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ABSTRACT Gene regulatory network (GRN) could provide guidance for understanding the internal laws
of biological phenomena and analyzing several diseases. Ordinary differential equation model, which owns
continuity and flexibility, has been utilized to identify GRN over the past decade. In this paper, we propose
a novel algorithm, which is named as RNDEtree, a nonlinear ordinary differential equation model based on
a flexible neural tree to improve the accuracy of the GRN reconstruction. In this model, a flexible neural
tree can be utilized to approximate the nonlinear regulation function of an ordinary differential equation
model. Multiexpression programming is proposed to evolve the structure of a flexible neural tree, and the
brainstorm optimization algorithm is utilized to optimize the parameters of the RNDEtree model. In order
to improve the false-positive ratio of this method, a novel fitness function is proposed, in which sparse and
minimum redundancy maximum relevance (mRMR) terms are considered when optimizing RNDEtree. The
performances of our proposed algorithm can be evaluated by the benchmark datasets from the DREAM
challenge and real biological dataset in E. coli. The experimental results demonstrate that the proposed
method could infer more correctly GRN than the other state-the-art methods.

INDEX TERMS Gene regulatory network, flexible neural tree model, ordinary differential equation, mutual

information, minimum redundancy maximum relevance.

I. INTRODUCTION

Research on gene regulatory network (GRN) could reveal
the complex life phenomena from the viewpoint of system,
and control the growth, heredity and variation of organ-
ism [1]-[3]. Due to rapid development in DNA microarray
and next-generation sequencing technologies, the enormous
gene expression data have provided the researchers lots of
opportunities for gene regulatory network inference with
computational and mathematical methods [4], [5].

Several methods have been devised to identify GRN,
including Boolean network [6], Bayesian network [7], dif-
ferential equation [8], Petri network [9], mutual informa-
tion [10] and so on. Boolean model needs to discrete gene
expression level, which could result in loss of information.
Bayesian network (BN) model could not consider dynamic
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and feedback loop, which are the most important features of
gene regulatory network. Dynamic Bayesian network (DBN)
model solves this problem, but DBN need to spend a lot
of time learning the conditional dependence relationships
(regulatory relationships among genes). Mutual informa-
tion (MI) is very simple, but it needs to assume that the
samples between different time points are independent, and
it could identify many indirect regulatory relationships and
the accuracy is not high. Petri nets could not reflect the
dynamic characteristics of networks. It is difficult to learn
large-scale gene regulatory networks. The system of ordinary
differential equation (ODE) belongs to a sophisticated and
well established class of methods, which could capture the
detailed GRN’s dynamics due to its continuity and flexibility.
The decoupled version of ODE could identify the regula-
tory relationships of each gene independently, which could
greatly reduce the time of learning ODE model and facili-
tate large-scale biology network inference. Thus ODEs have
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been mostly utilized to model biochemical networks [11].
The formal of ODE is divided into two classes. One is the
linear ODE. Linear differential equation is simple, contains
few parameters and needs few data. Wu et al. proposed a
sparse additive linear ODE model to model gene expression
data and infer GRN [12]. Gebert et al. proposed a system
of piecewise linear differential equations to infer GRN and
discrete approximation method of least squares was presented
to evolve the parameters [13]. GRN, however is a complex
system and has some characteristics, such as strong coupling,
random, time-delayed, strongly nonlinear, etc. To accurately
capture the properties of GRN, nonlinear ODE model were
proposed, such as S-system model [14]-[17]. Mazur et al.
reconstructed nonlinear differential equation model of gene
regulation using stochastic sampling and Hill-type functions
were added into the formal of ODE [18]. Dehghannasiri
et al. proposed intrinsically Bayesian robust (IBR) Kalman
filtering to optimize nonlinear ODE model for inferring a
Yeast cell cycle network [19].

As the classical and typical approaches, neural net-
work (NN) has been successfully and widely utilized to
GRN inference with several decades, including recurrent
neural networks (RNN) [20], recurrent Elman neural net-
works (RENN) [21] and neural fuzzy recurrent network
(NFRN) [22]. Compared with the traditionally fully con-
nected neural network, flexible neural tree (FNT) is more
flexible and easier to approximate the unknown complex
functions, and supports feature selection and over-layer con-
nections [23]. The ODE model inferring GRN contains
two parts: regulation function and the self-degradation part.
In order to capture well the nonlinear of GRNs and inte-
grate the advantages of ODE and NN, in this paper, FNT
model is proposed to approximate the regulation function,
namely ODE based on FNT (RNDEtree). Multi-expression
programming (MEP) and brain storm optimization (BSO)
algorithm are utilized to optimize the structure and param-
eters of RNDEtree model from expression data, respectively.

The characteristics and features of gene expression data
contain two types. On the one hand, the error of the exper-
imental equipment and the different operation processes
of the researchers, the gene expression data contain noise.
On the other hand, DNA microarray experiment can measure
the expression levels of thousands of genes at the whole
genome levels, and the scale of experiment is very small due
to experiment cost and time. The number of genes is much
larger than the number of experiments [24]. These factors
limit the effective constructing gene regulatory networks.
The minimum redundancy maximum relevance (mnRMR) was
proposed as a new feature extraction method to select impor-
tant genes from microarray gene expression data [25]-[26].
In this paper, a novel criterion function based on sparse and
mRMR terms is proposed to select the regulatory factors
for each target gene when searching the optimal RNDEtree
model. As a filtering method, sparse and mRMR terms could
reduce sharply the number of candidate regulatory factors for
each target gene.
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Artificial gene expression data from the DREAM3 chal-
lenge about Yeast and E.coli knock-out genes with size
50 and 100 and one real gene expression dataset about E.
coli downloaded from RegulonDB are utilized to test the
performance of our proposed algorithm. Results reveal that
our algorithm has the ability of identifying gene regulatory
network correctly.

Il. METHOD

A. RNDEtree MODEL

The ordinary differential equation model is a common
dynamic system and usually utilized to simulate the evolution
of biological macromolecules with time. In order to identify
gene regulatory network, an ODE can be utilized to represent
the regulatory relationships between each target gene and its
regulatory factors. The formal of one ODE is described as
follows:

dx;
B 1 s xn) — B 1)

dt

where x; is the express level of gene i, §; is the self-
degradation rate. fj(-) means the regulation function con-
taining linear, piecewise linear, pseudo linear (Sigmoid) and
nonlinear functions. The number of parameters and topology
in fi(-) determine the regulation strengths. To better model
regulation function, flexible neural tree model is proposed to
model the regulation function f;(-). The formal of ODE based
on FNT (RNDEtree) is described as Eq.(2) and in Fig. 1.

i _ Nt g )
% _ par g

dt 1 1544
4 _  FNT -gx,

1 = X13 X7 X111 X7 -ﬁx
I

dt \ i

5 X3 Xg X2 Xp
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FIGURE 1. The formal of differential equation model based on flexible
neural tree.

B. RNDEtree MODEL OPTIMIZATION

1) THE STRUCTURE OF FNT MODEL

The FNT model is a novel and flexible multi-layer feedfor-
ward NN proposed by Chen in year 2005, which could select
feature automatically and connect by over-layer style [27].
In this model, the input variables, the number of layers, the
structure of each layer and output variables could be created
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FIGURE 2. A flexible neuron operator (left) and an example of FNT model
(right).

randomly with function symbol set F and terminal symbol
set T, which are described as follows:

F ={4+2,+3,..
T ={x1,x,..

-+
., Xt

3)

where +; (i = 2, 3, ..., N) can be treated as a function
symbol and represents the addition of i input numbers. x;(i =
1,2, ..., n)isaterminal symbol. An example of FNT model
is depicted in Fig. 2. The function node as a flexible neuron
model (see Fig. 2) could be calculated as follows.

i
e = ZW,‘ X Xj. (4)
Jj=1

Ci—4i\2

0i = f(ai. bi,ep) = ¢ )

where x; is the input variable, w; is the weight and f(-) is the
activation function.

2) STRUCTURE OPTIMIZATION OF FNT MODEL
Multi-expression programming (MEP) is a structure-based
swarm evolutionary algorithm proposed by Oltean. Com-
pared to genetic programming (GP), each chromosome of
MEP is linearly encoded, contains multiple solutions and
achieves code reuse [28]. So MEP has been widely applied
in many areas, such as image processing [29], bioinformat-
ics [30], and time series prediction [31].

In MEP, each chromosome includes multiple genes. The
length of chromosome is equal to the number of genes. Each
gene contains three parts: gene label, function symbol or
terminal symbol and gene pointers of operands. Chromo-
some could be created randomly according to the prede-
fined function symbol set ' and terminal symbol set 7. The
symbol of the first gene in a chromosome must be terminal
symbol. The symbols of the other genes could be selected
randomly from F and T. If function symbol is selected,
the pointers of the function operands are created randomly.
This paper utilizes MEP to search the optimal FNT structure
of RNDEtree model. Suppose that function symbol setis F' =
{+2, 43, +4}, terminal symbol setis T = {x1, x2, x3, X4, X5},
and the number of genes is set as 8. FNT structures could be
encoded as the chromosome of MEP, which is represented
in Fig. 3. Each gene could be decoded into a FNT model,
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FIGURE 3. An example of the chromosome for representing FNT
structures in MEP.
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FIGURE 4. The tree structures of all genes of the chromosome in MEP.

which is described in Fig. 4. Each gene is a candidate FNT
model. The fitness values of all genes in a chromosome are
calculated, and the best fitness value is selected as the fitness
value of the chromosome.

In order to search the best structure of FNT, the following
genetic operators are utilized [31].

(1) Selection. Binary tournament selection is utilized to

select the better chromosomes to the next generation.
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(2) Crossover. According to crossover probability p., two
parent chromosomes are chosen. The partial genes
of two parents are exchanged in order to create two
offsprings.

(3) Mutation. According to mutation probability p,,,
the symbol of each gene of parent chromosome may be
changed by another symbol selected randomly. After
mutation, the symbol of the first gene must be a
terminal symbol.

3) PARAMETER OPTIMIZATION OF RNDEtree MODEL

Brain storm optimization (BSO) is utilized to search the best
parameter set of RNDEtree model, containing weights (w;),
activation function parameters (a;, b; ) and self-degradation
rate ( B; ). BSO is a novel swarm intelligence algorithm
based on human brain storming process, which was presented
by Shi in year 2011 [32]. In this algorithm, the population
is divided into K classes and the individuals in each class
are optimized. By mutation operation, local search is imple-
mented in order to obtain the local optimal solution of each
class [33]. The global optimum solution is searched through
inter-class collaboration. The process of BSO optimizing the
parameters of RNDEtree model is depicted in Algorithm 1.

C. FITNESS FUNCTION

In order to search the optimal RNDEtree model by evolution-
ary method, mean square error (MSE) is employed as fitness
function in this work.

T
1 ,
Fi=— t}_lj (zir — 75)* (©6)

where z;; and z;.t are real and forecasted expression data of
t — th gene at t — th sample point, respectively.

Due to that GRN structure has the characteristics of spar-
sity and small-world network, the number of regulatory fac-
tors of each target gene is very small, which is very less
than the number of the candidate regulatory factors, so this
paper adds two filtering terms into MSE in order to reduce
the number of candidate regulators.

(1) L regularizer

With the L; regularization term, the criterion function is
described as followed [34]-[35].

T
1 /
Fi = T I_E l (zir — Zil)z +a [|Wil. (N

where o ||W;|| is the sparse term, ||W;|| is L; regularizer of
weight parameter vector W; from i — th RNDEtree model,
and « is a sparse coefficient.

(2) Minimum redundancy maximum relevance (mRMR)

Generally mutual information (MI) could be utilized
to measure the regulatory relationship between two genes
in GRN, so this paper utilizes MI to compute relevancy and
redundancy among genes in order to select the regulators with
the maximum relevant and the minimum redundant for each
target gene.
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Algorithm 1 Pseudo Code of BSO Optimizing the Parame-
ters of RNDEtree Model
Define probability pq,
Count the number of parameters in RNDEtree model #;
Initialize N individuals [X|, X, ..., Xy] Xi = (', xi2,
..., X)) with the n dimension;
t=0;
while i < #,,,,; do
N individuals are divided into K classes;
fori=1;i<K;i++do
Calculate the fitness values of individuals in the
i-th class;
Sort the individuals in the i-th class according to
fitness values;
Central individual center; <— select the optimal
individual in the i-th class;
end for
r=rand(0,1);
if r < p; then
k < rand(1,K); // Select a class randomly;
centery < centery + Guassian(0, 1);
end if
fori=1;i<N;i++do
r-rand(1,4); // Select a kind of mutation method ran-
domly;
c1 < rand(1,K); // Select a class randomly;
¢r < rand(1,K);
if r == 1 then
Xpew < centere,;
else if r == 2 then
Xnew < select a individual from the C| class;

else if == 3 then
A =rand(0, 1); Xpew < A X centere; + (1 — X)x
center,;

else

a < select a individual from the c; class;
b < select a individual from the ¢, class;
A =rand(0, 1); X;op < A xXa+ (1 —A) x b;
end if
& < log Sigmoid (=) // k is the gradient X,y <
Xnew + € X Guassian(0, 1),
Compare the fitness values of X; and X,,.,, and retain
the best individual.
end for
end while

Relevant term RI is described as following [25], [36]:

1
Rij=—% " o 1 X). ®)

where 2; represents the candidate regulatory factor set of
i — th target gene, which includes m regulators. I1(X;, X;)
is MI value between gene i and gene j, which could be
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calculate as follows.
p(x,y)
pOp(©)

where p(x) and p(y) are the marginal probabilities of two
genes X and Y, respectively, p(x, y) is the joint probability
of gene X and gene Y.

Gaussian kernel probability density estimator is utilized to
estimate the marginal and joint probability, and MI can be
given as followed [10].

1(X,Y) = p(x, y)log €))

1 o)%cr%

where |C(X, Y)| is the determinant of the covariance matrix.
High MI value means that regulatory factor regulates target
gene with a large probability.

Redundant term Rd is described as following [25], [36]:

1
Rdi=—5 " o 1K X)). (11)

With the mRMR term, the criterion function is described as
followed.
| < N2
T 2 (@ie — z;)
Fo—_t= VAT 12
i | + Rl — Rd; +a [[Wi (12)
where Rl; and Rd; are relevant and redundant terms, respec-
tively.

D. FLOWCHART OF RNDEtree FOR GENE
REGULATORY NETWORK INFERENCE

(1) Suppose that gene expression data [Dy, Da, ..., Dy,]
contains m genes and each gene contains 7 time points
(D; = [D,-l , D%, ..., D?]). The regulatory relationships
of each gene could be inferred by RNDEtree model
independently. At first gene number i is set as 1, which
means that regulatory relationships of the first gene will
be inferred.

(2) Create the learning sample dataset. Gene expression
data D; of gene i is set as output data, while gene
expression data [D1, Da, ..., Dj_1,Diy1, ..., Dy] of
other genes are set as input vector. With the learning
sample dataset, a hybrid evolutionary algorithm is uti-
lized to optimize RNDEtree model, which is described
as follows.

1) Initialize the RNDEtree population containing FNT
structures and the corresponding parameters.

2) The fitness values of RNDEtree population are calcu-
lated by Eq.(12). If the optimal RNDEtree model is
achieved, go to Step (3).

3) MEDP is used to evolve the FNT structure in RNDEtree
model. At some generations, BSO is used to evolve the
parameters of RNDEtree model. Go to step 2).

(3) According to the optimal RNDEtree model, regula-
tory relationships of gene i are identified. If gene j is
contained in RNDEtree model, gene i is regulated by
gene j.
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4) i=1i+ 1.Ifi < m, goto step (2); otherwise goto (5).
(5) The regulations of all genes are integrated in order to
obtain overall GRN.

Ill. EXPERIMENTS

A. DATA AND CRITERIONS DESCRIPTION

The proposed method is applied to four artificial datasets
from the DREAM3 challenge about Yeast and E.coli knock-
out genes with size 50 and 100 [37] and one real gene
expression dataset from E. coli [38]. E.coli and Yeast
datasets in DREAM3 were supplied for accessing the advan-
tage and shortcoming of network identification algorithms.
These databases have been widely utilized as the benchmark
data sets of the GRN reconstruction methods assessment.
In DREAM3, Yeast and E.coli gene expression datasets with
network size 50 and 100 contain sample number 50 and 100,
respectively. The real GRN is from RegulonDB [38] (ver-
sion 8.2), and includes 3306 regulatory relationships among
177 regulatory genes and 1532 target genes, which have
been verified by biochemistry experiments. The expression
data used in this experiment is downloaded from the Many
Microarrays M3D database [39] (Microbe), and the version
is version 4 build 6, which includes 907 experiments and
4297 genes.

True GRN
Positive Negative
Positive P FP
Inferred GRN
Negative
FN TN

FIGURE 5. TP, TN, FP, and FN.

In order to evaluate the performance of our proposed,
five criterions (true positive rate (TPR), false positive
rate (FPR), positive predictive value (PPV), Accuracy (ACC)
and F-score) are utilized, which are defined as followed.

TP
TPR = ——,
TP 4+ FN
FP
FPR = ,
FP+ TN
TP
PPV = ——,
TP + FP
TP +TN
ACC = )
TP+ FP+ TN + FN
TPR
F — score = 2PPV x ——. (13)
PPV + TPR

where true positive (TP), true negative (TN), false posi-
tive (FP) and false negative (FN) are calculated according
to Fig. 5 [40]. Regulatory relationships in GRN are marked
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as positive samples, while non-regulatory relationships are
marked as negative samples.

B. PARAMETER SELECTED

We first test different values of sparse coefficient o and
evaluate its effect on TPR, FPR, PPV, ACC and F-score.
In order to select proper value, the values of o are ranged
from [0, 0.05] at an interval of 0.005. The testing data are
from DREAM3 datasets about Yeast and E.coli knock-out
genes with size 50 and 100.

TABLE 1. Performance of our method with different values of « on Yeast
network with size 50 in DREAM3.

o TPR FPR PPV ACC F-score
0 0.63636  0.10957 0.15858  0.86245 0.25389
0.005 0.57143 0.077118 0.19383  0.89388 0.28947
0.01 0.48052  0.062368 0.2 0.90816 0.28244
0.015 0.48052 0.049305 0.24026  0.92082 0.32035
0.02 0.48052  0.046776  0.25 0.92327 0.32889
0.025 0.44156 0.041719 0.25564 0.92816 0.32381
0.03 0.38961  0.040877 0.23622  0.92898 0.29412
0.035 0.4026 0.037927  0.2562 0.93184 0.31313
0.04 0.37662  0.034556  0.26126  0.9351 0.30851
0.045 036364 0.045933  0.20438 0.920408 0.26168
0.05 0.33766  0.038768  0.22034  0.93102 0.26667

TABLE 2. Performance of our method with different values of « on E.colLi
network with size 50 in DREAMS3.

(04 TPR FPR PPV ACC F-score
0 0.66129  0.10637 0.13898 0.87102  0.22969
0.005 0.64516 0.064489 0.20619 0.91184 0.3125
0.01 0.56452  0.053183  0.22605 0.92286 0.3228
0.015 0.58065 0.044389 0.25352 0.93143  0.35294
0.02 0.5 0.04062 0.24219  0.9351 0.32632
0.025 0.58065 0.036851 0.29032 0.93878 0.3871
0.03 0.45161  0.034757 0.25225 0.94082 0.3237
0.035 0.43548 0.03392 0.25 0.94163  0.31765
0.04 0.51948  0.023639  0.19048 0.89918 0.27875
0.045 0.54545 0.022061 0.19718 0.89878  0.28966
0.05 0.46753  0.021061  0.17391 0.89878  0.25352

The results are listed in Table 1, Table 2, Table 3 and
Table 4. From the results, the conclusions are described as
followed.

(1) Sparse coefficient o plays an important role in the
performance of our proposed inferred algorithm. With the
increase of the sparse coefficient, the algorithm selects fewer
regulators, the ratio of true positive sides (TPR) is less, and
the ratio of the false positive sides (FPR) is also getting
smaller.

(2) By observing the results of F-score, it can be found
that the method performs better when the sparse coefficients
are selected from the range [0.005, 0.025]. Compared with
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TABLE 3. Performance of our method with different values of « on Yeast
network with size 100 in DREAM3.

(04 TPR FPR PPV ACC F-score
0 0.59036  0.052394 0.16118 0.93172 0.25323
0.005 0.48796 0.031642 0.20823 0.95212 0.29189
0.014 0.44578 0.024142  0.23948 0.95949 0.31158
0.015 0.40361 0.021368 0.24364 0.96222 0.30386
0.02 0.38554  0.019519 0.25197 0.96404 0.30476
0.025 0.36145 0.017875 0.25641 0.96566 0.3

0.03 0.34337 0.017773  0.24783 0.96576  0.28788
0.035 0.33735 0.016026 0.26415 0.96747 0.2963
0.04 0.29518  0.014999 0.25128 0.96848 0.27147
0.045 0.3313 0.015513  0.26699 0.96798 0.2957
0.05 0.31928  0.014794  0.26904 0.96869 0.29201

TABLE 4. Performance of our method with different values of « on E.coLi
network with size 100 in DREAM3.

(04 TPR FPR PPV ACC F-score
0 0.664 0.059028  0.12576  0.92909 0.21146
0.005 0.56 0.032737  0.17949  0.95505 0.27184
0.015 0.52 0.023325 0.22184  0.96434 0.311

0.02 0.42169 0.025478 0.22013  0.95818  0.28926
0.025 0.38554 0.021985 0.23022 0.96162 0.28829
0.03 0.38554 0.019519 0.25197 0.96404 0.30476
0.035 0.35542 0.018184 0.25 0.96535  0.29535
0.04 0.33735 0.016129 0.26129 0.96737 0.29551
0.045 0.34337 0.014896  0.28218 0.96859  0.30978
0.05 0.248 0.011049 0.22302 0.97646 0.23485

the results of the two kinds of networks, it can be seen that,
the number of genes has a little effect on performance.

Based on the above analysis, we choose the value of « as
0.015 for our following inference works, since it is the closest
number to the middle of the optimal range.

C. PERFORMANCE RESULTS

To test the validation of our method, LASSO [41], random
forest (GENIE3) with parameters ’sqrt’ [42], ARACNE [43]
and ODE [44] are also utilized to infer gene regulatory
network with the same data.

1) SIMULATED DATA

Yeast and E.coli gene expression data with 50 and 100 genes
in DREAM3 are utilized to evaluate our method. The inferred
results by LASSO, GENIE3, ARACNE, ODE and RNDEtree
are depicted in Fig. 6, Fig. 7, Fig. 8 and Fig. 9, respectively.
From Fig. 6, it can be seen that ARACNE algorithm has
the highest TPR, and our method has the smallest FPR,
the highest PPV, ACC and F-score for Yeast network with
50 genes inference. Fig. 7 shows that in terms of TPR, FPR,
PPV, ACC and F-score, our proposed method has the best
performance among these five methods for Yeast network
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FIGURE 6. Comparison of different methods on Yeast network with
size 50 in DREAM3.
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FIGURE 7. Comparison of different methods on Yeast network with
size 100 in DREAM3.
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FIGURE 8. Comparison of different methods on E.coli network with
size 50 in DREAM3.

with 100 genes inference. For the construction of E.coli
networks with 50 and 100 genes (Fig. 8 and Fig. 9), in terms
of FPR, PPV, ACC and F-score, our method performs best.
The TPR is second to GENIE3 method. In sum, most results
of our proposed method are superior to other comparison
algorithms.

2) REAL GENE EXPRESSION DATA

In this section, a sub network is extracted from real E. coli
network, which consists of 114 target genes, 127 regula-
tory factors and 227 regulatory relationships. Each target
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FIGURE 9. Comparison of different methods on E.coli network with
size 100 in DREAM3.
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FIGURE 10. The sub network structure.

gene contains two regulatory factors on average, which is
consistent with the characteristics of the main network. The
network structure is depicted in Fig. 10. Through several runs,
Table 5 lists the averaged performance of the networks using
five methods, which reveals that in terms of TPR, FPR, PPV,
ACC and F-score, our proposed method are all the best among
these five methods, which are 0.49123, 0.016632, 0.28283,
0.976903 and 0.35897, respectively. Although our method
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TABLE 5. Comparisons of different methods on networks with real gene
expression data.

TPR FPR PPV ACC F-score
RNDEtree 0.49123  0.016632 0.28283  0.976903  0.35897
GENIE3-sqrt 0.4386 0.01892 0.23256  0.96842 0.30395
[42]
ARACNE [43] 0.49123 0.020525 0.2383 0.96684 0.32092
ODE [44] 0.3524 0.02787 0.13821  0.96638 0.19855
LASSO [41] 0.30702  0.03096 0.11475  0.95654 0.16706

has the same TPR as ARACNE, FPR is 19 % smaller, PPV is
18.7 % higher, ACC is 1.04 % higher and F-score is 11.9 %
higher than those of ARACNE algorithm, respectively.

From the results of GRN inferred with simulation and real
expression datasets, it could be clearly seen that LASSO has
the lowest TPR, while ARACNE, GENIE3 and RNDEtree
have higher TPR. Because LASSO is based on the idea of lin-
ear regression and cannot simulate well complex regulatory
relationships, there are fewer real regulatory relationships
identified. ARACNE uses threshold to select the regula-
tory relationship with a high confidence. If the threshold
is low, more real regulatory relationships can be identified.
GENIE3 could get more real regulatory relationships due to
the idea of problem decomposition and ensemble. RNDEtree
utilizes the nonlinear differential equation model to simu-
late the complex regulatory relationships among genes, and
utilizes mRMR term to select regulatory factors with high
reliability, so TPR is also relatively high. Compared with
ARACNE and GENIE3, RNDEtree adds sparse term, which
could delete some redundant false-positive regulatory rela-
tionships. So RNDEtree has the smallest FPR among the five
methods, which is to mean that the identified regulatory net-
works contain the least false positive regulatory relationships.
Overall, RNDEtree has the largest F-score, so it could identify
more accurate gene regulatory networks.

Although ODE and RNDEtree are based on nonlinear dif-
ferential equation model, a novel criterion function (Eq. 15)
is utilized in RNDEtree. From the performances of ODE and
RNDEtree, it could be shown that RNDEtree performs better
in terms of TPR, FPR, PPV, ACC and F-score, which reveals
that our proposed criterion function plays an important role
in improving the accuracy of GRN inferred.

D. EFFECT OF SPARSE TERM

Table 1, Table 2, Table 3 and Table 4 show the effect of
sparse term on RNDEtree. When « is set as 0, it means
that RNDEtree has no sparse term. We chose the value of
o as 0.015 to compare with it. By comparison, we can
find that RNDEtree without sparse term can identify more
real regulatory relationships. After adding sparse term, FPR
decreases, but TPR also decreases, which indicate that sparse
term could delete some true-positive regulatory relation-
ships while deleting false-positive regulatory relationships.
As a compromise criterion between TPR and FPR, F-score
could be improved 20%-60% after adding sparse term.
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Although sparse term could delete some true-positive reg-
ulatory relationships, more false-positive relationships are
deleted to make the network structure more accurate. It is
necessary to add sparse term.

IV. CONCLUSIONS

In this work, flexible neural tree instead of the nonlinear reg-
ulation function of ordinary differential equation model for
gene regulatory network is built from gene expression data.
Multi expression programming and brain swarm optimization
algorithm are used to optimize the FNT structure and ODE
parameters, respectively. Moreover, a new fitness function
based on sparse and minimum redundancy maximum rele-
vance terms is proposed to improve the accuracy of GRN.
Experimental results reveal that our proposed method is better
than other state-of-the-art methods (LASSO, ARACNE and
GENIE3). From the results, it can be also seen that our GRN
inferred by our method has convincing TPR and the small-
est FPR. This is because that our proposed fitness function
could reduce the candidate regulatory set and FNT could
model well complex regulatory relationships and select auto-
matically the proper regulatory factors with gene expression
data. In future work, parallel technology will be introduced
to speed up the evolutionary process of RNDEtree model.
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