and B. Betts, “Encouraging user behaviour with achievements:
An empirical study,” in Proc. 10th Work. Conf. Mining Softw. Reposito-
ries (MSR), 2013, pp. 65-68.

A. Marder, “Stack overflow badges and user behavior: An econometric
approach,” in Proc. IEEE/ACM 12th Work. Conf. Mining Softw. Reposi-
tories, May 2015, pp. 450-453.

R. Slag, M. de Waard, and A. Bacchelli, “‘One-day flies on stackoverflow-
why the vast majority of stackoverflow users only posts once,” in Proc.
IEEE/ACM 12th Work. Conf. Mining Softw. Repositories, May 2015,
pp. 458-461.

S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in
Proc. 28th IEEE Int. Conf. Softw. Maintenance (ICSM), Sep. 2012,
pp. 25-34.

V. Honsel, S. Herbold, and J. Grabowski, ““Intuition vs. truth: Evaluation
of common myths about stackoverflow posts,” in Proc. 12th Work. Conf.
Mining Softw. Repositories (MSR), 2015, pp. 438—441.

S. A. Chowdhury and A. Hindle, “Mining StackOverflow to filter out
off-topic IRC discussion,” in Proc. 12th Work. Conf. Mining Softw.
Repositories, 2015, pp. 422-425.

61167

IEEE Access

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

61168

H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek,
when and how?” in Proc. 20th Work. Conf. Reverse Eng. (WCRE),
Oct. 2013, pp. 142-151.

C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, ‘“Crowd documen-
tation: Exploring the coverage and the dynamics of API discussions on
Stack Overflow,” Georgia Inst. Technol., Atlanta, GA, USA, Tech. Rep.,
2012.

'W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app
store analysis for software engineering,” IEEE Trans. Softw. Eng., vol. 43,
no. 9, pp. 817-847, Sep. 2017.

M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: MSR
for app stores,” in Proc. 9th IEEE Work. Conf. Mining Softw. Repositories,
2012, pp. 108-111.

C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in Proc. IEEE Mining Softw. Reposito-
ries (MSR), San Francisco, CA, USA, May 2013, pp. 41-44.

L. V. G. Carreno and K. Winbladh, “Analysis of user comments:
An approach for software requirements evolution,” in Proc. IEEE Int.
Conf. Softw. Eng. (ICSE), May 2013, pp. 582-591.

D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in Proc. 21st IEEE Int. Requirements Eng. Conf. (RE), Rio de
Janeiro, Brazil, Jul. 2013, pp. 125-134.

W. Maalej, Z. Kurtanovié, H. Nabil, and C. Stanik, “On the automatic
classification of app reviews,” Requirements Eng., vol. 21, pp. 311-331,
Sep. 2016.

W. Maalej and H. Nabil, “Bug report, feature request, or simply
praise? On automatically classifying app reviews,” in Proc. IEEE 23rd
Int. Requirements Eng. Conf. (RE), Ottawa, ON, Canada, Aug. 2015,
pp. 116-125.

H. Li, L. Zhang, L. Zhang, and J. Shen, “A user satisfaction analysis
approach for software evolution,” in Proc. IEEE Int. Conf. Prog. Inform.
Comput. (PIC), Dec. 2010, pp. 1093-1097.

B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, ‘“Why people
hate your app: Making sense of user feedback in a mobile app store,”
in Proc. Int. Conf. Knowl. Discovery Data Mining (KDD), Aug. 2013,
pp. 1276-1284.

H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, ‘“What do mobile
app users complain about?”” IEEE Softw., vol. 32, no. 3, pp. 70-77,
May 2015.

G. Bavota, M. Linares-Vasquez, C. E. Bernal-Cardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “The impact of API change-and fault-
proneness on the user ratings of android apps,” IEEE Trans. Softw. Eng.,
vol. 41, no. 4, pp. 384-407, Apr. 2015.

L. Chung and B. A. Nixon, “Dealing with non-functional requirements:
Three experimental studies of a process-oriented approach,” in Proc. 17th
Int. Conf. Softw. Eng., Apr. 1995, pp. 25-37.

J. Mylopoulos, L. Chung, and B. Nixon, ‘“Representing and using non-
functional requirements: A process-oriented approach,” IEEE Trans.
Softw. Eng., vol. 18, no. 6, pp. 483—497, Jun. 1992.

L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Springer, 2000.

D. Mairiza, D. Zowghi, and N. Nurmuliani, “An investigation into the
notion of non-functional requirements,” in Proc. ACM Symp. Appl. Com-
put., 2010, pp. 311-317.

M. Glinz, “On non-functional requirements,” in Proc. 15th IEEE Int.
Requirements Eng. Conf., Oct. 2007, pp. 21-26.

M. Umar and N. A. Khan, “Analyzing non-functional requirements
(NFRs) for software development,” in Proc. IEEE 2nd Int. Conf. Softw.
Eng. Service Sci. (ICSESS), Jul. 2011, pp. 675-678.

M. Galster and E. Bucherer, “A taxonomy for identifying and specifying
non-functional requirements in service-oriented development,” in Proc.
IEEE Congr. Services-1, Jul. 2008, pp. 345-352.

D. Ameller, C. Ayala, J. Cabot, and X. Franch, “How do software
architects consider non-functional requirements: An exploratory study,”
in Proc. 20th IEEE Int. Requirements Eng. Conf. (RE), Sep. 2012,
pp. 41-50.

D. Ameller, X. Franch, and J. Cabot, “Dealing with non-functional
requirements in model-driven development,” in Proc. 18th IEEE Int.
Requirements Eng. Conf. (RE), Sep./Oct. 2010, pp. 189-198.

S. Kugele, W. Haberl, M. Tautschnig, and M. Wechs, “Optimizing
automatic deployment using non-functional requirement annotations,” in
Leveraging Applications of Formal Methods, Verification and Validation,
2008, pp. 400-414.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

M. Ahmad, N. Belloir, and J.-M. Bruel, “Modeling and verification
of functional and non-functional requirements of ambient self-adaptive
systems,” J. Syst. Softw., vol. 107, pp. 50-70, Sep. 2015.

A. Borg, A. Yong, P. Carlshamre, and K. Sandahl, “The bad conscience
of requirements engineering: An investigation in real-world treatment of
non-functional requirements,” Tech. Rep., 2003.

W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp, and
E. Bode, “Boosting re-use of embedded automotive applications through
rich components,” in Foundations of Interface Technologies, 2005.

J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “The detection and
classification of non-functional requirements with application to early
aspects,” in Proc. 14th IEEE Int. Requirements Eng. Conf., Sep. 2006,
pp. 39-48.

J. Eckhardt, D. M. Fernandez, and A. Vogelsang, “How to specify non-
functional requirements to support seamless modeling? A study design
and preliminary results,” in Proc. ACM/IEEE Int. Symp. Empirical Softw.
Eng. Meas. (ESEM), Oct. 2015, pp. 1-4.

J. Eckhardt, A. Vogelsang, and D. M. Ferndndez, “‘Are ‘non-functional’
requirements really non-functional? An investigation of non-functional
requirements in practice,” in Proc. IEEE/ACM 38th Int. Conf. Softw.
Eng. (ICSE), May 2016, pp. 832-842.

E. Noei, M. D. Syer, Y. Zou, A. E. Hassan, and I. Keivanloo, “A study
of the relation of mobile device attributes with the user-perceived qual-
ity of Android apps,” Empirical Softw. Eng., vol. 22, pp. 3088-3116,
Dec. 2017.

M. Yan, X. Zhang, D. Yang, L. Xu, and J. D. Kymer, “A component
recommender for bug reports using discriminative probability latent
semantic analysis,” Inf. Softw. Technol., vol. 73, pp. 37-51, May 2016.
S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization using
latent dirichlet allocation,” Inf. Softw. Technol., vol. 52, pp. 972-990,
Sep. 2010.

J. Zou, L. Xu, M. Yan, X. Zhang, J. Zeng, and S. Hirokawa, ““Automated
duplicate bug report detection using multi-factor analysis,” IEICE Trans.
Inf. Syst., vol. E99.D, no. 7, pp. 1762-1775, 2016.

M. Allamanis and C. Sutton, “Why, when, and what: Analyzing stack
overflow questions by topic, type, and code,” in Proc. 10th Work. Conf.
Mining Softw. Repositories, May 2013, pp. 53-56.

F. Pedregosa et al., ““Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825-2830, Oct. 2011.

Y. Fu, M. Yan, X. Zhang, L. Xu, D. Yang, and J. D. Kymer, “Auto-
mated classification of software change messages by semi-supervised
Latent Dirichlet Allocation,” Inf. Softw. Technol., vol. 57, pp. 369-377,
Jan. 2015.

T. T. Nguyen, T. N. Nguyen, and T. M. Phuong, “Topic-based defect
prediction (NIER track),” in Proc. 33rd Int. Conf. Softw. Eng. (ICSE),
Honolulu, HI, USA, 2011, pp. 932-935.

S. Thomas, ‘“Mining unstructured software repositories using ir
models,” Ph.D. dissertation, Queen’s Univ., Kingston, ON, Canada,
2012.

B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of
software quality,” in Proc. 2nd Int. Conf. Softw. Eng., 1976, pp. 592-605.
J. A. McCall, “Factors in software quality,” Preliminary Handbook on
Software Quality for an Acquisiton Manager. Boston, MA, USA: General
Electric, 1977.

A. Eye and E.-Y. Mun, Analyzing Rater Agreement: Manifest Variable
Methods. London, U.K.: Taylor & Francis, 2006.

J. R. Landis and G. G. Koch, “The measurement of observer agree-
ment for categorical data,” Biometrics, vol. 33, no. 1, pp. 159-174,
1977.

M. M. Mukaka, “Statistics corner: A guide to appropriate use of Corre-
lation coefficient in medical research,” Malawi Med. J., vol. 24, no. 3,
pp- 69-71, 2012.

D. Hinkle, W. Wiersma, and S. G. Jurs, Applied Statistics for the Behav-
ioral Sciences, 5th ed. Boston, MA, USA: Houghton Miftlin, 2003.

H. K. Wright, M. Kim, and D. E. Perry, “Validity concerns in software
engineering research,” in Proc. FSE/SDP Workshop Future Softw. Eng.
Res. (FOSER), Santa Fe, NM, USA, 2010, pp. 411-414.

R. Feldt and A. Magazinius, “Validity threats in empirical software
engineering research-an initial survey,” in Proc. Int. Conf. Softw. Eng.
Knowl. Eng., 2010, pp. 374-379.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslen, Experimentation in Software Engineering. London, U.K.:
Kluwer, 2000.

VOLUME 7, 2019

A. Ahmad et al.: Toward Empirically Investigating Non-Functional Requirements of iOS Developers on SO

IEEE Access

[104

[105

[106

[107
[108

]

]

]

S. Grant and J. R. Cordy, “Estimating the optimal number of latent con-
cepts in source code analysis,” in Proc. 10th IEEE Working Conf. Source
Code Anal. Manipulation (SCAM), Timisoara, Romania, Sep. 2010,
pp. 65-74.

S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Studying
software evolution using topic models,” Sci. Comput. Program., vol. 80,
pp. 457-479, Feb. 2014.

H. M. Wallach, I. Murray, R. Salakhutdinov, and D. Mimno, “‘Evaluation
methods for topic models,” in Proc. 26th Int. Conf. Mach. Learn. (ICML),
2009, pp. 1105-1112.

G. Maker. [Online]. Available: https://plot.ly/create/

J. Bgegh, “A new standard for quality requirements,” [EEE Softw.,
vol. 25, no. 2, pp. 57-63, Mar./Apr. 2008.

ARSHAD AHMAD received the Ph.D. degree in
computer science and technology from the Beijing
Institute of Technology, China, in 2018. He is cur-
rently an Assistant Professor of computer science
with the Department of Computer Science, Uni-
versity of Swabi, Ambar, Pakistan. His research
interests include requirements engineering, text
mining, sentiment analysis, and machine learning.

CHONG FENG received the Ph.D. degree in com-
puter science from the University of Science and
Technology of China, Hefei, in 2005. He is cur-
rently an Associate Professor of computer sci-
ence and technology with the Beijing Institute of
Technology, Beijing. His current research inter-
ests focus on social media processing, information
extraction, and machine translation.

VOLUME 7, 2019

KAN LI received the Ph.D. degree in computer
science from the Beijing Institute of Technology,
China, in 2003, where he is currently a Professor
of computer science and technology. He has pub-
lished over 40 technical papers in peer-reviewed
journals and conference proceedings. His research
interests include machine learning, data mining,
and distributed systems.

SYED MOHAMMAD ASIM received the Ph.D.
degree in applied statistics from the University of
Gottingen, Germany, in 2008. He is currently the
Chairman and an Associate Professor of Statistics
with the University of Peshawar, Peshawar. His
current research interests focus on biostatistics,
econometrics, multivariate analysis, and social
statistics.

TINGTING SUN received the bachelor’s degree
in computer science from the University of
Shenyang, Shenyang, in 2014. She is currently
pursuing the master’s degree with the School of
Computer Science and Technology, Beijing Insti-
tute of Technology, Beijing. Her research interests
focus on natural language processing, information
extraction, and information retrieval.

61169

	INTRODUCTION
	RELATED WORK
	STACK OVERFLOW
	APP STORE ANALYSIS
	NON-FUNCTIONAL REQUIREMENTS
	LATENT DIRICHLET ALLOCATION (LDA)

	PLANNING AND EXECUTION
	STEP 1: EXTRACTING AND SELECTING SO POSTS
	STEP 2: LDA TOPIC MODELING
	STEP 3: LABELING OF TOPICS WITH NFRs
	STEP 4: NFR's METRIC
	STEP 5: VALIDATING THE CORPUS

	ANALYSIS OF THE RESULTS
	THE ACCURACY OF THE EVALUATION
	RESULTS OF RQ1
	RESULTS OF RQ2
	RESULTS OF RQ3
	RESULTS OF RQ4
	RESULTS OF RQ5

	THREATS TO VALIDITY
	INTERNAL VALIDITY
	EXTERNAL VALIDITY
	CONSTRUCT VALIDITY
	CONCLUSION VALIDITY

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	ARSHAD AHMAD
	CHONG FENG
	KAN LI
	SYED MOHAMMAD ASIM
	TINGTING SUN

