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ABSTRACT Linearized alternating direction method of multipliers (ADMM) as an extension of ADMM
has been widely used to solve linearly constrained problems in signal processing, machine learning,
communications, and many other fields. Despite its broad applications in nonconvex optimization, for a
great number of nonconvex and nonsmooth objective functions, its theoretical convergence guarantee is
still an open problem. In this paper, we propose a two-block linearized ADMM and a multi-block parallel
linearized ADMM for problems with nonconvex and nonsmooth objectives. Mathematically, we present that
the algorithms can converge for a broader class of objective functions under less strict assumptions compared
with previous works. Furthermore, our proposed algorithm can update coupled variables in parallel and
work for less restrictive nonconvex problems, where the traditional ADMMmay have difficulties in solving
subproblems.

INDEX TERMS Linearized ADMM, multi-block ADMM, nonconvex optimization, parallel computation,
proximal algorithm.

I. INTRODUCTION
In signal processing [1], machine learning [2], and
communication [3], many of the recently most concerned
problems, such as compressed sensing [4], dictionary
learning [5], and channel estimation [6], can be cast as opti-
mization problems. In doing so, not only has the design
of the solving methods been greatly facilitated, but also
a more mathematically understandable and manageable
description of the problems has been given. While con-
vex optimization has been well studied [7]–[9], nonconvex
optimization has also appeared in numerous topics such
as matrix factorization [10], [11], phase retrieval [12], and
clustering [13].

The alternating direction method of multipliers (ADMM)
has been widely used in linearly constrained optimiza-
tion problems arising in machine learning [14], [15],
signal processing [16], as well as other fields [17]–[19].
First proposed in the early 1970s, it has been studied
extensively [20]–[22]. At the very beginning, ADMM was
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mainly applied in solving linearly constrained convex prob-
lems in the following form [23]

minimize f (x)+ h(y)

subject to Ax + By = 0, (1)

where x ∈ Rp, y ∈ Rq are variables, and A ∈ Rn×p,B ∈
Rn×q are given. With an augmented Lagrangian function
defined as

Lβ (x, y, γ )= f (x)+ h(y)+ 〈γ,Ax + By〉+
β

2
‖Ax+By‖22,

(2)

where γ is the Lagrangian dual variable, the ADMMmethod
updates variables iteratively as the following

xk+1 = argmin
x

Lβ (x, yk , γ k ),

yk+1 = argmin
y

Lβ (xk+1, y, γ k ),

γ k+1 = γ k + β(Axk+1 + Byk+1).

For ADMM applied in nonconvex problems, although the
theoretical convergence guarantee is still an open problem,
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it can converge fast in many cases [24], [25]. Under certain
assumptions on the objective function and linear constraints,
researchers have studied the convergence of ADMM for non-
convex optimization [26]–[31].

The subproblems in ADMM can be hard to solve
and have no closed form solution in many cases, so
we either use an approximate solution as a substitute in
the update which might cause divergence, or solve the
subproblems by numerical algorithms which can bring com-
putational burden. Motivated by these issues, linearized
ADMM was proposed for convex optimization [32]–[37].
By linearizing differentiable functions in subproblems,
they make subproblems easier to solve and reduce com-
putational complexity. It has demonstrated good perfor-
mances in sparsity recovery [35], [37], [38], low-rank matrix
completion [39], and image restoration [40]–[43].

When the problem scale is so large that a two-block
ADMM method may no longer be efficient or practi-
cal [44], [45], distributed algorithms are in demand to
exploit parallel computing resources [8], [46], [47]. Multi-
block ADMM was proposed to solve problems in the
following form [14]

minimize f1(x1)+ f2(x2)+ · · · + fK (xK )

subject to A1x1 + A2x2 + · · · + AK xK = 0. (3)

It allows parallel computation [20], [27], [48]–[51], and
has been used in problems such as sparse statistical
machine learning [52] and total variation regularized image
reconstruction [53].

A. MAIN PROBLEMS
In this paper, we study linearized ADMM algorithms for
problems with nonconvex and nonsmooth objective func-
tions. First, we propose a two-block linearized ADMM for
problems with coupled variables in the following form

minimize g(x, y)+ f (x)+ h(y)

subject to Ax + By = 0, (4)

where x ∈ Rp, y ∈ Rq are variables. Functions g and h are
differentiable and can be nonconvex. Function f can be both
nonconvex and nondifferentiable. The Lagrangian function
for problem (4) is defined as follows

Lβ (x, y, γ ) = g(x, y)+ f (x)+ h(y)

+〈γ,Ax + By〉 +
β

2
‖Ax + By‖22 . (5)

Throughout the paper we make the following assumption.
Assumption 1: Assume that problem (4) satisfies the con-

ditions below.
1. Function h(y) is Lh-Lipschitz differentiable.
2. Function g(x, y) is Lg-Lipschitz differentiable.
3. Function g(x, y) + f (x) + h(y) is lower bounded and

coercive with respect to y over the feasible set{
(x, y) ∈ Rp+q

: Ax + By = 0
}
.

4. Matrix B has full column rank, and Im(A) ⊂ Im(B).
In Assumption 1, we put relatively weak restriction on

function f and matrix A, which is a significant improvement
over other works on nonconvex ADMM algorithms.

Then we propose a parallel multi-block ADMM method,
which can be seen as a special case of the first algorithm, for
problems in the following form

minimize g(x1, . . . , xK , y)+
K∑
i=1

fi(xi)+ h(y)

subject to A1x1 + · · · + AK xK + By = 0, (6)

where x = (x1, . . . , xK ) and y are variables. The assumption
we have on problem (6) is the same as Assumption 1.

B. RELATED WORKS
Recently a great deal of attention has been focused on
using ADMM to solve nonconvex problems [26]–[31]. The
work [26] studies the convergence of traditional ADMM
under relatively strict assumptions. For instance, it requires
every Ai to have full column rank and all the fi to satisfy an
assumption similar to Holder condition. Besides, the param-
eter β in their algorithm is required to increase linearly in
the number of variable blocks, which can seriously reduce its
convergence speed. The work [27] studies the convergence
of ADMM for solving nonconvex consensus and sharing
problem. However, they require the nonconvex part to be
Lipschitz differentiable and the nondifferentiable part to be
convex. The work [27] also studies a parallel ADMM, but
it is only under the case where the Lagarangian function is
separable across all blocks, that is, the objective function and
augmented term are both separable. The work [28] studies
nonconvex ADMM under less restrictive assumptions. Their
algorithm requires matrix B to have full row rank, while
our algorithm requires matrix B to have full column rank,
so their algorithm adapts to different optimization problems
from ours. In addition, our second algorithm allows parallel
computation for multi-block cases, while theirs does not.
A detailed comparison on conditions for the convergence of
these algorithms is listed in Table 1.

Besides ADMM there are also other kinds of dual
algorithms for multi-block nonconvex optimization. For
instance, [46] studies a distributed dual algorithm for noncon-
vex constrained problem, where the integral objective func-
tion is Lipschitz differentiable and the Lagrangian function
is defined without the augmented term. It can be viewed as
a variation of the method of Lagrangian multiplier, while
our algorithms are variations of the Augmented Lagrangian
method. In addition, our algorithms can adapt to nonsmooth
optimization even with indicator functions in the objective,
while their algorithm cannot.

C. CONTRIBUTION
Our work has the following improvements compared
with some latest works based on ADMM for nonconvex
optimization.
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TABLE 1. Comparison with related works.

• Nonconvex Linearized ADMM: To the best of our
knowledge, this is the first work to study the theoretical
convergence for a completely linearized ADMM in non-
convex optimization. By linearizing all the differentiable
parts, not only the objective function but also the aug-
mented term, in the Lagrangian function, the subprob-
lems can either be transformed into a proximal problem

or a quadratic problem, which are usually easier to solve
than the original subproblems.

• Parallel Computation: In our second algorithm, the lin-
earization decouples the variables x1, . . . , xK origi-
nally coupled in the function g and β

2 ‖
∑K

i=1 Aixi +
By‖22, so we can update every block in parallel. Pre-
vious works [20], [49]–[51] have studied some parallel
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ADMM algorithms that can deal with coupled variables,
but they are all for convex optimization. To the best
of our knowledge, our second algorithm is the first
one to extend such parallel ADMM to nonconvex opti-
mization. Numerical experiment demonstrates the high
efficiency of our algorithm brought by parallel computa-
tion in comparison with other latest nonconvex ADMM
algorithms.

• WeakerAssumptions:Our assumptions are less restric-
tive in comparison with previous works on nonconvex
ADMM (see, e.g., [26], [27], [29]–[31]). Specifically,
we put much weaker restrictions on function f (fi) and
matrix A (Ai). The work [28] needs assumptions similar
to ours, but the update rules are different, and their
algorithm requires matrix B to have full row rank, while
we require matrix B to have full column rank.

D. OUTLINE
The remainder of this paper is organized as follows. In
Section II some preliminaries are introduced. In Section III-A
we propose a two-block linearized ADMM for nonconvex
problems and provide convergence analysis under certain
broad assumption in Section III-B. In Section III-C we pro-
pose a parallel multi-block linearized ADMM that can be
seen as a special case of the first algorithm. Section IV gives
detailed discussions on the update rules and some applica-
tions to demonstrate the advantages of this work. In sectionV,
numerical experiments are performed to demonstrate the
effectiveness and high efficiency of our algorithms. We con-
clude this work in Section VI.

II. PRELIMINARY
A. NOTATION
We use bold capital letters for matrices, bold small case
letters for vectors, and non-bold letters for scalars. We use
xk to denote the value of x after the kth iteration and xi to
denote its ith block. The gradient of function f at x for the
ith component is denoted as ∇xi f (x), and the regular subgra-
dient of f for the ith component defined at a point x [55],
is denoted as ∂if (x). The smallest eigenvalue of matrix X is
denoted as λX . Without specification, ‖ · ‖ denotes `2 norm.
Im(X ) denotes the image of matrix X . In multi-block ADMM,
x = (x1, . . . , xK ) denotes the collection of variables.

B. DEFINITION
Definition 1 (Regular Subgradient [55]): Consider a func-

tion f : Rn
→ R̄ and a point x0 with f (x0) finite. Then the

regular subgradient of function f at x0 is defined as

∂f (x0) = {v : f (x) ≥ f (x0)+ 〈v, x − x0〉 + o(‖x − x0‖)},

where for every v the inequality holds for any x in a small
neighborhood of x0.
Remark 1: Notice that the regular subgradient is a set. For

a differentiable function, its regular subgradient set at a point
contains only its gradient at that point.

Definition 2 (Lipschitz Differentiable): Function s(y) is
said to be Ls-Lipschitz differentiable if for all y, y′, we have
that

‖∇s(y)−∇s(y′)‖ ≤ Ls‖y− y′‖,

which is equivalent to that its gradient ∇s is Lipschitz contin-
uous.
Definition 3 (Coercive Function): Assume that function

r(x1, x2) is defined on X , and for any ‖xk2‖ → +∞ and
(xk1 , x

k
2 ) ∈ X , we have r(xk1 , x

k
2 ) → +∞, then function r

is said to be coercive with respect to x2 over X .
Remark 2: Any function is coercive over bounded set.

III. LINEARIZED ADMM: TWO-BLOCK AND
MULTI-BLOCK
In this section, we first propose a linearized ADMM to solve
the two-block nonconvex problem (4) possibly with func-
tion f nonsmooth. Its convergence assumption is, as far as
we know, one of the broadest among the current ADMM
algorithms for nonconvex optimization. Then we extend the
algorithm to solve the multi-block problem (6), and the lin-
earization renders the coupled multi-blocks of variables to be
updated in parallel.

A. TWO-BLOCK LINEARIZED ADMM UPDATING RULES
In the (k + 1)th update of x, we replace the objective in
the subproblem of ADMM g(x, yk ) + β

2 ‖Ax + By
k
‖
2 by the

following

〈x − xk ,∇xg(xk , yk )+ βAT (Axk + Byk )〉 +
Lx
2
‖x − xk‖2,

which is a linearized term plus a regularization term (Lx > 0).
In the (k+1)th update of y, the algorithm replaces g(xk+1, y)+
h(y) by the following

〈y− yk ,∇yg(xk+1, yk )+∇h(yk )〉 +
Ly
2
‖y− yk‖2,

which is again a linearized term plus a regularization
term (Ly > 0). Replacing the corresponding parts in the
augmented Lagrangian function with their approximations
above, we readily get the following two auxiliary functions.

f̄ k (x) = f (x)+ 〈γ k ,Ax〉 +
Lx
2
‖x − xk‖2

+〈x − xk ,∇xg(xk , yk )+ βAT (Axk + Byk )〉; (7)

h̄k (y) = 〈γ k ,By〉 +
Ly
2
‖y− yk‖2 +

β

2
‖Axk+1 + By‖2

+〈y− yk ,∇yg(xk+1, yk )+∇h(yk )〉. (8)

Utilizing the two auxiliary functions above, the update
rules are summarized in Algorithm 1. Note that the x and
y update rules in Algorithm 1 can be simplified into the
following form

xk+1 = prox f /Lx

{
xk −

1
Lx

[
∇xg(xk , yk )+ AT γ k

+βAT (Axk + Byk )
]}
;
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Algorithm 1 Two-Block Linearized ADMM Algorithm

Initialize x0, y0, γ 0.
while max{‖xk − xk−1‖, ‖yk − yk−1‖, ‖γ k − γ k−1‖} > ε

do
xk+1 = argmin x f̄

k (x)
yk+1 = argmin y h̄

k (y)
γ k+1 = γ k + β(Axk+1 + Byk+1)
k = k + 1

end while
return (xk , yk , γ k )

yk+1 =
(
Ly + βBTB

)−1 (
Lyyk −∇yg(xk+1, yk )−∇h(yk )

−BT γ k − βBTAxk+1
)
.

The subproblem in updating x is formulated into a proxi-
mal problem, which can be easier to solve than the original
subproblem and even have closed form solution [56]. The
matrix inversion in the y-updating step can be computed
beforehand, so we do not need to compute it in every iteration.

B. CONVERGENCE ANALYSIS
We give convergence analysis for Algorithm 1 under
Assumption 1. Note that in this part, we refer Lβ to the
augmented Lagrangian function defined in (5). To begin with,
we show that Lβ and the primal and dual residues are able to
converge in the following theorem.
Theorem 1: For the linearized ADMM in Algorithm 1,

under Assumption 1, if we choose parameters Lx , Ly, and β
as follows

Lx ≥ Lg + βLATA + 6L2w + 1,

Ly ≥ Lw + L2w + 3,

Cm =
Ly + L2w

2
,

β ≥ max

{
Lw + Ly + 2

λBTB
,
3(L2w + L

2
y )

λBTBCm
,
3L2y
λBTB

}
, (9)

where LATA is the largest eigenvalue of ATA, λBTB is
the smallest eigenvalue of BTB and Lw = Lg + Lh,
then {Lβ (xk , yk , γ k )} is convergent, and the primal residues
‖yk+1 − yk‖, ‖xk+1 − xk‖ and dual residue ‖γ k+1 − γ k‖
converge to zero as k approaches infinity.

Proof: We briefly introduce the structure of the
proof here and the detailed version is postponed to
Appendix VII-A.

First, we will prove that the descent of Lβ after the (k+1)th
iteration of x is lower bounded by ‖xk+1 − xk‖, the descent
of Lβ after the (k + 1)th iteration of y is lower bounded by
‖yk+1− yk‖, and the ascent of Lβ after the (k + 1)th iteration
of γ is upper bounded by ‖xk+1−xk‖, ‖yk+1−yk‖ and ‖yk−
yk−1‖. Then, wewill elaborately design an auxiliary sequence
and prove its monotonicity and convergence. Finally, based

Algorithm 2Multi-Block Parallel Linearized ADMM Algo-
rithm
Initialize x0, y0, γ 0.
while max{‖xk − xk−1‖, ‖yk − yk−1‖, ‖γ k − γ k−1‖} > ε

do
for i = 1, . . . ,K in parallel do
xk+1i = argmin xi f̄

k
i (xi)

end for
yk+1 = argmin y h̄

k (y)
γ k+1 = γ k + β(Axk+1 + Byk+1)
k = k + 1

end while
return (xk , yk , γ k )

on these conclusions, we will obtain the convergence of Lβ
and both the primal and dual residues.
Theorem 1 illustrates that the function Lβ will converge, and
the increments of x, y, and γ after one iteration, which are the
primal and dual residues, will converge to zero.
Corollary 1: For the linearized ADMM in Algorithm 1,

under Assumption 1 together with function g(x, y) degen-
erating to g(x), if we choose the parameters Lx , Ly and β
satisfying (9), then the generated dual variable sequence {γ k}
is bounded.

Proof: The proof is postponed to Appendix VII-B.
Theorem 2: For the linearized ADMM in Algorithm 1,

under Assumption 1, if we choose the parameters Lx , Ly,
and β satisfying (9), then the sequence {(xk , yk , γ k )} satisfies

lim
k→∞
∇γ Lβ (xk , yk , γ k ) = lim

k→∞
Axk + Byk = 0,

lim
k→∞
∇yLβ (xk , yk , γ k ) = 0,

and that there exits

d̄k ∈ ∂xLβ (xk , yk , γ k ) such that lim
k→∞

d̄k = 0.

Proof: The proof is postponed to Appendix VII-C.
Theorem 2 illustrates that as k goes to infinity, the left-hand-
side of the original linear constraint will converge to zero,
where the feasibility is reached, and the derivative of the
Lagrangian function with respective to primal variables will
converge to zero. In other words, the limit points of {(xk , yk )},
if exist, should be saddle points of Lβ , alternatively KKT
points to the original linearly constrained problem.
Corollary 2: For the linearized ADMM in Algorithm 1,

under Assumption 1 together with function g(x, y) degen-
erating to g(x), if we choose the parameters Lx , Ly, and β
satisfying (9), then the sequence {g(xk ) + f (xk ) + h(yk )} is
convergent.

Proof: The proof is postponed to Appendix VII-D.

C. MULTI-BLOCK PARALLEL LINEARIZED ADMM
In this part, we focus the multi-block optimization prob-
lem (6), which can be seen as a special case of problem (4),
where f (x) is further assumed to be separable across the
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blocks xi for i = 1, . . . ,K . This case is very common in
sparse recovery [52], dictionary learning [5], etc, where K is
usually very large due to the high dimension of data.We apply
Algorithm 1 to problem (6) and arrive at a multi-block lin-
earized ADMM, which can update blocks of variables in par-
allel even when they are coupled in the Lagrangian function.

To be specific, because of the linearization we use in the
x-updating step, the blocks x1, . . . , xK are decoupled in f̄ k (x),
so they can be optimized in parallel. In this case, we have
f̄ k (x) =

∑K
i=1 f̄

k
i (xi), where

f̄ ki (xi) = fi(xi)+ 〈γ k ,Aixi〉 +
Lx
2
‖xi − xki ‖

2

+
〈
xi − xki ,∇xig(x

k , yk )+ βATi (Ax
k
+ Byk )

〉
. (10)

Utilizing the auxiliary functions (8) and (10), the update rules
are listed in Algorithm 2. Similar to Algorithm 1, the updating
rules for x and y in Algorithm 2 can be simplified into the
following form

xk+1i = prox fi/Lx

{
xki −

1
Lx

[
ATi γ

k
+∇xig(x

k , yk )

+βATi (Ax
k
+ Byk )

]}
;

yk+1 =
(
Ly + βBTB

)−1 (
Lyyk −∇yg(xk+1, yk )−∇h(yk )

−BT γ k − βBTAxk+1
)
.

Because Algorithm 2 can be seen as a special case of Algo-
rithm 1, by replacing f (x) with

∑K
i=1 fi(xi) the theoretical

convergence analyses for Algorithm 1 can be directly applied
to Algorithm 2, so its convergence assumptions and results
remain the same.

IV. DISCUSSION
In this section, we give some discussion on our algorithms
and their possible applications.

A. PROXIMAL TERM
There are two main reasons why we use the proximal term
in our algorithms. Firstly, in the proof of Lemma 5 and 6, we
will show that the descent of the Lagrangian function from
updating primal variables is guaranteed due to the proximal
term, so we do not need to impose any more restriction on
f (or fi). Secondly, while we enjoy the benefits of variable
decoupling due to the linearization, the updates in each itera-
tion can be viewed as inexact solutions to the original ADMM
subproblems, and intuitively the proximal term controls this
inexactness so that the algorithm can converge.

B. TIME EFFICIENCY
As mentioned above, the updates in each iteration are solu-
tions to the linearized subproblems, not the original ADMM
subproblems, so intuitively more iterations would be needed.
However, the linearization also decouples the variables cou-
pled in the Lagrangian function, which reduces the time

cost of a single iteration due to parallel computation. As a
result, the time cost of the algorithm is determined by the
balance between the increase in number of iterations and the
acceleration from parallel computation. In Section V, we will
empirically demonstrate that the acceleration can overwhelm
the deceleration. Therefore, our algorithm can enjoy higher
time efficiency in comparison with other nonconvex ADMM
algorithms without linearization.

C. APPLICATION
In this part we present that the following general classes
of problems can meet the requirements in Assumption 1.
Consequently, our theorems guarantee the convergence of the
algorithms, if the problem belongs to one of the following
commonly encountered classes.

1) SPARSITY RELATE TOPICS
Assume that l(x) is a loss function satisfying the following
conditions.
• Lipschitz Differentiability: l is differentiable, and there
exits constant L such that ‖∇l(x1)−∇l(x2)‖ ≤ L‖x1 −
x2‖ for any x1, x2.

• Coercivity: l(x) tends to infinity as ‖x‖ tends to infinity.
Then the following general sparsity related problem can be
solved by our algorithm with convergence guarantee

minimize λ

N∑
i=1

F(xi)+ l(y− b)

subject to Ax − y = 0, (11)

where F(·) is some sparsity inducing function. For example,
F can be the `p-norm (0 ≤ q ≤ 1) or other nonconvex sparsity
measure. It is easy to verify that the above problem satisfies
Assumption 1.

2) INDICATOR FUNCTION OF COMPACT MANIFOLD
The indicator function of a compact manifold M is defined
as follows

τ (x) =

{
+∞ x /∈M,

0 x ∈M.

Remark 3: Consider the following general form of integer
programming, whereM is a finite subset of Z, and f is lower
bounded overM.

minimize f (y) subject to y ∈M. (12)

Integer programming is widely used in network design [57],
smart grid [58], statistic learning [59], and other fields [60].
Problem (12) can be converted to the following

minimize τ (x)+
(
f (x)− h(x)

)
+ h(y)

subject to x = y, (13)

where τ (x) is the indicator function of M, and function h
can be any nonzero Lipschitz function. It can be verified that
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problem (13) satisfies Assumption 1, if h is Lipchitz differen-
tiable. For a specific problem, function h can be appropriately
chosen so that the linearized subproblems are easy to solve.

V. NUMERICAL EXPERIMENT
In this section, we solve a nonconvex regularized LASSO by
Algorithm 2 and two other reference ADMM algorithms, in
order to show the convergence behavior of our method and
its advantage in run time brought by parallel computation.

In sparsity related fields, many works have hinted that
nonconvex penalties can induce better sparsity than the con-
vex ones (see, e.g., [61]–[63] etc). Our problem of inter-
est is an improvement over LASSO, where the traditional
l1-norm is replaced by a more effective nonconvex sparsity
measure [25]. The optimization problem is as the following

minimize λ

N∑
i=1

F(xi)+ ‖Ax − b‖2, (14)

where x ∈ RN is the variable, and A ∈ RM×N and b ∈ RM

are given. The function F is defined as

F(t) =

{
|t| − ηt2, |t| ≤ 1

2η ;

1
4η , |t| > 1

2η ,

where η > 0 is a parameter and F(t) is nonconvex and
nonsmooth.

By introducing y = Ax, problem (14) is rewritten as

minimize λ

N∑
i=1

F(xi)+ ‖y− b‖2,

subject to Ax − y = 0, (15)

where x and y are variables. To the best of our knowledge,
among the existing nonconvex ADMM algorithms, only the
Algorithm 1 in [26] (referred as Ref1 here), the Algorithm 3
in [28] (referred as Ref2 here), and our algorithm can be
theoretically guaranteed to converge for this problem.Wewill
compare the efficiency of these algorithms.

A. RUNNING TIME AND CONVERGENCE CURVE
In the experiment, we set N = 1024,M = 256, λ = 0.1, and
η = 0.1.MatrixA is a Gaussian randommatrix and vector b is
a Gaussian random vector. In order to simplify the procedure
of choosing parameters, matrix A is normalized by a scalar,
so that the largest eigenvalue of AAT is 1.
For our algorithm, the parameters are set according to

Theorem 1 as β = 12, Lx = 37, and Ly = 8, and
we implement the parallel computation by matrix multipli-
cation in MATLAB. For the reference algorithms, accord-
ing to Lemma 7 and Lemma 9 in [26] the parameter β in
Ref1 should be no less than 100, so we set it to be 100,
considering that the larger the β is, the slower the conver-
gence becomes. Similarly, according to Theorem 3.18 in [28],
we choose its parameters as L = 2 and β = 36 in Ref2. The
stopping criterion of all these methods are set as

max
{
‖xk − xk−1‖, ‖yk − yk−1‖, ‖Axk − yk‖

}
< ε. (16)

TABLE 2. Average CPU running time with parameters chosen by
theorems.

TABLE 3. Average CPU running time with best parameters.

We perform 1000 independent trials on MATLAB 2016a
with a 3.4 GHz Intel i7 processor, and the A and b in each
trial is generated randomly. The average CPU running time
is shown in Table 2. We can see that our algorithm enjoys
higher time efficiency in comparison with the other two
algorithms. In fact, the number of iterations of our method
is around two times the numbers of iterations of the reference
methods, while their computing time for every iteration is
around 7 times of ours. This corresponds with the analysis
in section IV-B.

Considering that the bounds on the parameters are not
the tightest in our paper and the two references [26], [28],
the parameters chosen in the above experiment may not be
the best for the three algorithms. Therefore, we scan the
parameters to find the best ones for every algorithm. For our
algorithm, the best parameters found are Lx = 1, Ly = 1,
and β = 0.5. For Ref1, the best parameter is β = 9.5, and for
Ref2 the best parameters are Ly = 2 and β = 5.5.We perform
1000 independent trials with the best parameters again, and
the average CPU running time is shown in Table 3. We can
see that our algorithm still enjoys higher time efficiency in
comparison with the other two algorithms.

Define the maximum variable gap as follows

max
{
‖xk − xk−1‖, ‖yk − yk−1‖, ‖Axk − yk‖

}
. (17)

The curves of the maximum variable gap during the iterations
in one random trial are plotted in FIGURE 1 which displays
that our algorithm converges with the fastest speed. Consid-
ering that the objective function in problem (14) is nonconvex
and it may have more than one saddle point, it is interesting to
see where the value of objective function converges to, so we
plot its convergence curve in one random trail in FIGURE 2,
where the parameters are set as the same as the ones in the
first experiment. We can see that Ref2 and our algorithm
converges to the same saddle point, while Ref1 converges to
another saddle point with a higher objective value. We repeat
the trial for 1000 times with both the theoretically chosen
parameters and the best parameters and always observe the
same phenomenon.

B. RECONSTRUCTION ERROR AND TIME COST
Now, let us consider a slightly different setting, where A is
still a Gaussian random matrix inRM×N consisting of entries
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FIGURE 1. Convergence curves of the maximum variable gap. The red,
blue, and black lines are our algorithm, Ref2, and Ref1, respectively.

FIGURE 2. Convergence curve of the objective function value. The red,
blue, and black lines are our algorithm, Ref2, and Ref1, respectively.

i.i.d. sampled from N (0, 1/N ), but

b = Ax∗ + z,

where x∗ is an unknown k-sparse vector, and z is an
unknown white noise consisting of entries i.i.d. sampled from
N (0, σ 2/M ) with σ 2/‖Ax∗‖22 = 10−3. In the experiment,
nonzero positions of x∗ are uniformly sampled from [N ], and
nonzero entries are i.i.d. sampled from N (0, 1/k).
We apply ref1, ref2, and our algorithm to reconstruct x∗

from A and b by solving the optimization problem defined in
(15) with λ = 10−3 and η = 1. The stopping criteria is set as

max
{
‖xk − xk−1‖, ‖yk − yk−1‖, ‖Axk − yk‖

}
< 10−6.

(18)

From the experiment we have learned that the reconstruction
error of these three algorithms is stable w.r.t. the choice of β,
Lx , and Ly, so we continue to use the best parameters found
in the previous experiment.

We perform 100 independent trials for each k ∈

{2, 4, 8, 16, 32, 64, 128, 256}. The results of the reconstruc-
tion errors defined as ‖x̂ − x∗‖2/‖x∗‖2 are shown in Table 4.
We can see when the sparsity of x∗ is smaller than 256, i.e.,
when the algorithms success, their reconstruction errors are

TABLE 4. Average reconstruction error (×10−3).

TABLE 5. Average CPU running time (seconds).

approximately the same, indicating that the linearization tech-
nique (or proximal operator) does not significantly change the
evolving trajectory of the variables, when the optimization
landscape is sufficiently benign and the linearized part is
smooth enough. We also provide the average CPU running
time in Table 5, which again demonstrates the high time
efficiency of our algorithm.

VI. CONCLUSION
In this work we study linearized ADMM algorithms for
nonconvex optimization problems with nonconvex nons-
mooth objective function. We propose a two-block linearized
ADMM algorithm that introduces linearization for both the
differentiable part in the objective and the augmented term,
and provide theoretical convergence analysis under Assump-
tion 1. Then we extend it to a multi-block parallel ADMM
algorithm which can update coupled variables in parallel and
render subproblems easier to solve, and the convergence anal-
ysis is still applicable. By arguing that Assumption 1 is not
only plausible, but also relatively broad compared with other
recent works on ADMM for nonconvex optimization, we
show that the algorithms and their convergence analyses are
general enough to work for many interesting problems such
as some sparsity related problems and integer programming.
In the numerical experiments, we show that the proposed
algorithm enjoys higher time efficiency than the reference
methods do, with parameters chosen according to theoretical
bounds and best values obtained by scanning.

VII. APPENDIX
In this section, all notations xk , yk , and γ k refer to the ones
in Algorithm 1 and Lβ refers to the augmented Lagrangian
function defined in (5).
Lemma 1: Suppose we have a differentiable function f1,

a possibly nondifferentiable function f2, and a point x. If there
exists d2 ∈ ∂f2(x), then we have

d = d2 −∇f1(x) ∈ ∂ (f2(x)− f1(x)) .

Proof: Firstly, by the definition of regular subgradient,
we have

f2(y) ≥ f2(x)+ 〈d2, y− x〉 + o(‖y− x‖). (19)
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Secondly, because function f1 is differentiable, we have

−f1(y) = −f1(x)− 〈∇f1(x), y− x〉 + o(‖y− x‖). (20)

Adding (20) to (19), we get

f2(y)− f1(y) ≥ f2(x)− f1(x)

+〈d2 −∇f1(x), y− x〉 + o(‖y− x‖),

which together with the definition of regular subgradient
leads to the conclusion.
Lemma 2: If h(y) is Lh-Lipschitz differentiable, then

h(y2)− h(y1) ≥ ∇h(s) · (y2 − y1)−
Lh
2
‖y2 − y1‖2, (21)

where s denotes y1 or y2.
Proof:

h(y2)− h(y1)

=

∫ 1

0
∇h(ty2 + (1− t)y1) · (y2 − y1)dt

=

∫ 1

0
∇h(s) · (y2 − y1)dt

+

∫ 1

0

(
∇h(ty2 + (1− t)y1)−∇h(s)

)
· (y2 − y1)dt,

where ∇h(·) defines the gradient of h(·). If we take s = y1,
then by inequality

‖∇h(ty2 + (1− t)y1)−∇h(y1)‖ ≤ Lh‖t(y2 − y1)‖

we have∫ 1

0
∇h(y1) · (y2 − y1)dt

+

∫ 1

0

(
∇h(ty2 + (1− t)y1)−∇h(y1)

)
· (y2 − y1)dt

≥ ∇h(y1) · (y2 − y1)−
∫ 1

0
Lht‖y2 − y1‖2dt

= ∇h(y1) · (y2 − y1)−
Lh
2
‖y2 − y1‖2.

Therefore, we get

h(y2)− h(y1) ≥ ∇h(y1) · (y2 − y1)−
Lh
2
‖y2 − y1‖2.

Similarly, if we take s = y2, we can get

h(y2)− h(y1) ≥ ∇h(y2) · (y2 − y1)−
Lh
2
‖y2 − y1‖2.

Lemma 3: Under Assumption 1, for any l > k , we have

‖γ l − γ k‖2 ≤
1

λBTB
‖BT (γ l − γ k )‖2,

where λBTB is the smallest eigenvalue of BTB.
Proof: By the γ -updating rule and the assumption

Im(A) ⊂ Im(B), for two integers l > k , we have

γ l − γ k =

l∑
i=k+1

β(Ax i + Byi) ∈ Im(B).

Because B ∈ Rn×q has full column rank, there exists R ∈
Rq×q,Q ∈ Rq×n such that R is invertible, QQT = In×n, and
BT = RQ. Noticing that Im(B) = Im(QT ), we get γ l − γ k ∈
Im(QT ). Thus, ‖γ l − γ k‖2 = ‖Q(γ l − γ k )‖2. Consequently,
we have

‖BT (γ l − γ k )‖2 = ‖RQ(γ l − γ k )‖2

≥ λRTR‖Q(γ
l
− γ k )‖2

= λRTR‖γ
l
− γ k‖2,

where λRTR denotes the minimum eigenvalue of RTR.
By the definition of R and Q, we have λBTB = λRRT .

Together with the common conclusion in linear algebra
λRTR = λRRT , we get λRTR = λBTB, which completes the
proof.
Lemma 4: Under Assumption 1, the following equality

holds for γ k+1, yk , and yk+1

BT γ k+1 = −∇yg(xk+1, yk )−∇h(yk )− Ly(yk+1 − yk ).

Proof: By calculating the derivative of h̄k (y) defined
in (8), we have

∇h̄k (y) = ∇yg(xk+1, yk )+∇h(yk )+ Ly(y− yk )

+BT γ k + βBT (Axk+1 + By).

Plug y = yk+1 into it, and by the y-updating rule we have

BT γ k + βBT (Axk+1 + Byk+1)

= −∇yg(xk+1, yk )−∇h(yk )− Ly(yk+1 − yk ). (22)

Besides, by the γ -updating rule, we have

BT γ k+1 = BT γ k + βBT (Axk+1 + Byk+1). (23)

By replacing the RHS of (23) with (22), we get

BT γ k+1 = −∇yg(xk+1, yk )−∇h(yk )− Ly(yk+1 − yk ).

Lemma 4 provides a way to express γ k+1 using yk and
yk+1, which is a technique widely used in the convergence
proof for nonconvex ADMM algorithms [26], [27].

Now we are ready to prove Theorem 1. We first give
bounds on the descent or ascent of the Lagrangian function
(2) after every update by using the quadratic form of the pri-
mal residual. Specifically, in the following, Lemma 5 presents
that the descent of Lβ is lower bounded after the x-updating
step, Lemma 6 shows that the descent of Lβ is lower bounded
after the y-updating step, and Lemma 7 demonstrates that the
ascent of Lβ is upper bounded after the γ -updating step.
Lemma 5: Under Assumption 1, the following inequality

holds for the update of x

Lβ (xk , yk , γ k )− Lβ (xk+1, yk , γ k ) ≥ C0‖xk+1 − xk‖2,

where C0 =
Lx−Lg−βLAT A

2 , and LATA denotes the largest
singular value of ATA.

Proof: By x-updating rule in Algorithm 1, we have

f̄ k (xk ) ≥ f̄ k (xk+1). (24)
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Plugging the definition of f̄ k in (7) into (24), we get

f (xk )− f (xk+1)+ 〈xk − xk+1, βAT (Axk + Byk )+ AT γ k 〉

≥ 〈xk+1 − xk ,∇xg(xk , yk )〉 +
Lx
2 ‖x

k+1
− xk‖2. (25)

Then we have

Lβ (xk , yk , γ k )− Lβ (xk+1, yk , γ k )

= f (xk )+ g(xk , yk )− f (xk+1)− g(xk+1, yk )

+〈γ k ,Axk − Axk+1〉

+
β

2
‖Axk + Byk‖2 −

β

2
‖Axk+1 + Byk‖2

= f (xk )+ g(xk , yk )− f (xk+1)− g(xk+1, yk )

+〈xk − xk+1,AT γ k 〉 + 〈xk − xk+1, βAT (Axk + Byk )〉

−
β

2
‖A(xk+1 − xk )‖2

≥ g(xk , yk )− g(xk+1, yk )+ 〈xk+1 − xk ,∇xg(xk , yk )〉

+
Lx
2
‖xk+1 − xk‖2 −

β

2
‖A(xk+1 − xk )‖2

≥
Lx − Lg − βLATA

2
‖xk+1 − xk‖2,

where the last inequality is from Lemma 2 and LATA denotes
the largest singular value of ATA.
Lemma 6: Under Assumption 1, the following inequality

holds for the update of y

Lβ (xk+1, yk , γ k )− Lβ (xk+1, yk+1, γ k ) ≥ C1‖yk − yk+1‖2,

where C1 =
2Ly−Lω

2 and Lω = Lg + Lh.
Proof: According to that h̄k (y) is Ly-convex, by Propo-

sition 4.8 in [64] we have

h̄k (yk ) ≥ h̄k (yk+1)+
〈
yk − yk+1,∇h̄(yk+1)

〉
+
Ly
2
‖yk − yk+1‖2.

According to the updating rule of y, i.e., ∇h̄k (yk+1) = 0, the
above inequality is reshaped to

h̄k (yk ) ≥ h̄k (yk+1)+
Ly
2
‖yk − yk+1‖2. (26)

Denotewk (y) = g(xk , y)+h(y) and recall that g(x, y) and h(y)
are Lg and Lh Lipschitz-differentiable, respectively. We get
thatwk (y) is Lw Lipschitz-differentiable, where Lw = Lg+Lh.
Then by Lemma 2 we have

wk+1(yk ) ≥ wk+1(yk+1)+
〈
yk − yk+1,∇wk+1(yk )

〉
−
Lw
2
‖yk − yk+1‖2. (27)

Now we consider the descent of Lβ in y-updating step.

Lβ (xk+1, yk , γ k )− Lβ (xk+1, yk+1, γ k )

= wk+1(yk )− wk+1(yk+1)+
〈
γ k ,B(yk − yk+1)

〉
(28)

+
β

2
‖Axk+1 + Byk‖2 −

β

2
‖Axk+1 + Byk+1‖2. (29)

By plugging (27) into (29), we have

RHS of (29) (30)

≥

〈
yk − yk+1,∇wk+1(yk )

〉
+ 〈γ k ,B(yk − yk+1)〉

−
Lw
2
‖yk − yk+1‖2 +

β

2
‖Axk+1 + Byk‖2

−
β

2
‖Axk+1 + Byk+1‖2. (31)

By the definition of h̄k (y) in (8), we further derive

RHS of(31)= h̄k (yk )− h̄k (yk+1)+
Ly − Lw

2
‖yk − yk+1‖2.

(32)

By inserting (26) into (32), we finally reach

Lβ (xk+1, yk , γ k )− Lβ (xk+1, yk+1, γ k ) ≥ C1‖yk − yk+1‖2,

where

C1 :=
2Ly − Lw

2
. (33)

Lemma 7: Under Assumption 1, the following inequality
holds for the update of γ

Lβ (xk+1, yk+1, γ k+1)− Lβ (xk+1, yk+1, γ k )

=
1
β
‖γ k+1 − γ k‖2

≤ C2‖xk+1 − xk‖2 + C3‖yk+1 − yk‖2 + C4‖yk − yk−1‖2,

(34)

where Lw = Lg + Lh, C2 =
3L2w
βλBT B

, C3 =
3L2y
βλBT B

and C4 =

3(L2w+L
2
y )

βλBT B
.

Proof: By definition, the ascent of Lβ after the (k+1)th
iteration of γ is

Lβ (xk+1, yk+1, γ k+1)− Lβ (xk+1, yk+1, γ k )

=

〈
γ k+1 − γ k ,Axk+1 + Byk+1

〉
. (35)

By inserting the γ -updating rule in (35) and applying
Lemma 3, we have

Lβ (xk+1, yk+1, γ k+1)− Lβ (xk+1, yk+1, γ k )

=
1
β
‖γ k+1 − γ k‖2

≤
1

βλBTB
‖BT (γ k+1 − γ k )‖2, (36)

where λBTB denotes the smallest singular value of BTB.
By Lemma 4 and AM-GM Inequality we have

‖BT (γ k+1 − γ k )‖2

=
∥∥∇wk+1(yk )+ Ly(yk+1 − yk )−∇wk (yk−1)
−Ly(yk − yk−1)

∥∥2 (37)
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≤ 3
(
‖∇wk+1(yk )−∇wk (yk−1)‖2 + L2y ‖y

k+1
− yk‖2

+L2y ‖y
k
− yk−1‖2

)
, (38)

where wk (y) = g(xk , y)+ h(y) has been defined in the proof
of Lemma 6.

Because g(x, y) + h(y) is Lw Lipschitz differentiable,
we have

‖∇wk+1(yk )−∇wk (yk−1)‖2

= ‖∇yg(xk+1, yk )+∇h(yk )−∇yg(xk , yk−1)−∇h(yk−1)‖2

≤ L2w
(
‖xk+1 − xk‖2 + ‖yk − yk−1‖2

)
,

and together with (36) and (38) we have

Lβ (xk+1, yk+1, γ k+1)− Lβ (xk+1, yk+1, γ k )

≤ C2‖xk+1 − xk‖2 + C3‖yk+1 − yk‖2 + C4‖yk − yk−1‖2,

where

C2 :=
3L2w
βλBTB

, (39)

C3 :=
3L2y
βλBTB

, (40)

C4 :=
3(L2w + L

2
y )

βλBTB
. (41)

Then we design a sequence {mk}
+∞

k=1 by

mk = Lβ (xk , yk , γ k )+ Cm‖yk − yk−1‖2, (42)

where Cm is set according to (9) in Theorem 1. We will
first prove the convergence of {mk}

+∞

k=1 and then prove the
convergence of {Lβ (xk , yk , γ k )}.
Lemma 8: For the linearized ADMM in Algorithm 1,

under Assumption 1, if we choose the parameters Lx , Ly and
β satisfying (9), then the sequence {mk} defined in (42) is
convergent.

Proof:
1) Monotonicity of {mk}
By using Lemma 5, Lemma 6, and Lemma 7, we have

Lβ (xk , yk , γ k )− Lβ (xk+1, yk+1, γ k+1)

≥ Lβ (xk+1, yk , γ k )− Lβ (xk+1, yk+1, γ k+1)

+C0‖xk+1 − xk‖2

≥ Lβ (xk+1, yk+1, γ k )− Lβ (xk+1, yk+1, γ k+1)

+C1‖yk+1 − yk‖2 + C0‖xk+1 − xk‖2

≥ (C1 − C3)‖yk+1 − yk‖2 − C4‖yk − yk−1‖2

+(C0 − C2)‖xk+1 − xk‖2. (43)

By combining (43) with the definition of mk , we have

mk − mk+1 ≥ (C1 − C3 − Cm)‖yk+1 − yk‖2

+(Cm − C4)‖yk − yk−1‖2

+(C0 − C2)‖xk+1 − xk‖2. (44)

Recall the definition of C0, C1, C3, C4 and the parameters Lx ,
Ly, Cm, β we choose in (9), we get

C0 − C2 =
1
2
(Lx − Lg − βLATA −

6L2w
βλBTB

) ≥
1
2
,

(45)

C1 − C3 − Cm =
2Ly − Lw

2
−

3L2y
βλBTB

− Cm ≥
1
2
, (46)

Cm − C4 = Cm −
3(L2w + L

2
y )

βλBTB
> 0. (47)

Therefore, {mk} is monotonically decreasing.
2) Lower bound of {mk}
Next we will argue that {mk} is also lower bounded. By the

assumption Im(A) ⊂ Im(B), there exists y′k such that By′k =
−Axk , so we have

mk = g(xk , yk )+ f (xk )+ h(yk )+ 〈γ k ,B(yk − y′k )〉

+
β

2
‖B(yk − y′k )‖

2
+ Cm‖yk − yk−1‖2. (48)

By applying Lemma 4 to the third item in the RHS of (48),
we have

〈γ k ,B(yk − y′k )〉

= 〈BT γ k , yk − y′k 〉

= 〈−∇wk (yk−1)− Ly(yk − yk−1), yk − y′k 〉

=
〈
∇wk (yk )−∇wk (yk−1)− Ly(yk − yk−1), yk − y′k

〉
− 〈∇wk (yk ), yk − y′k 〉. (49)

By AM-GM Inequality, we bound the first item in the RHS
of (49)

〈∇wk (yk )−∇wk (yk−1)− Ly(yk − yk−1), yk − y′k 〉

= 〈∇wk (yk )−∇wk (yk−1), yk − y′k 〉

−Ly〈yk − yk−1, yk − y′k 〉

≥ −
1
2

(
‖∇wk (yk )−∇wk (yk−1)‖2 + ‖yk − y′k‖

2
)

−
Ly
2

(
‖yk − yk−1‖2 + ‖yk − y′k‖

2
)

≥ −
1
2

(
(L2w + Ly)‖y

k
− yk−1‖2 + (Ly + 1)‖yk − y′k‖

2
)
,

(50)

where the last inequality is from the Lipschitz differentiability
of wk (y).
Considering that B has full rank and ‖Bz‖2 ≥ λBTB‖z‖

2,
for all z, the fourth item in the RHS of (48) can be bounded
by

‖B(yk − y′k )‖
2
≥ λBTB‖y

k
− y′k‖

2, (51)

By plugging (49), (50), and (51) into (48), we get

mk ≥ Qk1 + Q
k
2,

where

Qk1 := g(xk , yk )+ f (xk )+ h(yk )− 〈∇wk (yk ), yk − y′k 〉
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+
1
2

(
βλBTB − Ly − 1

)
‖yk − y′k‖

2,

Qk2 :=
(
Cm −

Ly
2
−
L2w
2

)
‖yk − yk−1‖2.

If both Qk1 and Qk2 are lower bounded, the proof will be
completed. Let us first check Qk2. Recall the Cm and Ly we
choose in (9), we get

Qk2 =
(
Cm −

Ly
2
−
L2w
2

)
‖yk − yk−1‖2 = 0. (52)

For Qk1, recall the β and Ly we choose in (9) and we get

βλBTB ≥ Lw + Ly + 2, (53)

then by Lemma 2 we have

Qk1 ≥ g(xk , yk )+ f (xk )+ h(yk )− 〈∇wk (yk ), yk − y′k 〉

+
Lw
2
‖yk − y′k‖

2
+

1
2
‖yk − y′k‖

2

≥ g(xk , y′k )+ f (x
k )+ h(y′k )+

1
2
‖yk − y′k‖

2,

where g(xk , y′k ) + f (xk ) + h(y′k ) is lower bounded, because
(xk , y′k ) belongs to the feasible set. Therefore, {mk} is lower
bounded. Together with its monotonic decrease, we get {mk}
is convergent.

A. PROOF OF THEOREM 1
Recall in Lemma 8, we first prove that {mk} is monotonically
decreasing by

mk − mk+1 ≥ (C1 − C3 − Cm)‖yk+1 − yk‖2

+(Cm − C4)‖yk − yk−1‖2

+(C0 − C2)‖xk+1 − xk‖2,

and then prove that {mk} is lower bounded by

mk ≥ g(xk , y′k )+ f (x
k )+ h(y′k )+

1
2
‖yk − y′k‖

2, (54)

where y′k is defined by By′k = −Ax
k . Notice that y′k always

exists because of the assumption Im(A) ⊂ Im(B).
By the convergence of {mk}, ‖xk+1− xk‖ and ‖yk+1− yk‖

converges to zero. By the definition of {mk} and its con-
vergence, we readily get the convergence of Lβ (xk , yk , γ k ).
According to Lemma 7, ‖γ k+1 − γ k‖ converges to zero as
well.

B. PROOF OF COROLLARY 1
Recall (54) in the proof of Lemma 8. Because g(x, y)+f (x)+
h(y) is coercive over the feasible set with respect to y, if

{
y′k
}

diverges, then the RHS of (54) diverges to positive infinity,
which contradicts with the convergence of {mk}.

Because of the term 1
2‖y

k
− y′k‖

2 on the RHS of (54),
the boundedness of {yk} can be derived from the boundedness
of {y′k}.

In order to prove that {γ k} is bounded, we only need to
prove {γ k − γ 0

} is bounded. By Lemma 3, it is equivalent to
the boundedness of {BT (γ k − γ 0)} and further equivalent to

the boundedness of {BT γ k}. When function g(x, y) degener-
ates to g(x), by Lemma 4, we get

BT γ k+1 = −∇h(yk )− Ly(yk+1 − yk ),

which implies that the boundedness of {BT γ k} can be
deduced from the boundedness of {yk}.

C. PROOF OF THEOREM 2
1) LIMIT OF ∇γ Lβ
When k approaches infinity, we have

∇γ Lβ (xk+1, yk+1, γ k+1) = Axk+1 + Byk+1

=
1
β
(γ k+1 − γ k )→ 0.

2) LIMIT OF ∇yLβ
By Theorem 1 and Lemma 4, when k approaches infinity,
we have

∇yLβ (xk , yk , γ k ) = ∇yg(xk , yk )+∇h(yk )+ BT γ k

+βBT (Axk + Byk )

→ ∇yg(xk , yk−1)+∇h(yk−1)

+BT γ k + BT (γ k − γ k−1)

= −Ly(yk − yk−1)+ BT (γ k − γ k−1)→ 0.

3) LIMIT OF ∂xLβ
By x-updating rule, xk+1 is the minimum point of f̄ k (x),
which implies 0 ∈ ∂ f̄ k (xk+1). Therefore, by the definition
of f̄ k in (7) and Lemma 1, there exists dk+1 ∈ ∂f (xk+1) such
that

∇xg(xk , yk )+ dk+1 + AT γ k

+βAT (Axk + Byk )+ Lx(xk+1 − xk ) = 0. (55)

We further define

d̄k+1 := ∇xg(xk+1, yk+1)+ dk+1 + AT γ k+1

+βAT
(
Axk+1 + Byk+1

)
, (56)

which, one may readily check, satisfies

d̄k+1 ∈ ∂xLβ (xk+1, yk+1, γ k+1).

By Theorem 1, we have that the primal residues ‖yk+1− yk‖,
‖xk − xk+1‖ and dual residue ‖γ k+1 − γ k‖ converge to zero
as k approaches infinity, therefore

lim
k→+∞

d̄k+1

= lim
k→+∞

[
∇xg(xk+1, yk+1)+ dk+1 + AT γ k+1

+βAT (Axk+1 + Byk+1)
]

= lim
k→+∞

[
∇xg(xk , yk )+ dk+1 + AT γ k

+βAT (Axk + Byk )+ Lx(xk+1 − xk )
]
= 0,

where the last equality is from (55).

76142 VOLUME 7, 2019



Q. Liu et al.: Linearized ADMM for Nonconvex Nonsmooth Optimization With Convergence Analysis

D. PROOF OF COROLLARY 2
As k tends to infinity, by Corollary 1 and Theorem 2, we have
that γ k is bounded and Axk + Byk → 0. Then we have that

f (xk )+ h(yk ) = Lβ (xk , yk , γ k )− 〈γ k ,Axk + Byk 〉

−
β

2
‖Axk + Byk‖2

→ Lβ (xk , yk , γ k )− 0− 0 = Lβ (xk , yk , γ k ).

Therefore, the value of objective function will converge,
because Lβ will converge.
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