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ABSTRACT RGB-D (red, green, blue, and depth) salient object detection aims to identify the most visually
distinctive objects in a pair of color and depth images. Based upon an observation that most of the salient
objects may stand out at least in one modality, this paper proposes an adaptive fusion scheme to fuse
saliency predictions generated from two modalities. Specifically, we design two-streamed convolutional
neural networks (CNN), each of which extracts features and predicts a saliencymap from either RGBor depth
modality. Then, a saliency fusion module learns a switch map that is used to adaptively fuse the predicted
saliency maps. A loss function composed of saliency supervision, switch map supervision, and edge-
preserving constraints are designed to make full supervision, and the entire network is trained in an end-to-
end manner. Benefited from the adaptive fusion strategy and the edge-preserving constraint, our approach
outperforms state-of-the-art methods on three publicly available datasets.

INDEX TERMS RGB-D salient object detection, switch map, edge-preserving.

I. INTRODUCTION
Salient object detection aims to automatically segment
regions that are the most attractive to human visual sys-
tems. It is class-agnostic and depends on the appearance
contrast between objects and backgrounds. This task is often
serve as a useful pre-processing step for various computer
vision applications such as image segmentation [1], per-
son re-identification [2], object localization [3] and track-
ing [4], and therefore has received considerable attention.
Although great progress has been made in this field, most
works [5]–[11] focus merely on color images. When objects
share similar appearances with their surroundings or present
with complex background, the algorithms based on color
images often fail to distinguish them as salient objects.

The above-mentioned challenges can be overcome to a
large extent if depth information is available. In recent
years, robust ranging sensors such as stereo cameras, RGB-D
cameras, and lidars make it easy to collect paired color
and depth images. (Here, RGB-D refers to the Red, Green,
and Blue channels of a color image plus an aligned
Depth image.) RGB-D saliency detection has consequently
been attracting more and more research interest. Published
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literatures made efforts on modeling depth-induced saliency
detection [12]–[14] and fusing multi-modalities [15]–[19].
However, most existing works [15]–[18] performed fusion
via either simply concatenating color and depth features,
or element-wise multiplication/addition of predictions gen-
erated by the two modalities. Such fusion strategies do not
explicitly model the complementarity of RGB and depth
modalities, leaving a room for performance improvement.

When observing objects in paired color and depth
images, we roughly classify scenes into four categories:
1) Objects have distinguishable appearances in both modal-
ities; 2) Objects have close depth values but distinguishable
color appearances with backgrounds; 3) Objects share sim-
ilar color appearances with backgrounds but have different
depth values; and 4) Scenes are cluttered in both color and
depth images, as shown in Fig. 1. For the first three sce-
narios, salient objects can be correctly detected at least in
one modality when using state-of-the-art single-model based
saliency detectionmethods. It implies that good results can be
obtained for these scenarios if an algorithm could adaptively
choose the predictions from one or the other modality.

Our work is inspired by the above-mentioned observation.
In order to adaptively fuse the complementary predictions,
we propose an end-to-end framework that consists of a two-
streamed convolutional neural network (CNN) and a saliency
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FIGURE 1. Typical scenarios in RGB-D saliency object detection. Here, Srgb denotes the result obtained by our RGB saliency prediction
stream, Sd is the result from our depth saliency prediction stream, and Sfused is the final saliency detection result. Switch map is the
map learned in our network for adaptive fusion. (a) RGB. (b) Depth. (c) Ground truth. (d) Srgb. (e) Sd . (f) Sfused . (g) Switch map.

fusion module to predict and fuse saliency predictions. Our
main contributions lie in the following three aspects:

• We design a two-streamed CNN to predict a saliency
map from each modality separately and propose a
saliency fusion module that learns a switch map to
adaptively fuse the predictions. A pseudo ground truth
switch map is constructed to supervise the learning so
that the learned switch map can predict the weights
for adaptively fusing RGB and depth saliency maps.
By this means, the complementarity in the multi-modal
predictions is explicitly modeled.

• We design an edge-preserving loss to obtain sharp
salient object boundaries and improve saliency detection
performance.

• The proposed approach is validated on three publicly
available datasets, including NJUD [12], NLPR [15],
and STEREO [20]. Experimental results show that
our approach consistently outperforms state-of-the-art
methods on all datasets.

Tomake our work reproducible, we release our source code at
https://github.com/Lucia-Ningning/Adaptive_Fusion_RGBD
_Saliency_Detection.

II. RELATED WORK
A. RGB SALIENCY DETECTION
Agreat number of RGB salient object detectionmethods have
been developed over the past decades [5]–[10], [21]–[24].
Traditional methods mainly rely on hand-crafted features
and commit to mining effective priors such as center
prior [5], contrast prior [6], [7], boundary and connectivity
prior [25]. Owing to the deep learning revolution, CNN-
based approaches have refreshed the previous records in
recent years. Multi-scale features are first extracted by mul-
tiple CNNs and concatenated together, and then they are fed
into a shallow network to predict saliency [8]. Whereafter,

two-branched networks [9], [10] were designed to capture
global and local context. In more recent years, deep hierarchi-
cal saliency networks (DHSNet) [23], short connections [11],
and even more complicated structures such as Amulet [26]
and agile Amulet [24] were developed to aggregate multi-
scale features progressively and predict saliency within end-
to-end frameworks. We adopt the progressive multi-scale
feature aggregation strategy in our unimodal saliency predic-
tion stream, but we keep the network as simple as possible.

B. RGB-D SALIENCY DETECTION
There are two major concerns existing in RGB-D saliency
detection: 1) how to model the depth-induced saliency; and
2) how to fuse RGB and depth modalities for achieving better
performance.

Regarding to the first problem, different features such as
anisotropic center-surround difference [12] and local back-
ground enclosure (LBE) [13] were designed to evaluate
saliency on depth maps. Global priors, including the nor-
malized depth prior and the global-context surface orien-
tation prior [14], were exploited as well. Although these
features and priors are particularly effective for depth saliency
detection, their performances are limited due to hand-crafted
designs and multi-stage models.

For the second problem, existing approaches perform
multi-modal fusion roughly at input, feature, or decision
levels. For instance, Peng et al. [15] directly concatenated
RGB and depth values and fed the 4-channel data into a
multi-stage model to produce saliency maps. Qu et al. [16]
extracted hand-crafted features from RGB-D superpixels and
input them into a shallow CNN for feature combination
and saliency regression. Considering that the distributions of
RGB and depth data are different, it is inadequate to feed
them together into the input for these one-steamed methods.
Han et al. [17] designed a two-streamed CNN to extract RGB
and depth features separately and then fuse them through a
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FIGURE 2. The overview of our framework for RGB-D salient object detection. A color image and an aligned depth image are,
respectively, fed into the RGB saliency prediction stream and the depth saliency prediction stream to get the uni-modal
saliency prediction map Srgb and Sd . They are further fused by the saliency fusion module to output the final saliency map
Sfused .

fully connected (FC) layer. Fusion in the above-mentioned
methods is conducted with a single path. In order to enable
sufficient fusion, amulti-scalemulti-path fusion network [18]
was developed, in which global RGB and depth features
were combined by a FC layer and local RGB and depth
features were concatenated directly. Saliency predictions in
both global and local branches were fused by element-wise
summation to generate the final saliency map. The FC layer
contains manymore parameters and the implicit fusion strate-
gies are insufficient to prevent noise from either of two
modalities.

All above-mentioned fusion methods do not explicitly
model the complementarity of RGB and depth modalities,
leaving a room for performance improvement. An excep-
tion is the work [19] developed very recently, in which
the complementarity is captured by learning residual maps
in complementarity-aware fusion (CA-Fuse) modules. The
RGB or depth features are element-wisely added with the
learned residual features and then concatenated together for
saliency prediction. In contrast to [19] that captures the com-
plementarity of features, our approach explicitly model the
complementarity between RGB and depth saliency predic-
tions. Moreover, in contrast to their cross-modal and cross-
level fusion process, our fusion is relatively simple but
achieves better performance.

III. THE PROPOSED METHOD
When a pair of RGB and depth images are given, we feed
them into a two-streamed network for saliency detection.
In each stream, features at different scales are progressively
aggregated and a saliency map, Srgb or Sd , is predicted based
upon unimodal information. In addition, the last layer of RGB

and depth features are concatenated to generate a switch map
SW. The switch map further explicitly guides the fusion of
Srgb and Sd to produce the final saliency map S fused . Fig. 2
illustrates an overview of the proposed framework.

A. UNIMODAL SALIENCY PREDICTION STREAM
A unimodal saliency prediction stream aims to predict a
saliency map based upon a single modal information. There-
fore, the design can be benefited from state-of-the-art archi-
tectures. Our stream adopts a U-Net-like [27] structure to
progressively aggregate multi-scale features for saliency pre-
diction. In contrast to previous saliency detection frame-
works [11], [23], [24], [26], our structure is less complicated.

Specifically, each stream is built upon the VGG-16
model [28] that contains 5 convolutional blocks. We drop
the last pooling layer and the fully-connected layers to better
fit for our task. Let us denote the outputs of each block
respectively, byA1,A2,A3,A4,A5. Each block also produces
a side output Fi by feeding Ai into two extra convolutional
layers and an up-sampling layer. The feature aggregation
strategy progressively fuses the feature Fi at scale i with the
fused feature F̃i+1 from scale i+1. In the end, a saliency map
S is predicted based on the aggregated feature F̃1. Mathemat-
ically, we formulate the procedures of feature extraction and
saliency prediction as follows:

Fi = u
(
g
(
g(Ai)

))
1 ≤ i ≤ 5, (1)

F̃i =

{
g([F̃i+1,Fi]) 1 ≤ i < 5
Fi i = 5,

(2)

S = h(Ws
∗ F̃1 + bs), (3)
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in which g(·) denotes the operations that consists of a
64-channel convolutional layer followed by a non-linear acti-
vation function ReLU. The kernel size of the convolution is
3×3 and the stride is 1. u(·) is an upsampling operation using
a fixed bilinear interpolation. [·, ·] represents a channel-wise
concatenation.Ws and bs are, respectively, the parameters of
the 1 × 1 kernel and the bias. ∗ represents the convolution
operator and h(·) is the Sigmoid function.

This stream structure is applied to predict RGB saliency
and depth saliency separately. The RGB saliency prediction
stream takes a 3-channel color image as input while the
depth stream inputs a 1-channel depthmap. Except the inputs,
these two streams share the same structure but with different
parameter values. In addition, it needs to be mentioned that
we drop the superscription rgb or d in Eq.(1-3) for notational
convenience.

B. SALIENCY FUSION MODULE
In contrast to previous RGB-D saliency detection works [15],
[18] that fuse multi-modal predictions by element-wise addi-
tion or multiplication, we design a saliency fusion module
that learns a switch map for adaptive fusion of the RGB
saliency prediction Srgb and the depth saliency predictions Sd .
This module first concatenates the last layer features of two
streams and then goes through a convolutional layer to learn
a switch map SW. In the end, a fused saliency map S fused is
obtained. All operations in this module are formulated by:

F̃sw = g([F̃rgb1 , F̃d1 ]), (4)

SW = h(Wsw
∗ F̃sw + bsw), (5)

S fused = SW� Srgb + (1− SW)� Sd , (6)

where F̃sw represents the 64-channel feature fusing two
modalities. F̃rgb1 and F̃d1 are, respectively, the features at
the last layer of the color and depth streams. Wsw and bsw

are the parameters of the corresponding convolutional layer.
� denotes the element-wise multiplication.
The design of the switch map is motivated by the observa-

tion mentioned in Sec. I. That is, good detection results are
achieved in most scenarios if the algorithm can automatically
choose the complimentary predictions from RGB and depth
modality. To this end, we construct a pseudo ground truth
switch map Ysw to guide the learning of SW. It is defined by

Ysw
= Srgb � Y+ (1− Srgb)� (1− Y). (7)

Ysw gets 1 if the RGB saliency prediction Srgb and the
ground truthY are both salient or nonsalient, and 0 otherwise.
It means that if Srgb correctly identifies salient objects, then
we choose the prediction from the RGB stream as the final
result; otherwise, the prediction from the depth stream is
chosen.

In implementation, the switch map is a 1-channel image
whose pixel values are assigned in [0, 1]. Therefore, instead
of alternatively choosing the prediction from one or the other
modality, the switch map plays a role to adaptively weight the

RGB and depth predictions, and therefore the fused saliency
map is a weighted sum of the two predictions.

C. LOSS FUNCTION
During training, a set of samples C = {(Xi,Di,Yi)}Ni=1 are
given, in which N is the total number of samples. Xi =

{xi,j}Tj=1 and Di = {di,j}Tj=1 are a pair of RGB and depth
images with T pixels. Yi = {yi,j}Tj=1 is the corresponding
binary ground truth saliency map, with 1 denoting salient
pixels and 0 for the background. Our network is trained
to generate an edge-preserving saliency map by learning a
switch map and fusing two unimodal saliency predictions.
Therefore, the loss function is designed to contain three
terms: a saliency loss Lsal , a switch loss Lsw, as well as an
edge-preserving loss Ledge. That is,

L = Lsal + Lsw + Ledge. (8)

1) Saliency Loss
There are three saliency maps produced in our network:
Srgb, Sd , and S fused .We use the ground truth to supervise each
of them. A standard cross-entropy loss is adopted to compute
the difference between predicted results and the ground truth.
Therefore, The saliency loss is defined by

Lsal = Lrgbsal + Ldsal + Lfusedsal , (9)

where

Lmsal = −
N∑
i=1

T∑
j=1

(
yi,j logSmi,j

+ (1− yi,j) log(1− Smi,j)
)
. (10)

Here, the superscript m denotes a modality that may be rgb,
d , or fused . Smi,j represents the probability predicted by the
modality m for pixel j in the i-th image to be salient.

2) Switch Loss
The switch map is supervised by the pseudo ground truth
Ysw constructed in Eq.(7). We use the cross-entropy loss to
penalize the learning of the switch map as well. The loss is
defined by:

Lsw = −
N∑
i=1

T∑
j=1

(
yswi,j logSWi,j

+ (1− yswi,j ) log(1− SWi,j)
)

(11)

where yswi,j is the j-th pixel of the pseudo ground truth switch
map for the i-th image. SWi,j represents the probability for
the pixel to choose the RGB prediction Srgbi,j .

3) Edge-preserving Loss
The edge-preserving property has been considered in previ-
ous RGB saliency detection works [26], [29] to obtain sharp
salient object boundaries and improve detection performance.
In contrast to these works that used superpixel boundaries as
constraints [29] or adopted short connections in network for
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FIGURE 3. Loss curves on training.

boundary refinement [26], we formulate the edge-preserving
constraint as a loss term supervising the fused saliency map.
It is defined by

Ledge =
1
N

N∑
i=1

(
||∂x(S

fused
i )− ∂x(Yi)||22

+ ||∂y(S
fused
i )− ∂y(Yi)||22

)
, (12)

where ∂x(·) and ∂y(·) are gradients in horizontal and vertical
direction respectively. This loss preserves edges by minimiz-
ing the differences between the edges in the fused saliency
maps and those in the ground truth maps.

D. IMPLEMENTATION DETAILS
Our approach is implemented based upon TensorFlow [30].
We adopt the VGG-16 model [28] as the backbone for a fair
comparison with previous works. All parameters except those
in VGG-16 are initialized via Glorot and Bengio [31]. Our
entire network is trained in an end-to-end manner using the
aforementioned loss function. The loss is optimized by the
Adam optimizer [32] with a batch size of 8 and a learning
rate of 10−4. All input images are resized to the resolution of
224× 224 for training and test. It takes 4 hours or so to train
our network on a single NVIDIA GTX 1080Ti GPU. Fig. 3
shows the training and validation loss curves and Fig. 4 shows
the mean F-measure curve on NLPR validation set. The test
time for each RGB-D image pair takes only 0.03s.

IV. EXPERIMENTAL RESULTS
A. DATASETS
To validate the proposed approach, we conduct a series of
experiments on three publicly available datasets: NJUD [12],
NLPR [15], and STEREO [20]. The NJUD dataset [12]
contains 2003 binocular image pairs collected from Internet,
3D movies and photographs. NLPR [15] consists of
1000 images captured by Kinect, covering a variety of indoor
and outdoor scenes under different illumination conditions.
STEREO [20] provides the Web links for downloading
stereoscopic images and a total of 797 pairs are gathered.

For a fair comparison to state-of-the-arts, we utilize the
same data split as in [17]. The training set contains 1400 sam-
ples from the NJUD dataset and 650 samples from NLPR.

FIGURE 4. Mean F-measure curve on NLPR validation set.

100 image pairs from NJUD and 50 image pairs from NLPR
are sampled to form the validation set. The test set consists
of the remaining data in these two datasets, together with the
full STEREO dataset. In addition, we augment the training
set by flipping all training samples horizontally.

B. EVALUATION METRICS
We adopt the precision-recall (PR) curves, the F-measure
score, and the mean absolute error (MAE) for performance
evaluation. These metrics are widely used in saliency detec-
tion tasks. The PR curves are plotted by binarizing a predicted
saliencymap using 255 thresholds equally distributed in [0, 1]
and comparing the binarized map with the ground truth. The
F-measure is a weighted harmonic mean of the precision and
recall, defined by

Fβ =
(1+ β2) · Precision · Recall
β2 · Precision+ Recall

. (13)

As done in previous works [17]–[19], β2 is set to be
0.3 for emphasizing the importance of precision. We com-
pare two kinds of F-measure scores, which are the maxi-
mum F-measure and the mean F-measure, respectively. The
maximum F-measure is the highest score computed by the
PR pairs in PR curves. The mean F-measure is computed by
using an adaptive threshold that is set to be the sum of mean
and standard deviation of each saliency map. The MAE [26]
measures the saliency detection accuracy by

MAE =
1
T

T∑
j=1

|Sj − Yj|. (14)

C. ABLATION STUDY
We first conduct experiments to validate the effectiveness of
the components in our proposed model. To this end, different
settings are considered: 1) the full model, denoted by ‘AF’;
2) the model without edge-preserving loss, denoted by
‘AF-Edge’; 3) the model without switch map and edge-
preserving loss, denoted by ‘AF-Edge-SW’; In this model,
we concatenate the features from two streams and feed them
into a 1× 1 convolutional layer to predict the fused saliency
map directly. 4) the model containing only the RGB saliency
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TABLE 1. The results for component analysis.

prediction stream, denoted by ‘Srgb’; and 5) the one contain-
ing only the depth stream, denoted by ‘Sd ’. Table 1 reports the
mean F-measure scores for these models on three datasets.

1) THE EFFECTIVENESS OF THE SALIENCY FUSION MODULE
The comparison of ‘AF-Edge-SW’ and ‘AF-Edge’ in Table 1
demonstrates the improvement in mean F-measure with our
saliency fusion module. The results in Fig. 1 illustrate the
fusion of Srgb and Sd visually. When Srgb correctly detects
the salient objects, as the scenarios shown in the first two
rows, our approach fuses more information from the RGB
predictions by highlighting most regions in the switch maps.
When objects share similar color appearances with back-
grounds but have different depth values, as shown in the
third row, our approach suppresses unreliable predictions in
Srgb by assigning low weights for these regions in the switch
map. Thus, more information from Sd are fused. As expected,
the proposed saliency fusion module can tackle these three
types of scenarios correctly.

2) THE EFFECTIVENESS OF THE EDGE-PRESERVING LOSS
With the edge-preserving loss, ‘AF’ achieves superior per-
formance to ‘AF-Edge’ as reported in Table 1. The results
in Fig. 5 illustrate that the saliency maps predicted by ‘AF’
can reduce the blur effect around objects’ boundaries when
the objects have similar appearances with the background.
In addition, the salient objects are detected more coherently
and completely with the edge-preserving constraint. The
superiority in both quantitative and qualitative comparisons
proves the effectiveness of this loss.

D. COMPARISON WITH THE STATE-OF-THE-ARTS
We further compare our full model with two traditional meth-
ods including GP [14] and LBE [13], together with three
CNN-based RGB-D saliency detection networks, including
CTMF [17], MPCI [18] and PCA [19]. The quantitative com-
parisons are reported in Table 2, Fig. 6, and Fig. 7. Qualitative
comparisons are demonstrated in Fig. 8.

1) QUANTITATIVE COMPARISON
As shown in Table 2, Fig. 6, and Fig. 7, the proposed method
outperforms other state-of-the-art methods in terms of all
evaluation metrics. Table 2 and Fig. 6 show that all deep
learning based approaches outperform traditional methods
by a great margin; and end-to-end frameworks, including
PCA [19] and our approach, are superior to multi-stage meth-
ods such as CTMF [17] and MPCI [18]. Moreover, bene-
fited from our fusion scheme and edge-preserving loss, the

FIGURE 5. Comparison of predictions with and without the
edge-preserving loss. (a) RGB. (b) Depth. (c) AF-Edge. (d) AF. (e) GT.

TABLE 2. Comparison of maximum F-measure and MAE.

FIGURE 6. Comparison of mean F-measure.

proposed method consistently improves the F-measure and
MAE achieved by PCA on all three datasets, especially on
NLPRwhere accurate depth data are collected by Kinect. The
results indicate that our model can fuse depth information
with RGB data more effectively.

2) QUALITATIVE COMPARISON
Fig. 8 provides a visual comparison between our model and
other approaches. For the typical scenarios that share the
similar appearance with the background, as shown in the first
two rows, the proposed method can better capture effective
information in depth data and localize the salient objects
accurately. The depth distributions in the third and fourth
rows are indistinguishable for the salient objects. Other meth-
ods fail to highlight complete and uniform salient objects
while our fusion strategy can avoid such depth confusions to
a great extent. Moreover, benefited from the edge-preserving
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FIGURE 7. Comparison of PR curves. (a) NJUD. (b) NLPR. (c) STEREO.

FIGURE 8. Visual comparison of saliency maps. (a) RGB. (b) Depth. (c) GP. (d) LBE. (e) CTMF. (f) MPCI. (g) PCA. (h) OURS. (i) GT.

FIGURE 9. Failed cases. (a) RGB. (b) Depth. (c) GP. (d) LBE. (e) CTMF. (f) MPCI. (g) PCA. (h) OURS. (i) GT.

loss, the proposed method preserves rich details and sharp
boundaries in comparison with the others as demonstrated in
the last two rows.

3) FAILED CASES
The proposed approach is capable of detecting salient objects
as long as the objects stand out in one modality. When objects
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are not distinguishable in both modalities, our approach
fails as expected. Fig. 9 demonstrates two typical examples.
As shown in the figure, such scenarios are challenging to all
existing methods.

V. CONCLUSION
In this paper, we have presented a novel end-to-end
framework for RGB-D salient object detection. Instead of
directly concatenating RGB and depth features or element-
wisely multiplying/adding saliency predictions, we intro-
duce a switch map that is adaptively learned to fuse the
effective information from RGB and depth predictions.
An edge-preserving loss is also designed for correcting blurry
boundaries and further improving spatial coherence. The
experiments have demonstrated that the proposed method
consistently outperforms other state-of-the-art methods on
different datasets.
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