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ABSTRACT Prognostics and health management (PHM) is being adopted more and more in the modern
engineering systems. As one of the most important technologies in the PHM domain, remaining useful
life (RUL) prediction has attracted much attention from the researchers in the scholar and industrial field.
Although many methods have been proposed to improve the prediction result, the problem of sensor anomaly
detection and data recovery has not been considered together. To achieve this object, the data-driven RUL
prediction framework considering sensor anomaly detection and data recovery is proposed, which is expected
to improve the performance of RUL prediction caused by sensor anomaly. The selected sensor data are
first detected to decide whether they are anomalous. If the data of this selected sensor are normal, they
are continuously adopted as the input of the RUL prediction algorithm. But, if the data are anomalous,
they will be recovered by the related algorithm. The recovered data will be utilized as the input of the
RUL prediction algorithm. In the proposed framework, mutual information, Kernel principal component
analysis (KPCA), least square-support vector machine (LS-SVM), and Gaussian process regression (GPR)
are utilized. Both simulation data and practical data are used to evaluate the performance of the proposed
method. Compared with abandoning the anomalous sensor data, the recovered data can indeed help to
enhance the RUL prediction result.

INDEX TERMS Remaining useful life, mutual information, sensor anomaly detection, data recovery for

prognostics.

I. INTRODUCTION
To assess the system condition in advance, one promis-
ing technology is the Prognostics and Health Management
(PHM) [1]. Not only can the health of the system and criti-
cal components be assessed, but also the Remaining Useful
Life (RUL) can be achieved by appropriate methods [2].
Based on the information provided by PHM, the condition-
based maintenance can be realized. In this way, the system
life-cycle cost can be reduced and its availability can also
be improved. Therefore, PHM has become one of the most
promising researches in recent years [3]-[5].

In the research area of PHM, there are mainly two kinds
of methods, which are the model-based method and the
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data-driven method [6], [7]. To achieve precise and stable
prediction result, the model-based method is appropriate.
The reason is that the physical model can reflect the system
behavior accurately. However, the physical model of complex
system is not easily formulated [8]. Therefore, the model-
based method cannot be realized in many modern industry
systems. In contrast, the data-driven method which depends
on the condition monitoring data of the system is easier to
be implemented [9]. With the progress of sensor technology,
industry internet, internet of things, etc., more and more
sensing data of the monitored system are available. Hence,
the data-driven method has become the promising technology
for the engineering system.

Many data-driven PHM methods have been proposed
to improve the prediction result for different applications.
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To achieve better uncertainty, the model noises are adjusted
by the short-term prediction and correction loop, which also
has the advantage of less computation requirement [10].
Wang et al. [11] propose one kind of three-stage intelligent
method, in which the variation mode decomposition-based
trend detection and self-weight algorithm are both adopted.
Experimental results show that this method can be used to
implement monitoring adaptively. The deep belief network
has been adopted to enhance the monitoring result of analog
circuit and bearing, respectively [12], [13]. In addition, the
Accelerated Degradation Testing (ADT) can be utilized to
obtain sufficient data for system condition analysis [14], [15].
With the help of ADT, the RUL prediction result can be
enhanced at some degree.

As the traditional research subject, the related works about
the rotating machine are abundant. Li et al. [16] present a
comprehensive review on the related fuzzy formalisms to
diagnose the bearing fault. The novel convolutional neural
network and feature enhancement method are introduced to
improve bearing fault [17], [18]. Guo et al. [19] propose
one kind of hybrid model to realize the deep fault in the
rotating machine. The different fault size and position of the
bearing can be achieved by the vertical-horizontal synchro-
nized root mean square index [20]. The feature extraction of
bearing fault can be achieved accurately using the method
of time-frequency manifold sparse reconstruction [21]. The
long short-term memory (LSTM) recurrent neural network is
adopted successfully to evaluate bearing performance degra-
dation by utilizing the fault propagation information [22].
These works provide innovative methods mainly based on
signal processing. However, the original sensing data or sen-
sor anomaly are not considered.

On the theme of sensing data analysis, some works have
been implemented to select the most appropriate sensor data
or detect sensor anomaly for prognostics. The improved per-
mutation entropy is proposed to select the appropriate sensors
for RUL prediction in [23]. Take the aircraft engine as an
example, its condition monitoring data are detected to reach
better prediction result [24]. For the aerospace application,
the sensor anomaly detection is also important and should
pay attention to enhance its reliability [25]. For the unmanned
aerial vehicle, Guo et al. [26] propose one kind of fault
detection method based on the local regulated optimization
method. If the sensing data are affected by its anomalous or
fault condition, its output can be recovered to maintain a good
result [27]. Hence, it is important to consider the influence of
anomalous sensor data on RUL prediction result.

However, to the best of our knowledge, there is no data-
driven framework which has considered the sensor anomaly
detection and data recovery for RUL. Especially for the online
application scenario, the RUL prediction algorithm is run
continuously to assess the system condition. If one sensor
data become anomalous, it may bring serious influence on the
prediction result. To avoid this problem, we propose the data-
driven framework which detect and recover the target sensor
together for RUL prediction. If the target sensor data are
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normal, they will be continuously adopted as the input of RUL
prediction algorithm. If the target sensor data are detected as
anomaly, they will be recovered by other available sensors
data. Then, the recovered sensor data are adopted as the input
of RUL prediction algorithm. This proposed framework is
based on mutual information, Kernel Principal Component
Analysis (KPCA), Least Square - Support Vector Machine
(LS-SVM), and Gaussian Process Regression (GPR). Com-
pared with abandoning the anomalous sensor data, the result
using recovered sensor data is expected to be improved.

The remaining of this paper is arranged as follows.
Section II presents the proposed data-driven framework and
the related algorithms briefly. Section III introduces the uti-
lized data sets for the evaluation experiments. Section IV
gives the experimental results in detail. Section V draws the
conclusion and provides the future work.

Il. THE PROPOSED METHOD

In this section, the proposed data-driven framework consid-
ering sensor anomaly detection and data recovery is firstly
introduced. Then, the related theories are presented. Finally,
the metrics for measuring anomaly detection, data recovery
and RUL prediction are provided.

A. DATA-DRIVEN FRAMEWORK
The data-driven RUL prediction framework dealing with sen-
sor anomaly detection and data recovery is proposed, which
includes the sensor anomaly detection and data recovery. The
flowchart of the proposed framework is shown as follows.
In the above figure, the raw sensors data are acquired by
the employed sensors in the system. If the sensors data (i.e.,
S1,...,S,) which contain the system degradation information
can be selected and analyzed appropriately (i.e., S i, ey S,;1),
the relatively optimal RUL prediction result can be realized.
Howeyver, if one of those utilized sensors data for RUL
prediction becomes anomalous, the prediction result may be
influenced at some degree. In the proposed method, the target
sensor data will be detected to decide whether its data are
anomalous. As shown in Fig. 1, if the data are normal, they
are continuously utilized as the input of RUL prediction. If the
data become anomalous, they will be recovered. Then, those
recovered data with the other available sensors data (i.e.,

Sysees Sy 158, 1o+ Sy) will be utilized for the following

RUL preé]ictlion.

To implement the proposed method, some typical algo-
rithms for sensor anomaly detection, data recovery and RUL
prediction are essential. As illustrated in the framework, these
three kinds of algorithms are KPCA, LS-SVM, and GPR,
respectively. Some previous studies using these three algo-
rithms have proved their effectiveness for the corresponding
target. The details will be introduced in the following sub-
sections. To be specific, these three methods can be replaced
by other available algorithms for realizing relatively opti-
mal result. The merit of this framework is that RUL can
be run with acceptable prediction result in case of sensor
anomaly.
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FIGURE 1. Data-driven framework for system RUL prediction considering
sensor anomaly detection and data recovery.

B. MUTUAL INFORMATION

To analyze the correlation between two sensors data of system
condition, the quantitative indicator of mutual information is
utilized. Its definition is based on Shannon entropy theory.
Thus, how to get the Shannon entropy is firstly introduced.
If the variable is discrete, its Shannon entropy can be deter-
mined by [28]

N
— " pitx) log pi(x), ¢))

i=1

where p;(x) is the probability each variable element, and
N is the quantity of the discrete variable. The logarithm
base in (1) determines the unit of the Shannon entropy.
When the logarithm base is 2, the corresponding unit is
bit. When the logarithm base is e, the corresponding unit
is nat.

To calculate the mutual information between two sensors
data, one essential item is to get the conditional entropy
H (X|Y). Its definition is given by

m

HX|Y) =Y p(y)H XY =y)

j=1

=3 p Oy x)logp (nly). @

j=1 i=1
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Similarly, the H (Y |X) can be reached by the following
equation.

D P H(YIX =x;)

i=1

= Z ZP (xi, yj) log p (yjlx:) 3)

i=1 j=1

H (Y|X)

Based on the above definitions, mutual information can be
achieved by

I(X;Y) = HX) — HX|Y)

= H®Y)—-HYI|X)
px,y)

— 4

xEy p(x,y)log ——— prEwey 4)

The dependency among the aforementioned definitions is
demonstrated by Fig. 2.

H(X.Y)

H(X) H(Y)

FIGURE 2. Relationship among mutual information, entropy and
conditional entropy [27].

In this study, mutual information is used for measuring
the relationship between two sensors data. The reference data
for the target anomaly detection and recovery are determined
according to the numerical value of mutual information.

C. ANOMALY DETECTION ALGORITHM
As verified in our previous study [29], KPCA has the advan-
tage of realizing anomaly detection of the target sensor
data. For training data, they are firstly mapped into the
high-dimensional feature space. Then, Principal Component
Analysis (PCA) is adopted to construct the feature space.
For training data X,, = [x;x3...x,] € R™™ its sample
of data vector is x; € RmXI(lf i <n). The training data
are mapped by ¢: x € R™! — ¢(x) € F. In this way,
the target high-dimensional feature space is achieved. Then,
PCA can be used to determine the vector f for the following
transformation

t = (p)f. ®)

If ¢(x) has the features of mean centred and variance scale.
The corresponding optimization can be formulated by

1 n

2

n—1 Zti
i=1

1 n
— D (@) )
i=1

max Jgpca (f) =max

st fTf=1. (6)
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The vector f and ¢, = [t, 12, ..., t,]7 are loading vec-
tor and score vector, respectively. There are coefficients o;,
1 <j < n of the loading vectors, which are defined by

st fTf=1. (7

The optimization problem can be transformed by substitut-
ing (7) into (6), as given by

1 & -
max Jgpca (o) = max Z (P Z o (1))
i=1

n—14 ‘

st ()i O i) =1, ®)

i=1 i=1

where ¢ = [o1a2...0,] € R, Some available kernel
functions (e.g., sigmoid kernel, polynomial kernel, and radial
basis kernel) can be adopted.

D. DATA RECOVERY ALGORITHM

For data recovery of the anomalous sensor data, LS-SVM
regression is utilized. As evaluated in [27], LS-SVM
can achieve relatively acceptable result of data recovery.
By selecting the appropriate input of training data, the recov-
ered sensor data with better precision and stability can be
realized.

LS-SVM evolves from Support Vector Machine (SVM).
In the traditional research area, SVM is mainly adopted for
solving the regression problem. The inequal constraints of
SVM are transformed into the equality constraints and the
squared error becomes a loss function during the training
process. The details of this algorithm are described as follows.

The training data for the LS-SVM algorithm are denoted
by S = {(xi,y)li = 1,2,3,--- ,N},x; € R",)y; € R. x;
are input data and y; are the corresponding output data. The
optimal problem can be described by

. 1 1 N
minJ(w, §) = EwTw—i— E)/ Zk:l Eiz, 9

vi=wl p@)+b+&, i=1,2,3,---,N, (10)

where @(-) refers to nonlinear mapping function. b denotes
the bias and &; indicates the error. J(-) represents the loss
function. y refers to the adjustable constant. The mapping
function is adopted to determine the features from origi-
nal space. Then, training data are mapped into the high-
dimension feature space. Finally, the problem of nonlinear
regression can be solved.

Based on (9), the corresponding Lagrangian function can
be illustrated by

0 17 b 0
S |

=T T T
where 1 = [I1,1,---,1]", @ = [og,02, -+ ,ay]", and
K refers to the kernel matrix. The elements in K can be
expressed by

K (i, j) = k(xi, 5)) = ()" p(x)). 12)
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The widely utilized kernel function is the radial basis func-
tion, which is defined by

k(xi, x;) = exp(—[xi — x; /28%). (13)

By solving (9), in whichA = K + y’ll, the values of b and «
can be realized by

1741y
b= ==, 14
Tra-17 (1
a=A'y—b1). (15)

In this way, the regression function of LS-SVM can be
achieved by

0 =3 k(e x) +b. (16)

In this study, LS-SVM is adopted to reconstruct the data of
anomalous sensor using other available sensors data. Those
reconstructed sensor data will be utilized as the input of RUL
prediction algorithm. Compared with abandoning the anoma-
lous sensor data as the input of prediction algorithm, the pre-
diction result is expected to be improved at some degree.

E. RUL PREDICTION ALGORITHM

Many algorithms have been proposed to realize RUL pre-
diction of complex system. To summarize the related works,
some algorithms are to optimize the parameters of the algo-
rithm. Another kind of typical algorithm is to fuse dif-
ferent methods to achieve better prediction result. In this
study, we choose the well-known GPR algorithm to realize
RUL prediction, which has been widely adopted in different
scenarios.

GPR is based on the Gaussian Process (GP), which is one
kind of stochastic process. Many practical industrial appli-
cations can be formulated by GP. Therefore, GPR can also
be adopted to formulate the related problems. For the input
data D = {xn}fnv=1 ,x € R? the corresponding functions
f(x1),...,f(xny) are consisted of some random variables.
These random variables also comply with the joint Gaussian
distribution. The f(x1), ...,f(xy) are utilized to formulate
GP, which are illustrated by

J(x) ~ GP(m(x), k(xi, x})), a7

m(x) = E[f(x)], (18)

k(xi, xj) = E[(f (xi) — mQe)(f (xi) — m(x;)],  (19)

where m(x) and k(x;, x;) represent mean function and covari-
ance function, respectively.

For practical application, f(x) is influenced by noise,

as given by
y=r) +e, (20)

where ¢ € N (0, a,%) is white noise. The ¢ does not depend on
f(x). If f(x) is adopted for the model, the corresponding y is
also GP, as expressed by

y ~ GP(m(x), k(x;, xj + 6,8;)), 1)

where §;; refers to the Dirac function.
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The following assumptions are utilized to realize the
final calculation process. Let D1 = {x;, y,-}?;  and Dy =
{x}, yi}g\: | be training data and test data, respectively,
in which x;, x;" € R?. In the above illustration, the dimension
of data is represented by d. The mean vectors of training
data and test data are m and m*, respectively. The output of
test data is denoted by f(x,). y refers to the training vector.
Therefore, f,. and y comply with the joint Gauss distribution,
as given by

(/y) ~ <|:mi| (C(X,X)K(X, X*)> 22)
¥ my | T \K Xy, H)K(Xs, X))’

where the covariance matrix C(X, X) is derived from the
training data. C(X, X) = K(X, X)+ §;;/ is the corresponding
formulation and §;; is contaminated with noise. I € RNXN
refers to the unit matrix, K (X, X, ) indicates the covariance of
test data and K(X, X,) € RV*N" is the matrix which denotes

the covariance.
To achieve f, the following three equations are essential.

FelX, 3, Xo ~ N(f, cov(£), (23)
fe = E[filX.y. X,]

=m+ KX, X)CX,X)" 'y —m), (24)

cov(f) = KXy, Xo) — CX, X)7'K(X, Xy). (25)

By using m(x) and k(x;, x;), GP model can be fully for-
mulated. During RUL prediction in this study, the regression
capability of GPR algorithm is adopted, in which the mean is
set to be 0. To realize the covariance function, the neural net-
work is selected. In this way, the related hyperparameters in
the aforementioned functions can reach the relatively optimal
results.

F. RELATED METRICS

False Positive Ratio (FPR), False Negative Ratio (FNR) and
Accuracy (ACC) are widely adopted to measure the perfor-
mance of anomaly detection. Their definitions are illustrated
by the following three equations.

FN
FPR = — % 100% (26)
TP + FN
FNR = —— % 100% Q27)
FP+ TN
TP + TN
ACC = (28)

FP+FN +1TN + TP

In (26), FN refers to the amount of falsely detected normal
data and TP + FN denotes the quantity of all normal data
for implementing anomaly detection. Hence, FPR denotes the
ratio of normal data detected falsely. In (27), FP indicates the
amount of falsely detected normal data and FP+TN refers to
the total number of anomalous data for carrying out anomaly
detection. Therefore, FNR denotes how many anomalous data
are detected falsely. Using the aforementioned explanation,
the meaning of ACC can be understood that it denotes the ratio
of both normal data and anomalous data detected correctly.

58340

Relative Error (RE) and Root Mean Squared Error (RMSE)
are usually adopted to measure the performance of the data
recovery algorithm. These two definitions are given by

Ri—R;
1 % 100%, (29)
R

i

RE =

1 & A \2
RMSE = |~ >~ (Ri— k)" (30)
"

In the above two equations, R; is the real data and fi,-
denotes the corresponding recovered data. If the numerical
value of RE is smaller, the accuracy of recovered data at
different points is more excellent. If the numerical value of
RMSE is smaller, it implies that the stability of the whole
recovered data is more excellent.

Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE) are two well-known metrics for evaluating the per-
formance of RUL prediction, as defined by

N
1
MAE = ﬁ;w-m (1)

N
> (Pr — Re)?
k=1

RMSE = (32)

In (31) and (32), Pj denotes the predicted result, Ry refers
to the actual values, and N refers to the total cycle number.
If MAE and RMSE values are small, it means that the pre-
dicted result has better performance of accuracy and stability,
respectively.

IIl. DATA DESCRIPTION
In this section, the utilized simulation data and practical dat
for evaluating the proposed data-driven framework of RUL
prediction are introduced.

A. SIMULATION DATA SET

The PHM 2008 Conference challenge data which contain
the RUL information of aircraft engine are utilized [30].
Fig. 3 shows the structure of the aircraft engine, which
is mainly consisted of High-Pressure Compressor (HPC),
Low-Pressure Compressor (LPC), High-Pressure Turbine
(HPT), Low-Pressure Turbine (LPT), etc.

Fan Combustor LPT

LPC HPC

FIGURE 3. The simulated aircraft engine structure [31].
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To implement the simulation of the aircraft engine, the tool
of Commercial Modular Aero-Propulsion System Simulation
(C-MAPSS) is adopted. In C-MAPSS, both the open loop and
the closed loop can be realized. The connection of different
subsystems is given in Fig. 4.

2
N
°
Z
2
3
o

FIGURE 4. The simulated aircraft engine structure [31].

The engine has one kind of build-in control system. It is
composed of a fan-speed controller, a few regulators and a
few limiters, which are utilized to keep the aircraft engine
work under some certain limits. The typical sets in this simu-
lation environment has high similarity with the real scenario.
For sensing its condition, a number of 21 sensors are utilized
to sense its condition, as illustrated in Table 1.

TABLE 1. Sensors employed in the simulation [31].

Index  Symbol Description Units
1 T2 Total temperature at fan inlet °R
2 T24 Total temperature at LPC outlet °R
3 T30 Total temperature at HPC outlet °R
4 T50 Total temperature at LPT outlet °R
5 P2 Pressure at fan inlet psia
6 P15 Total pressure in bypass-duct psia
7 P30 Total pressure HPC outlet psia
8 Nf Physical fan speed rpm
9 Nc Physical core speed rpm
10 Epr Engine Pressure ratio -
11 Ps30 Static pressure at HPC outlet psia
12 Phi Ratio of fuel flow to Ps30 pps/psi
13 NRf Corrected fan speed rpm
14 NRc Corrected core speed rpm
15 BPR Bypass ratio -
16 farB Burner fuel-air ratio -
17 htBleed Bleed enthalpy -
18 Nf_dmd Demanded fan speed rpm
19 PCNIR dmd Demanded corrected fan speed rpm
20 W3l HPT coolant bleed lbm/s
21 W32 LPT coolant bleed lbm/s

Among these 21 sensors, only some sensors data contain
its degradation information. However, if one of sensors data
used for RUL prediction becomes anomalous, it may lead to
seriously wrong RUL prediction result. If these anomalous
sensor data are detected and dropped, the RUL prediction
result may also deviate from the actual value seriously.
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B. PRACTICAL DATA SET

The condition monitoring data of Flyable Electromechanical
Actuator (FLEA) is adopted in this study. This data set has
been utilized for some studies [32], [33]. Its structure is
illustrated in Fig. 5 in details.

Test actuators
Load actaator

Nut accekmmeters

Coupling magnets

guide rails -
FIGURE 5. The actual structure of FLEA [32].

In the FLEA, there are three types of actuators. The first
is the nominal actuator. The second is injected with faults.
The third is with dynamic load. This load can be switched
in two terms of the healthy condition and the faulty test.
There are 16 sensors deployed on the FLEA to sense its
condition. The specific descriptions of these sensors are given
in Table 2.

TABLE 2. The deployed sensors on FLEA [32].

Index Description Type Quantity
1 Load cell Omega LC703-150 1
2 Accelerometer Endevco 7253C 2
3 Thermocouple T type 4
4 Rotary encoder Ultramotion ESDIFF 2
5 po t;itlilsﬁe ter UltraMotion precision 1
6 Voltage Sensor custom 3
7 Current sensor custom 3

Similar to the simulation data set, only some sensors data
among these 16 sensors contain the degradation information
of FLEA. To avoid the influence of anomalous sensor data on
RUL prediction of FLEA, the effectiveness of the proposed
method is evaluated.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Both simulation data and practical data are utilized to evaluate
the proposed method in this section. Experimental results are
illustrated and discussed in detail, especially the comparison
experiments between RUL prediction with the recovered sen-
sor data and RUL prediction without the recovered sensor
data.
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A. EXPERIMENTAL RESULTS AND DISCUSSION OF
SIMULATION DATA SET

Based on our study in [23], the optimal RUL prediction
of the aircraft can be achieved by using seven-dimensional
sensing data. Those utilized sensors among the 21 sensors
are 3#, 44, 8#, O#, 14#, 15# and 17#. Therefore, the following
experiment will be carried out based on these seven sensors
data. By using (4), the mutual information of those 7 sensors
are summarized in TABLE 3.

TABLE 3. Mutual information of selected simulation data.

Sensor 3# 4# 8t o# 14# 15# 17#
3# 4.6740  4.0270 2.5950 4.0353 39717 4.1129 1.3478
4# 4.0270  4.6104 25964 3.9717 3.9009 4.0421 1.3529
8# 2.5950 2.5964 3.1496 2.5614 24906 2.6246 0.7188
o# 4.0353 39717 25614 4.6187 39092 4.0576 1.2321
14# 39717 39009 2.4906 3.9092 4.5479 39896 1.2506
15# 4.1129 4.0421 2.6246 4.0576 3.9896 4.6820 1.3368
17# 1.3478 13529 0.7188 1.2321 1.2506 1.3368  1.7409

To carry out the sensor anomaly detection, sensor 15#
is supposed to work in fault condition and its data are
anomalous. To achieve better anomaly detection result,
the cross-validation experiments of different mutual infor-
mation between other sensors data and sensor 15# data are
carried out to determine the reference sensors data for training
KPCA. when the reference sensors are 3#, 4# and 9#, the rela-
tively optimal anomaly detection can be achieved, as given in
Fig. 6. If Squared Prediction Error (SPE) of test data is larger
than that of the training data, these test data are detected as
anomaly data. Otherwise, they are detected as normal data.

0.5 I I I
—*— SPE of test data

0.4 SPE of training data ||

0.3

f[

0.1

SPE

T B e e P

-0.1
0 20 40 60 80 100 120 140 160 180

Current number/Cycle

FIGURE 6. Sensor 15# data anomaly detection by sensors 3#, 4# and 9#
data using KPCA.

In this experiment, all the detected sensor data are normal.
Thus, we adopt the FPR metric to analyze the experimental
result. FPR can reflect the ratio of normal data detected
falsely. Therefore, it can be adopted to measure the experi-
mental results of this anomaly detection result. In this exper-
iment, only 2 normal data are detected falsely. The total
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number of detected data is 179. Hence, the corresponding
FPR of this experiment is 1.12%.

In general, if the value of FPR is smaller than 10%, the
performance of the anomaly detection algorithm is excellent.
If its data become anomalous, they will be detected accord-
ingly. To verify the proposed data-driven framework, sensor
15# data will be recovered by sensors 3#, 4# and 9# data.

Experimental result of recovered sensor 15# data is shown
in Fig. 7.

i
—=— Real data
—+— Recovered data ||

*
=y
<

®
>

Sensor 15# data
o0
wn
wn

RN

A
=

*®
S
O
.

8.4
0 5 10 15 20

Current number/Cycle

FIGURE 7. Recovered sensor 15# data by sensors 3#, 4# and 9# data
using LS-SVM.

The recovered data curve is close to the real data curve.
Therefore, the performance of the data recovery algorithm
is relatively excellent. By numerical analysis, the maximal
RE, minimal RE and RMSE of the recovered data are 0.72%,
0.04%, and 0.02, respectively. Then, those recovered sensor
data are adopted as the input of RUL prediction. The predic-
tion result is given in Fig. 8.
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FIGURE 8. RUL prediction by sensors 3#, 4# and 94# data and the
recovered sensor 15# data using GPR.

To evaluate the experimental result in Fig. 8, the metrics
of MAE and RMSE are calculated. The corresponding values
of these two metrics are 4.14 cycles and 5.02 cycles, respec-
tively. If the anomalous sensor 15# data are not utilized as the
input of GPR, the RUL prediction result is illustrated in Fig. 9.

The values of MAE and RMSE in this experiment are
21.68 cycles and 25.74 cycles, respectively. Compared with
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FIGURE 9. RUL prediction by sensors 3#, 44#, and 9# data using GPR.

the two experimental results in Fig. 8 and Fig. 9, the recov-
ered sensor 15# data have directly positive influence on the
RUL prediction result. Therefore, the proposed data-driven
framework of RUL prediction with sensor anomaly detection
and data recovery has been verified by this simulation data
set.

B. EXPERIMENTAL RESULTS AND DISCUSSION OF
PRACTICAL DATA SET

Similar with experiments implemented using the simula-
tion data, the optimal RUL prediction of the FLEA can be
achieved by using four-dimensional data. The corresponding
sensor numbers are 3#, 8#, 11# and 13#. Therefore, the
following evaluation experiment will be carried out based
on these four sensors data. By using (4), the mutual infor-
mation of those 7 sensors are summarized in Mutual infor-
mation among these four sensors are calculated, as given in
TABLE 4.

TABLE 4. Mutual information of selected practical sensors data.

Sensor 3# 8# 11# 13#
3# 4.4603 3.9563 3.7208 2.1044
8# 3.9563 48122 4.0795 2.5104
11# 3.7208 4.0795 4.5835 2.2842
13# 2.1044 2.5104 2.2842 2.9037

In the following evaluation, sensor 8# data are supposed to
be anomalous. As the evaluation process in the above sub-
section, the cross-validation experiments from big mutual
information to small mutual information between other sen-
sors data and sensor 8# data are also implemented to select
the reference sensors data for training KPCA. The relatively
optimal detection result is illustrated in the following Fig. 10.
The corresponding reference sensors are 3# and 11#.

The total number of sensor 8# data detected is 78 and the
number of falsely detected data is 9. Thus, the value of FPR is
11.54%. Although this FPR is relatively large, the confidence
of anomaly detection can be regulated to a small value. Then,
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FIGURE 10. Sensor 8# data anomaly detection by sensors 3# and 11#
data using KPCA.
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FIGURE 11. Recovered sensor 8# data by sensors 3# and 11# data using
LS-SVM.

the sensors 3# and 11# data are adopted to recover sensor 8#
data. Experimental result is illustrated in Fig. 11.

By numerical analysis, the maximal RE, minimal RE and
RMSE of the recovered data are 9.05%, 0.24%, and 2.56,
respectively. The recovered data do not deviate from the real
data seriously. Those recovered sensor data are adopted as
the input of RUL prediction. The prediction result is given
in Fig. 12.
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FIGURE 12. RUL prediction by sensors 3# and 11# data and the
recovered sensor 8# data using GPR.
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To evaluate the experimental result in Fig. 12, the metrics
of MAE and RMSE are calculated. The value of MAE is
7.66 cycles and the value of RMSE is 9.81 cycles. Although
these two values are relatively large, the comparison experi-
ment which discards sensor 8# data for the RUL prediction
algorithm directly may have worse prediction result.

For the RUL prediction experiments without sensor 8#
data, the result is shown in Fig. 13.
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FIGURE 13. RUL prediction by sensors 3# and 11# data using GPR.

The values of MAE and RMSE in this experiment are
21.74 cycles and 25.95 cycles, respectively. The prediction
values of RUL deviate from the real values seriously. Com-
pared with the two experimental results in Fig. 12 and Fig. 13,
the recovered sensor 8# data also have directly positive influ-
ence on the RUL prediction result of FLEA. These experi-
mental results are similar with those of simulation data set.
Hence, the proposed data-driven framework of RUL predic-
tion is also verified by this practical data set.

C. COMPARISON ANALYSIS AND DISCUSSION

By observing the aforementioned experiments, it can be seen
that the whole framework can indeed bring positive effective-
ness for RUL prediction by recovering the anomalous sensor
data. Compared with discarding the anomalous sensor 15#
data as the input of RUL, MAE and RMSE of RUL prediction
result are improved 80.90% and 80.49% using the simulation
data set. For the practical data set, the recovered sensor 8#
data can improve the MAE and RMSE of RUL prediction
result 64.77% and 62.20%. Therefore, the proposed frame-
work can realize better accurate and stable prediction results
when the utilized sensor data are anomalous.

V. CONCLUSION AND FUTURE WORK

One kind of data-driven framework for RUL prediction
considering sensor anomaly detection and data recovery is
proposed in this study. The selected sensors data for imple-
menting the target sensor data detection and recovery are
based on the value of mutual information. Both the anomaly
detection and recovered data can reach relatively positive
result. For the RUL prediction, the recovered data can indeed
help to enhance the prediction result deeply. The effectiveness
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of this proposed framework is evaluated by both simulation
data and practical data.

The current study just considers the FPR metric in the
term of anomaly detection. In future, different kinds of sensor
anomaly detection will be implements, including bias, drift,
etc. On the other hand, different algorithms for anomaly
detection, data recovery and RUL prediction will also be con-
sidered in the proposed framework to extend its application
scenario.
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