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ABSTRACT A new on-board turbo-fan engine modeling method based on a batch normalize (BN) mini-
batch gradient descent (MGD) deep neural network (NN) is proposed. This new method adopts BN
algorithm, which accelerates the network training speed and overcomes the gradient vanish problem. Hence,
using the BN algorithm, the neural network adopts the deeper structure, which means the network has a
stronger representation capacity. This mini-batch gradient descent (MGD-NN) algorithm that consumes
much less time to update the NN parameters is adopted. Therefore, it is more suitable for training big dataset
and establishing a high-accuracy engine model in a large flight envelope. Finally, to verify whether the
proposed method could be applied to larger flight envelope, the conventional NN also adopts MGD (called
MGD-NN). The turbo-fan engine models based on these two modeling methods are both conducted within a
sub-sonic cruise envelope. The simulation results show that the proposed modeling method has much higher
accuracy than the MGD-NN. Moreover, the proposed method has the characteristics of less data storage, low
computation complexity, and good real-time performance, which are the most importance indices for model
realize on-board.

INDEX TERMS Aero-engine model, batch normalize, deep neural network, turbo-fan on-board model,
mini-batch gradient descent, data storage.

I. INTRODUCTION
Aero-engine model always plays a key role in engine control
system design. If the necessary simulation is conducted in
the mathematic engine model, instead of real one, there will
be many advantages, such as reducing the costs of research
and development, decreasing the accident risks, moreover
shortening the development period [1]. For fully utilizing the
performance of the controlled plat, the modern aero-engine
control systems are always adopting model-based one as
reported in NASA Intelligent Engine Control (IEC) [2]–[4].
The modern advanced engine control methods such as Per-
formance Seeking Control (PSC) [5], Life Extending Con-
trol (LEC) [6] and Fault-Tolerant Control (FTC) [8], always
require an on-board enginemodel with high accuracy and real
time performance to track unmeasured parameters. Hence,
how to establish a high accuracy and real-time model for Full
Authority Digital Electronic Controller (FADEC) is the key
technology to realize modern control methods [9], [10].

The most popular on board aero-engine modeling method
is piecewise linear modeling. The main advantage of this
method is that it has well real-time performance [9]–[12].

However, cumulative errors that are caused by piecewise
process inevitably exist. Hence, a Support Vector Regres-
sion (SVR)modeling method was adopted to establish engine
models [13], [14].Unfortunately, the real time performance of
SVR will be increase rapidly along with the increase of train-
ing data. For a large fight envelope, it always sets up many
sub SVR models that will increase its data storage [14]–[20].

The Neural Network (NN), due to the ability of approxi-
mating nonlinear function and good real-time performance,
had attracted a lot of interests in engine modeling [21], [22].
However, the optimization method of conventional NN
always adopts Batch Gradient Descent (BGD) method [23],
which computes all the gradients of the entire training data
when updating the NN parameters. This method consumes
a lot of time and limits its application to huge training data.
Usually, the traditional NN is three layered neural network.
In order to increase accuracy of the predictive model, the con-
ventional NN should increase the node of hidden layer, which
will cause the NN overfitting. The researchers realize that the
increase of the hidden layers will greatly improve the model
fitting capacity and model precious [24].
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In addition, the multi-layers hidden layers extract the
attributive feature from low-level to high-level, which realize
feature extract automatically. However, how to train the deep
neural network is a main obstacle for its application.

Fortunately, Hinton in 2006 proposed Deep Belief Net-
works (DBNs), which uses the unsupervised learning pro-
cedure for restricted Boltzmann machines to pre-train one
hidden layer at a time. It is a novel and effective way to train
deep neural networks [25]. It reignites the research interest
in NN field. After that, a lot of breakthrough about Deep
Learning has sprung up. Such as, the error of object recogni-
tion had greatly decreased by using deep convolutional neu-
ral networks [26], [27]. Document [28] applied deep neural
networks to acoustic modeling in speech recognition, which
is the first major industrial application of deep learning.
Sutskever et al. [29] proposed sequence-to-sequence learn-
ing with neural networks and get a state-of-the-art machine
translation results. Faster R-CNN is proposed [30], which
realizes real-time object detection with region proposal net-
works. The BN (Batch Normalization), which is treated a
major breakthrough of the deep learning, was proposed [31].
This method could avoid gradient disappeared and gradient
overflow problem through normalizing the nodes of network
layer by layer. Moreover, the BN could accelerate neural
networks training speed about five to twenty times and could
play as regularization technology, which will improve the
generalization of the network.

For the optimization technology, a Stochastic Gradient
Descent (SGD) just computes the gradient information for
representative training point at each iteration [32]. It hasmuch
faster convergence speed than BGD and might be suitable for
huge data training. However, the SGD might be sensitivity
to the noise data and might not be the best decent direction
for only selecting one training. Hence, Mini-batch Gradient
Descent (MGD) which is a compromised between BGD and
SGD was proposed [32]–[34]. It cost less time for training
NN with big data than BGD and has better descent direction
than SGD.

Therefore, a new aero-engine on-board modeling method,
which adopts BN-MGD-DNN, is proposed here. Simulations
of MGD-NN proposed by Khan and Sahai [35] before and
the proposed modeling method are both carried out in a sub-
sonic cruise envelope. Compared to MGD-NN, the results
show that the proposed method has high precision and better
generalization.

II. THE PRINCIPLE OF BN-MGD-DNN
In this section, the details of the loss function, the struc-
ture, and the back forward algorithm of BN-MGD-DNN are
described.

A. THE LOSS FUNCTION OF BN-MGD-DNN
The Back Propagation (BP) algorithm is always used to train
NNs. NNs have variant loss functions. The most suitable loss
function is Summed Squared Error (SSE). For explaining the

advantages of BN-MGD-DNN, the cost functions of BGD
and SGD are also given as follows.

The loss function of BGD, which is commonly used by the
conventional NN, can be described as follows:

J (W,b; x, y) = min
W,b

N∑
i=1

1
2

∥∥h(xi)− yi
∥∥2 (1)

where x is an input vector, y is an output vector, N is the size
of training set, h(xi) is the output of the neural network of the
n-th hidden layer, W is weight matrix and b is offset vector.
From Eq. (1), it can be inferred that the SSE of BGD needs
to compute the whole training set to update NN parameters,
which is why the conventional NN has much computation
complexity and consumes longer time to train.

For the SGD NN, the loss function is defined as:

J (W,b; x, y) = min
W,b

1
2

∥∥h(xi)− yi
∥∥2 (2)

It can be inferred that the SGD calculates SSE only through
one training point. Hence, it cost less time to train NN.
However, its training result of NN is sensitive to noise data.

Hence, the MGDmethod is proposed [33], [34]. The train-
ing set of MGD is randomly divided into M batches with
same size Nb. The loss function of MGD can be defined as
following:

J1(W,b; x, y) = min
W,b

Nb∑
j=1

1
2

∥∥h(xbi,j)− ybi,j
∥∥2 (3)

where xbi,j is the jth input vector of batch bi, ybi,j is the
jth output vector of batch bi,

∑
bi = N , i = 1, 2, · · ·M ,⋃M

i
⋃bi

j xbi,j =
⋃N

i xi,
⋃M

i
⋃bi

j ybi,j =
⋃N

i yi. The loss
function of MGD is calculated by using the sub-training sets,
instead of the entire training set or one training point. That is
why the MGD costs less time to train NN than BGD, and has
much higher accuracy than SGD.

B. THE STRUCTURE OF BN-MGD-DNN
The BN-MGD-DNN is a non-linear mapping for multi-
input xi and multi-output yi system, where i = 1, 2, · · ·N ,
N is the size of the training set. The multi-layer
BN-MGD-DNN has more than three hidden layer, and each
hidden layer can be described as:

al+1 = Wlhl + bl (4)

āl+1 = g(al+1) (5)

hl+1 = σ (āl+1) (6)

where Wl is weight matrix and bl is bias (or offset) vector,
σ is activation function, h0i = xi is the input of the neural
net, hli (for l > 0) is the output of the k-th hidden layer, l =
1, 2, · · · nlayer , nlayer is the number of layers and g is Batch
Normalizing Transform.

The structure of BN-MGD-DNN and conventional DNN
are shown in Figure 1 and Figure 2. Compared with conven-
tional DNN, the proposed BN-MGD-DNN adds a BN layer
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FIGURE 1. The structure of DNN.

FIGURE 2. The structure of BN-DNN.

FIGURE 3. Sigmoid curve.

before the input of hidden layer note. The g is as follows:

âli,j =
ali,j − µB√
σ 2
B + ε

(7)

where ε is a very small positive number, and

µB =
1
Nb

Nb∑
j=1

ali,j (8)

σ 2
B =

1
Nb

Nb∑
j=1

(ali,j − µB)
2 (9)

Simply normalizing each input of a layer note may change
the network representation capacity. For instance, as shown
in Figure 3, if the activation function is sigmoid function, then
the normalizing will constraint the input to the linear regime
of the nonlinearity. To address this, for each activation, a pair
of parameters γ , β is introduced. These two parameters scale

and shift the normalized value:

āli,j = γ â
l
i,j + β (10)

where γ , β are learned as the original model parameters.
In addition, they could restore the representation power of the
network.

C. BACK-PROPAGATION ALGORITHM
The training method of neural network usually uses
genetic algorithm, particle swarm optimization [35], gradi-
ent descent method, conjugate gradient method, or quasi-
Newton method. Among them, the most popular one is
gradient descent method [36]. At each iteration for updating
the parameters, b, γ , β can be described as:

W l
ij ← W l

ij + η∇W
l
ij (11)

bli ← bli + η∇b
l
i (12)

γ li ← γ li + η∇γ
l
i (13)

β li ← β li + η∇β
l
i (14)

where η is the learning rate. Back-propagation is applied to
solve the gradient of network parameters. The principle of
back-propagation is shown in Figure 4. Supposing δ̄

nnet as:

δ̄
nnet
=
∂J (W,b; x, y)

∂ ānnet
=
∂J (W,b; x, y)

∂h
nnet ⊗

∂h
nnet

∂ ā
nnet

=
∂J (W,b; x, y)

∂h
nnet ⊗

∂h
nnet

∂ ā
nnet (15)

where nnet is the number of network layer, ⊗ is hadamard
product, that is x⊗ y = [x1y1, x2y2, · · · xnyn]T .

FIGURE 4. The principle of Back-propagation algorithm.

Supposing δl :

δl =
∂J

∂ali,j
=

∂J

∂ âli,j

1√
σ 2
B + ε

+
∂J

∂σ 2
B

2(ali,j − µB)

Nb
+

∂J
∂µB

1
Nb

(16)

where l = nnet , nnet − 1, · · · , 2, and

∂J

∂ âli,j
=

[
δ̄li,j

]′
γ li

∂J

∂σ 2
B

=

∑
j∈χk

∂J

∂ âli,j
(ali,j − µB)

−1
2

(σ 2
B + ε)

−3/2
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TABLE 1. The change range of model input.

∂J
∂µB

=

∑
j∈χk

∂J

∂ âli,j

−1√
σ 2
B + ε


+
∂J

∂σ 2
B

∑
j∈χk
−2(ali,j − µB)

Nb
(17)

Then for l = nnet − 1, nnet − 2, · · · , 2, δ̄
l
is available.

δ̄
l
=

[
Wl
]T

δl+1 ⊗
[
σ l
]′

(18)

Computing the desired partial derivatives which are
given as:

∂J (W,b; x, y)

∂W l
ij

= hljδ
l+1
j (19)

∂J (W,b; x, y)

∂blj
= δl+1j (20)

∂J (W,b; x, y)

∂γ li
=

∑
j∈χk

[
δ̄li,j

]′
âli,j (21)

∂J (W,b; x, y)

∂β li
=

∑
j∈χk

[
δ̄li,j

]′
(22)

III. ON-BOARD REAL-TIME ENGINE MODEL
Through the above discussion, the nonlinear mapping model
of BN-MGD-DNN could be establish as follow:

y = fBN−MGD−DNN (x)

where x is model input and y model output.
For different engine control method, such as PSC, model

predictive control, this on-board model input and output will
be different. In this paper, themodel is applied to performance
seeking control in the follow-up research. Hence, it selects
flight height H and flight Mach number engine and control
variables such as Ma, fuel flow Wfb, exhaust nozzle throat
area A8, the variable inlet guide vane of fan αf , the variable
inlet guide vane of compressor αc as the input. The output of
engine model chooses specific fuel consumption Sfc, engine
thrust F , fan rotor speed Nf , compressor rotor speed Nc, fan
surge margin Smf , compressor surge margin Smc and high
turbine inlet temperature T4

IV. BN-MGD-DNN MODELING AND SIMULATIONS
To verify the effectiveness of the proposed method,
an on-board engine model with a large flight envelope is set
up and validated. For comparison, the same simulation of the
popular modeling method MGD-NN [37], which could be

FIGURE 5. The training relative errors of BN-MGD-DNN.

FIGURE 6. The training relative errors of MGD-NN.

FIGURE 7. The testing relative errors of BN-MGD-DNN.

FIGURE 8. The testing relative errors of MGD-NN.

applied to big training data set, will also be utilized with a
same data samples set herein.

The engine model input ranges are shown in Table 1, where
Wfb,pla=30 is the fuel flow when power level angle Pla = 30◦,
Wfb,pla=70 is the fuel flow when Pla = 70. A8,ds is the
engine design point exhaust nozzle throat area. For ensuring
the predictive precision of the model, the CLM are fully
simulated in the large input set. The number of training set
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FIGURE 9. The curves of engine parameters when Pla = 70◦. (a) The curve of Nf . (b) The curve of Nc . (c) The curve
of T4. (d) The curve of Sfc . (e) The curve of Smf . (f) The curve of Smc . (g) The curve of F .

is 2,548,260, which means impossible training for support
vector machine. Moreover, the number of testing set is 3072.

Though debugging, the structures of BN-MGD-DNN
and MGD-NN are chosen as [6,8,10,10,8,7] and [6,40,7]

respectively. The mini-batch number is chosen as 3000. The
regulation parameter is λ = 10−8.

Figure 5 and Figure 6 give the training relative errors
of BN-MGD-DNN and MGD NN respectively. The relative
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error is defined as:

error =

∣∣∣∣ ỹ− yy
∣∣∣∣ (23)

where y is the real value and ỹ is the predictive value of
model. It can be inferred from Figure 5 and Figure 6 that
the training relative errors of BN-MGD-DNN are within 3%
and meet required precision. What’s more, the precisions
of BN-MGD-DNN are much higher than the precision of
MGD-NN. Especially the precisions of Sfc, Nf , Smf and Smc
are twice higher than the ones of MGD-NN. The testing
relative errors of BN-MGD-DNN and MGD-NN are shown
in Figure 7 and Figure 8. The errors of BN-MGD-DNN
are within 1% except the error of Smf , which within 3%.
Compared with MGD-NN, the errors of BN-MGD-DNN are
twice higher except T4. Figure 9 shows the predictive values
of engine parameters along with the change of Mach num-
ber when Pla = 70◦. It also shows that the predictive of
BN-MGD-DNN model are much better than MGD-NN.

Table 2 gives mean squared error (MSE) of MGD-NN and
BN-MGD-DNN. It can be inferred that the BN-MGD-DNN
has better training accuracy and testing accuracy than
MGD-NN. Compared with MGD-NN, the training MSEs of
BN-MGD-DNN decrease by 1.4, 2.17, 2.0, 1.3, 1.13, 2.4 and
2.8 time. The testing MSEs of BN-MGD-DNN are decrease
by 1.75, 2.0, 2.3, 1.3, 1.3, 2.3 and 3.3 time.

TABLE 2. The mean squared error (MSE) of MGD-NN and
BN-MGD-DNN(%).

TABLE 3. Comparison for BN-MGD-DNN and MGD NN.

Table 3 gives the data storage, computation complexity and
average testing time of MGD-NN and the proposed method.

The data storage ofMGD-NN is 567 (weights 520(6×40+
40× 7) + bias 47 (40+ 7)).

The data storage of the proposed method is 579 (weights
364 (6 × 8 + 8 × 10 + 10 × 10 + 10 × 8 + 8 × 7) + bias
43(8 + 10 + 10 + 8 + 7) + µB43(8 + 10 + 10 + 8 + 7) +
σ 2
B43(8+ 10+ 10+ 8+ 7)+ γ 43(8+ 10+ 10+ 8+ 7)+
β43(8+ 10+ 10+ 8+ 7)).

The computation complexity of MGD-NN is 614 (mul-
tiplication operation 520(6 × 40 + 40 × 7) + addition
operation 47 (40+ 7) + active function 47 (40+ 7)).

TABLE 4. Nomenclature.

And the calculate amount of BN-MGD-DNN is 622 (mul-
tiplication operation 407 (6× 8+ 8× 10+ 10× 10+ 10×
8 + 8 × 7 + 8 + 10 + 10 + 8 + 7) + division operation 43
(8+ 10+ 10+ 8+ 7)+ addition operation 86(8+ 10+ 10+
8+ 7+ 8+ 10+ 10+ 8+ 7)+ subtraction operation 43(8+
10+10+8+7)+ active function 43 (8+10+10+8+7)).
These two programs have the same testing running envi-

ronments: Windows 7 Ultimate with Service Pack 1 (×64);
Matlab 2016a; Intel i5-4590; the RAM is 8G. The test-
ing times of the MGD-NN and the proposed model mod-
eling method are 0.067 millisecond and 0.103 millisecond
respectively.

Therefore, compared to the conventional neural network –
MGD NN, the proposed modeling method has much higher
testing and training accuracy while maintain the character-
istics of low data storage, low computation complexity and
good real time performance. All of these performance indexes
are the most importance index to decide whether it can be
applied to be an on-board engine model modeling method.
Hence, the proposed method can be applied to establish an
on-board real-time engine model.

V. CONCLUSIONS
Through the simulation tests for on-board engine model with
the BN-MGD-DNN andMGD-NN, some conclusions can be
summarized. Through the introduction of mini-batch gradient
descent and L2 regulation, these two methods can be applied
to big training data and can be applied as modeling method
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in larger flight envelop. The proposed method has better
generalization performance than the conventional neural net-
work MGD-NN. The main reason is that the BN-MGD-DNN
has deeper layer and has stronger representation capacity.
As shown in the simulation results, the proposed modeling
method is more suitable for establishing an on-board real time
engine model.

APPENDIX
See Table 4.
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