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ABSTRACT A novel aero-engine control method based on deep reinforcement learning (DRL) is proposed
to improve the engine response ability. The Q-learning that is model free and can be performed online
is adopted. For improving the learning capacity of DRL, the online sliding window deep neural network
(OL-SW-DNN) is proposed and adopted to estimate the action value function. The OL-SW-DNN selects the
nearest point data with certain length as training data and is insensitivity to the noise. Finally, the comparison
simulations of the proposed method with the proportion–integration–differentiation (PID) that is the most
commonly used as an engine controller algorithm in industry are conducted to verify the validity of the
proposed method. The results show that, compared with the PID, the acceleration time of the proposed
method decreased by 1.525 s under the premise of satisfying all engine limits.

INDEX TERMS Aero-engine control method, response ability, deep reinforcement learning, on line, deep
neural network.

I. INTRODUCTION
When aircraft performs in some situations, such as landing,
take-off, aircraft overshoot and some emergency situations,
the engine is required quickly response from one working
state to another working state [1]–[3]. The less consumed
time during the transient process means the better engine
response performance. Therefore, how to improve engine
response ability is an important index during designing
engine control system. The most popular engine control
method is Proportional-Integral (PI), which has simple struc-
ture, strong robustness and convenience for adjustment [4].
However, the aero-engine is a multivariable, strong non-
linear, strong coupling relationship, time delayed and poor
working conditions controlled plant [5]. Therefore, the tra-
ditional control method - PI is hard to get the best response
ability [6].

In recent years, the control method based on Deep
Reinforcement Learning (DRL)that is model free, adopts
Deep Learning (DL) technology, and will obtain best
response performance as learning time goes on, which has
arouse the research interests of many researchers [7], [8].
Schuitema et al. [9] proposed a controller based onReinforce-
ment Learning (RL) algorithm for a passive dynamic walking
robot. Wang et al. [10] adopted Q-Learning algorithm to

choose the PD controller parameters for biped robot walking
on uneven surfaces. Ziqiang et al. [11] designed Q-Learning
controller based on Back-Propagation (BP) Neural Networks
to control 2D biped robot. Mnih et al. [12] presented deep
reinforcement learning based on convolutional neural net-
work and successfully learned control policies directly from
high-dimensional sensory input. Lillicrap et al. [13] proposed
an actor-critic, model-free algorithm based on the determin-
istic policy gradient that can operate over continuous action
spaces. Oh et al. [14] introduced a new set of RL tasks
in Minecraft (a flexible 3D world) and used these tasks to
systematically compare and contrast existing DRL archi-
tectures with new memory-based DRL architectures. The
above works and other works about the application of DRL
[15], [16] got great control effect. However, there are seldom
involved in the application of DRL to engine control.

Therefore, a new aero-engine control method based on
DRL is proposed here to enhance engine response ability.
This paper is organized as follows. In Section II, the con-
trol structures of the engine control system are given.
In Section III, the engine controller based on DRL is designed
firstly, and the On Line Sliding Window Deep Neural Net-
work (OL-SW-DNN) is proposed. In Section IV, to verify the
validity of the proposed method, the comparison simulations
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with the PID are carried out. In Section V, some conclusions
are given.

II. THE CONTROL STRUCTURE OF AERO-ENGINE
CONTROL SYSTEM
Figure 1 and Figure 2 give the control structures of the
traditional aero-engine control system and the proposed one
based on DRL respectively. They mainly consist of controller
method block, acceleration limits block, deceleration limits
block, MIN blocks and MAX blocks. The acceleration limits
block calculates the fuel flow while engine satisfies surge
margin limits of fan and compressor, rotor speed limits of
fan and compressor, the temperature limit of turbine inlet
temperature and the other physical limits. The target of decel-
eration limits block calculates the fuel flow to overcome
flameout phenomenon. The MIN and MAX blocks get the
maximum or minimum value of the inputs. The controller
block calculates the fuel flow to get desired thrust. The tra-
ditional engine control system always adopts Proportional-
Integral (PI) or Proportion-Integration-Differentiation (PID)
as control method. The reinforcement learning will make
engine more and more intelligent. For improving the learning
ability of RL, the Deep Neural Network (DNN) is adopted
to estimate action-value function of RL. Therefore, a new
controller based on DRL is proposed here to improve engine
response ability.

FIGURE 1. The control structure of traditional aero-engine control system.

FIGURE 2. The control structure of DRL controller for aero-engine.

III. THE ENGINE CONTROLLER BASED ON DEEP
REINFORCEMENT LEARNING
A. THE PRINCIPLE OF Q-LEARNING
Q-Learning is model free and selects the next action based
on Q table or DNNwithout estimating the control object. The
transient process of aero-engine is a strong nonlinear process.
Therefore, the Q-Learning is selected to update action value
functionQ(s, a), where s is engine state, a is an action or con-
trol input of engine. At j episode, with probability ε selecting
a random action aj otherwise selecting aj = max

a
Q(sj, a).

Then the updating rule of Q(s, a) can be described as:

Qj(s, a) =


(1− α)Qj(sj, aj)+ α[rj + γ
max
aj+1

Q(sj+1, aj+1)] for non-terminal st

rj for terminal st

(1)

where α is the learning rate, r is the reward, γ is the discount
rate, st is terminal engine state.

In order to make engine fast switch from a working state
to another one, the reward rk is calculated as following:

rj = [r(j)− r̂(j)]TQ[r(j)− r̂(j)]

+ [u(j)− u(j− 1)]TR[u(j)− u(j− 1)] (2)

where r̂ is measured or estimated value of control objective,
such as rotor speed, engine pressure ratio, u is control variable
vector (action a, fuel flow in aero-engine control), Q and R
are positive definite and symmetric. A larger value of Q will
make much faster response of the engine.

B. THE ON-LINE SLIDING WINDOW DEEP
NEURAL NETWORK
The DNN is a non-linear mapping for the multi-input multi-
output system [18], [19] and can be described as follow:

y = fDNN (x) (3)

where x is an input vector and y is an output vector. In order
to keep the engine dynamic characteristics and improve the
estimation precision of the DNN model, the input consists of
current and past fuel flowWfb, past the speed of fan rotor Nf ,
the speed of compressor rotorNc, the surgemargin of fan Smf ,
the surge margin of compressor Smc, and the inlet temperature
of high pressure turbine T41. And the output is action value
function Q(s, a). As shown in Eq.(4), the input and output of
DNN is:

x = [Wfb(j),Wfb(j− 1), · · · ,Wfb (j− m1) ;

Nf (j− 1),Nf (j− 2), · · · ,Nf (j− m2) ;

Nc(j− 1),Nc(j− 2), · · · ,Nc (j− m3) ;

Smf (j− 1), Smf (j− 2), · · · , Smf (j− m4) ;

Smc(j− 1), Smc(j− 2), · · · , Smc (j− m5) ;

T41(j− 1),T41(j− 2), · · · ,T41 (j− m6)]
y = Q(s, a)

(4)

Because the engine can be often simplified to an object
with two degrees of freedom, m1,m2, · · · ,m6 are all set
to 2 in this paper.

The structure of DNN is shown in Figure 3. The DNN
has deeper hidden layer than traditional neural network. The
increase of the hidden layers of DNN will improve the fitting
capacity of DNN. The each hidden layer of DNN is defined
as:

al+1 = Wlhl + bl (5)

hl+1 = σ (al+1) (6)
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FIGURE 3. The structure of DNN.

FIGURE 4. The principle of sliding window.

whereWl is weight matrix, bl is offset vector, σ is activation
function, hl (for l > 0) is the output of the l-th hidden layer,
l = 1, 2, · · · , nl , nl is the number of layers. Set h0i = xi,
i = 1, 2, · · · ,N , N is the size of the training set.
The traditional on-line deep neural network always only

selects one data point to computes gradient at each iteration,
which has better real time performance. Nevertheless, only
selecting one training point is sensitivity to the noise and
might not be a best direction choice. Therefore, in order to
improve the robustness of NN, as shown in Figure 3, the
OL-SW-DNN is proposed and applied to controller design.
The OL-SW-DNN selects the nearest point data of length L
as at each iteration of the training data. The loss function of
OL-SW-DNN is described as:

J1(W,b; x, y) = min
W,b

k+1∑
j=k−L

1
2

∥∥fDNN (xj)− yj
∥∥2 (7)

At each iteration,W, b is updated as follows:

W l
ij ← W l

ij + η∇W
l
ij (8)

bli ← bli + η∇b
l
i (9)

where η is the learning rate. As shown in Figure 5, the back-
propagation, which quickly solves the gradient of network
parameters, is applied to calculate ∇W l

ij and ∇b
l
i .

The gradients of W, b are calculated as:

∂J (W,b; x, y)

∂W l
ij

= hljδ
l+1
j (10)

∂J (W,b; x, y)

∂blj
= δl+1j (11)

FIGURE 5. The principle of Back-propagation algorithm.

where δl is:

δl =
[
Wl
]T

δl+1 ⊗
[
σ l
]′

(12)

where l = nnet , nnet − 2, · · · , 2, let ⊗ is Hadamard product,
x⊗ y = [x1y1, x2y2, · · · xnyn]T .

Suppose δ̄
nnet is

δnnet =
∂J (W , b; x, y)

∂annet
=
∂J (W , b; x, y)

∂h
nnet ⊗

∂h
nnet

∂annet

=
∂J (W , b; x, y)

∂h
nnet ⊗

[
σ nnet

]′ (13)

where nnet is the number of network layer.

IV. SIMULATION AND ANALYSIS OF THE
DRL CONTROLLER
In order to verify the effectiveness of the proposed method,
the comparison simulations of the PID and the proposed
method are conducted here. The engine acceleration pro-
cess is the strongest nonlinear process among the transient
process. Therefore, the acceleration process is selected as
simulation process of these twomethod. The engine operation
condition of these two method is the standard atmospheric
state at height H = 0km, Mach number Ma=0. The start-
ing point is the engine steady working state when power
level angle PLA=20◦. The ending point is the engine steady
working state when PLA=70◦. The simulation results of the
proposed method and the PID are as shown in Figure 6. The
parameters of engine in the Figure have been normalized.
Through debugging, the structure of OL-SW-DNN is chosen
as [13,15,12,10,10,1]. The decay parameter λ = 10−5. Learn-
ing rate α = 0.00002. Momentum factor η = 0.6. L = 25.

As shown in Figure 6(a), the times for thrust increases
to 95% thrust of the design point in proposed method and
PID are 3.7 seconds and 5.225 seconds respectively. It can
be easily inferred that the proposed method has much faster
than PID control method, and the acceleration time nearly
decreased by 1.525 seconds. The main reason is that the DRL
will learn experience from the history and make engine more
and more intelligent. Moreover, the OL-SW-DNN has strong
fitting capacity and let the proposed method has stronger
learning ability.

As shown in Figure 6(g), during the acceleration process
of the engine, the working points move along the surge
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FIGURE 6. The engine acceleration simulation of DRL and PID. a) The response of F. b) The control input
of Wfb. c) The response of T41. d) The response of Nf . e) The response of Nc . f) The response of Smf .
g) The response of Smc .

limit, which usually regarded as the fastest route in engine
theory. As shown in Figure 6(c)∼6(f), when the proposed
method is applied during the acceleration process of the
engine, the engine did not reach over-temperature, over-
speed or occur-surge. This demonstrates that the proposed
control method has high control precision and response
speed.

V. CONCLUSIONS
A new engine control method based on deep reinforcement
learning is proposed in this paper. For improving the control
effect of the proposed control method, the on-line sliding
window deep neural network is applied to fitting the action
value function. The engine acceleration simulations of DRL
and PID show that the proposed control method has much
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better response ability. Compared with the PID, the accelera-
tion time of the proposedmethod decreased by 1.525 seconds,
while the limits of engine are all satisfied during the acceler-
ation process.

APPENDIX
NOMENCLATURE
Symbol Explanation
H Height
Ma Mach number
PLA Power level angle
Wfb Fuel flow
F Engine thrust
T41 High pressure turbine inlet temperature
Nf Fan rotor speed
Nc Compressor rotor speed
Smf Fan surge margin
Smc Compressor surge marge
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