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ABSTRACT Existing cover selection methods for steganography cannot resist pooled steganalysis. This
paper proposes a secure cover selection method which is able to resist pooled steganalysis and single object
steganalysis meanwhile. To resist pooled steganalysis, the maximum mean discrepancy (MMD) distance
between the stego set and a clear arbitrary image set is kept not larger than a normal threshold during
cover selection, where the threshold is the MMD distance between two clear arbitrary image sets. Under
this constraint, a searching strategy is designed to select the minimal steganographic distortion images
within the affordable computational complexity to resist single object steganalysis. With the selected covers,
the security of steganography is guaranteed against both single object steganalysis and pooled steganalysis.

The experimental results demonstrated the effectiveness of the proposed method.

INDEX TERMS Steganography, security, distortion, cover selection.

I. INTRODUCTION

Steganography aims to transmit secret data through pub-
lic channels without drawing suspicion [1], [2]. To achieve
this, the most popular approach is to embed the secret
data into cover object by slightly modifying the content
of cover [3], [4]. Digital images are widely used as cov-
ers in steganography since it is widely used around the
world. In modern steganography, the steganographic distor-
tion caused by modifications on a cover image is minimized
to guarantee the security performance [5].

On the contrary, single object steganalysis aims to dis-
close the covert communication by analyzing the images on
public channels [6], [7]. Modern steganalytic methods are
based on supervised machine learning [8]. The features are
extracted from a set of images to train a common stegana-
lytic model, which is then used to distinguish the suspicious
images [9]-[11]. Recently, deep learning based steganalysis
can also achieve good performances [12]-[14]. The decisions
made on suspicious images are correct with high probability.

When a steganographer possesses a number of images,
he can choose the most suitable image for data embedding.
Most of existing cover selection methods select cover images
empirically [15]-[19]. In [15], the changeable DCT coeffi-
cients are counted. Then the images with a larger number of
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changeable DCT coefficients are selected as cover images.
In [16], the images with high visual quality are regarded as
suitable covers for embedding. Considering the content of
image, researchers select suitable cover images according to
image texture and complexity [17]-[19]. In [17], the blocks
of secret image are compared with the blocks of available
images, and then the images with the most similar blocks to
those of secret image are selected as covers. In [18], image
complexity is measured by visual quality and amount of
modifications on a stego image. The authors of [19] pro-
posed to calculate image complexity using image residuals
which is modeled by fuzzy logic. These above-mentioned
empirical cover selection methods do not perform satisfactory
security.

A unified measure to evaluate the hiding ability of a cover
image is proposed in [20]. Available images are represented
by the Gaussian mixture model, and then the Fisher Infor-
mation Matrix of image is calculated and mapped into a real
value to evaluate the hiding ability. But the employed model
is not able to describe natural image precisely. The authors
of [21] proved that the first-order derivative of steganographic
distortion of a single image is monotonically increasing,
and the first-order derivative of steganographic distortion of
selected cover images should be equal. Based on the two
deductions, the images set with the minimal total stegano-
graphic distortion are selected as covers. This method per-
forms high security against single object steganalysis.
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However, all the existing cover-selection methods have
a theoretical flaw that selected cover images (as a sub-
set of all possible images) will always have some statisti-
cal properties different from the whole set of all possible
images [22]. Because of this, existing cover-selection meth-
ods cannot resist pooled steganalysis which aims to find the
steganographers among other innocent individuals [23]-[27]
(each individual emitted a number of images). Different from
single object steganalysis which makes an binary decision
(““clear” or “‘stego’’) on a suspicious image, pooled steganal-
ysis makes an binary decision (“guilty” or “innocent’) on
a suspicious individual. In pooled steganalysis, it is suppose
that the steganalyst is monitoring a number of individu-
als, with multiple innocent individuals and some potentially
steganographers. To determine who is guilty, it is assumed
that the steganographers are significantly deviate from the
majority innocent individuals. Based on this assumption,
the steganographers can be recognized by unsupervised clus-
tering algorithms because that the individuals’ deviation
is evidence of their guilt. Despite of the process of data
embedding, the covers selected by existing cover-selection
methods are different with the whole set of all possible
images. For this situation, the assumption in pooled steganal-
ysis is correct. Therefore, the steganographer using existing
cover-selection methods can be easily identified by pooled
steganalysis.

This paper proposes a secure cover selection method,
which is able to resist single object steganalysis and
pooled steganalysis meanwhile. To resist pooled steganalysis,
the MMD distance between the stego set and a clear arbi-
trary image set is kept not larger than a normal threshold
during cover selection, where the threshold is the MMD
distance between two clear normal image sets. Under this
constraint, a searching strategy is designed to select the
minimal steganographic distortion images within affordable
computational complexity to resist single object steganalysis.
With the selected covers, the security of steganography can be
guaranteed against both single object steganalysis and pooled
steganalysis.

The contributions of this paper are listed as follows:

(1) We give clear descriptions of steganography security
in image level and individual level, and expound the
theoretical flaw of existing cover-selection methods in
individual level;

(2) We propose a cover selection method which is secure
in both image level and individual level;

(3) Experimental results show that the proposed cover-
selection method is able to resist single object steganal-
ysis and pooled steganalysis meanwhile.

The rest of this paper is organized as follows. In section
11, the descriptions of steganography security in image level
and individual level are given. The proposed cover selection
method described in section III. Experimental results and
analysis are provided in Section IV. Section V concludes the
whole paper.
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Il. STEGANOGRAPHIC SECURITY IN

IMAGE AND INDIVIDUAL LEVEL

There are two levels of steganographic security: image level
and individual level. However, there is no definite descrip-
tions of steganography security in image level and individual
level. For this reason, we describe the two levels of stegano-
graphic security before introducing our method.

A. IMAGE LEVEL SECURITY
In image level, the opponent of steganography is single object
steganalysis. That means the steganalyst aims to give correct
decision (‘“‘clear” or “‘stego’) on a suspicious image. On the
contrary, the steganographer aims to make the stego images
transmitted by him indistinguishable from other clear images.
Current single object steganalysis uses supervised machine
learning to investigate the models of the covers and the stegos.
The features are extracted from a set of images with labels
firstly, and then used to train a classifier which is used to
distinguish the suspicious images. The classifier can also be
trained by deep learning to achieve better steganalytic model.
Therefore, the steganographic security in image level can
be measured by the error rate of the steganalytic classifier.
Specifically, the error rate can be denoted as the minimal total

error Pg,

P P

Pr = min (M) (1)
Prs 2

where Pga is the false alarm rate and Pyp the missed detec-
tion rate. A large value of Pg means high security of steganog-
raphy in image level.

B. INDIVIDUAL LEVEL SECURITY

In individual level, the steganographer aims to conceal
himself among other normal individuals when examined by
pooled steganalysis.

Pooled steganalysis is based on unsupervised clustering,
and aims to find the individuals of steganography among a
number of innocent individuals. It is supposed that the ste-
ganalyst is monitoring a number of individuals, with multiple
innocent individuals and some potentially guilty individuals.
To determine who are the guilty individuals, it is assumed that
their behaviors are significantly deviate from the majority of
innocent individuals. Based on this assumption, the steganog-
raphers can be recognized by unsupervised clustering algo-
rithms because that the individuals’ deviation is evidence of
their guilt.

Times of correct detection

= - x 100% 2)
Total number of detections

The steganographic security in individual level can be
measured by the detection accuracy of steganographers
identification of pooled steganalysis. Where the detection
accuracy (DA) is the rate of correctly identifying the
steganographers, which can be calculated using Equation (2).
A low value of detection accuracy means high security of
steganography in individual level.
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Ill. PROPOSED METHOD

In this section, we expound the theoretical flaw of existing
cover-selection methods specifically, and then give the pro-
posed secure cover-selection method.

A. EXISTING FLAW

In pooled steganalysis [23]-[27], the maximum mean dis-
crepancy (MMD) [28] is employed to measure the distance
between two feature sets. Denote two feature sets (each con-
tains n vectors) as Fy = {f())} and F, ={f,(i)}, where £, (i)
and f,(i) are the vectors with same number of dimensions,
i €{1,2,...,n}, the MMD distance can be calculated as:

1
MMD? (F,, F,) = p— >k (). £:G)

nn i%
—k (fx(]'),fy(i)) —k (fx(i)vfy(j))
+k (f))(i)vfy(j))] (3)

where k(x,y) is a kernel function need to be pre-defined.
The linear kernel k(x,y) = xTy is the most effective kernel
function, which is also used in our cover selection method.

There is a theoretical flaw in existing cover selection meth-
ods that the statistical properties of the selected cover images
are different from the whole set of all possible images. The
differences can be observed via the MMD distance. To verify
this, we conduct a group of experiments over image data set
BOSSbase ver. 1.01 [29] which contains 10000 grayscale
images sized 512 x 512. We arbitrarily select 100, 250,
500, 750 and 1000 images respectively as the normal image
sets. All the five image sets are arbitrarily selected twice to
calculate the normal MMD distance. Then the same number
images are respectively selected using the cover selection
method in [21]. To calculate MMD distance, the popular
feature extraction method SPAM [9] is employed to obtain
the features of the selected images.

0.2

0.1

MMD distance

0.05

250 500 750 1000

Number of selected images

FIGURE 1. MMD distance comparisons.

The comparisons of MMD distance are shown in Fig. 1.
Where “Distance-Normal” and ‘“‘Distance-Wang’’ stand for
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the normal MMD distance and the MMD distance between
arbitrary images with the images selected by the method
in [21] respectively. The results indicate that the MMD dis-
tance is increased obviously when the cover selection method
in [21] is employed. That means the cover images selected
by [21] are different from the arbitrary images. Although
the selected images with minimal steganographic distortion
are suitable for concealing the modification trace made by
steganography, the images themselves can still be identified
from the whole set of all possible images according to their
statistical abnormality.

For steganography, it is disadvantageous that the cover
images are abnormal since the abnormality is evidence of
the steganographer’s guilt. Therefore, the steganographer
employs existing cover selection methods can be easily iden-
tified by pooled steganalysis, which is verified in Section IV.
In our method, the MMD distance between the cover and
stego set is restrained during cover selection. Thus, the sta-
tistical properties differences are shortened as far as possible.
As a result, the security in individual level of our method
is guaranteed. The details will be discussed in the following
subsection.

B. COVER SELECTION METHOD

In existing cover-selection methods, the images with more
complex texture are preferentially selected. But it is difficult
to build a precise model to describe natural image. To resist
single object steganalysis, actually, it is easy to select cov-
ers for modern steganographyic methods, e.g., WOW [30],
SUNIWARD [31], HILL [32] which are based on additive
distortion minimization [5].

In modern steganography, a per-defined distortion function
is used to assign an embedding cost value for each cover
element to quantify the modification effect. Given an image
contains ¢ elements {x(1), x(2), ..., x(¢)}, denote the embed-
ding cost for +1 and —1 operation assigned by a distortion
function of x(i) as p*(i) and p~ (i) respectively (1 < i < 1).
The theoretical minimal steganographic distortion D of stego
image with embedding capacity C(bits) [33] is,

t
D = Z pt@pT () +p (@)p~ ()] 4
i=1
where
. o0t (0)
A e B T S VL) )
and
—3p~ ()
p(0) = ° ©6)

1+ e~ 4 =20~ ()

are the probabilities of modifying x(i) by +1 or —1 respec-
tively. The parameter A (A > 0) is used to make the
ternary information entropy of modifying probability equal
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to the capacity C,

t

= > {pt ) logy p* (i) + p (i) logy p~ (i)

i=1

+H1 = p" (@) = p~(Dllogy[1 = p* D) —p~ @} =C (7

Therefore, in image level, it is reasonable to select the
images with the minimal values of D. Given k images {Ii,
I, ..., It} for selection, denote the corresponding stegano-
graphic distortions as {Di, D», ..., Dy} respectively. After
sorting in ascending order, {D1, Da, ..., Dy} are reordered
into {De1y, Deys ---5 Deoy}s 6D €{1, 2, ..., k}, i €
{1,2,...,k}. Then a selection order {£(1), £(2), ..., E(k)}
is obtained. To resist single object steganalysis, the cover
images should be selected following this order.

However, the images selected by this order are not secure
in individual level. To resist pooled steganalysis, the MMD
distance between the stego set and a clear arbitrary image
set should be kept not larger than a normal threshold during
cover selection. We set the MMD distance between two clear
arbitrary selected image sets as this threshold. The security in
individual level can be guaranteed as long as this restriction
is satisfied. Under this restriction, meanwhile, the images
with low steganographic distortion should be selected as
many as possible for the security in image level. In this
way, the selected cover images are secure in both image and
individual level.

Initial state

FIGURE 2. Demonstration of cover selection.

As shown in Fig. 2, cover images are selected under
the restriction in MMD distance. In the initial state,
specified quantity of images (the squares marked with
green) are selected arbitrarily. At this time, the selected
images are secure in individual level. Then the images
(the squares marked with yellow) which corresponding to
smaller steganographic distortions than the selected images
are checked one by one for possible replacement of the
selected images. While the images (the unpainted squares)
corresponding to larger steganographic distortions would not
be considered since these images make no contributions to
image level security.

A selected image I; (marked with green) would be replaced
by a under consideration image I; (marked with yellow) when
the following conditions are satisfied:

57860

a) The steganographic distortion of I; is smaller than I;
(I; is on the left of I; in Fig. 2), and I; has not been
replaced;

b) The MMD distance between the stego image set
(obtained by embedding secret data into the selected
image set) with a clear arbitrary image set would not
larger than the MMD distance between two clear arbi-
trary image sets if I; is replaced by L;;

The first condition helps to increase the steganographic
security in image level, while the second condition ensures
the individual level security not decreased. After all the
images under consideration are checked by the two condi-
tions, the final selected images are obtained, as shown in the
final state of Fig. 2. Note that Fig. 2 is just an illustration
to demonstrate the idea (the images with low steganographic
distortion should be selected as many as possible for image
level security under the MMD restriction) of the proposed
cover-selection method. More details about the proposed
cover selection strategy are given below.

Assume the steganographer intend to select r images as
cover, denote the average MMD distance between two clear
arbitrarily image sets (each contains » images) as dr. The
steps to determine dt are listed below.

(1) Arbitrarily select r images from {Ij, I, ..
obtain an image set I

(2) Repeat step (1) to obtain another arbitrary image set I;

(3) Calculate the MMD distance (feature sets of images are
obtained using SPAM) between TandT;

(4) To obtain a stable threshold, repeat steps (1)~(3) for
A times, and calculate the average MMD distance dr.
The value of A will be discussed later.

To resist pooled steganalysis, the MMD distance between
the stego set and a clear arbitrary image set should be kept
not larger than dt. Under this constraint, a searching strategy
is designed to select the most suitable r images according
to selection order {£(1), £(2), ..., £(k)} within affordable
computational complexity. In this way, single object steganal-
ysis and pooled steganalysis can be resisted meanwhile. The
searching strategy is described in ALG. 1.

The logic behind the above cover selection strategy is that
the images in I can be replaced by the images with less
steganographic distortion to resist single object steganalysis.
Meanwhile, the MMD distance between the stego set and a
clear arbitrary image set is kept not larger than dr to resist
pooled steganalysis. In other words, with the restriction of
MMD distance, the images with low steganographic distor-
tion are selected as many as possible. In this way, the unde-
tectability of steganography is guaranteed against both single
object steganalysis and pooled steganalysis.

To determine the value of A which used to calculate dr,
a group of experiments are carried out. In detail, the image
dataset BOSSbase ver. 1.01 [29] is employed to simulate
the available images {Ij, I», ..., Iy}. We arbitrarily select
100 images from BOSSbase as the image set I, and arbitrarily
select 100 images again as I. Then calculate the variance
of the MMD distance between 1 and I. The selection and

LI} to
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Algorithm 1 Cover Selection Strategy

Input:The available images {1y, I, ..., I}, threshold
value drt, and the selection order

{§(1),6Q2), ..., &)}
Output: Selected r images.

1) Use I as the initial selected r images;
2) Reorder the r images in I according to the order {£(1),
£(Q2), ..., E(k)}, denote the obtained image set as
I= {Igo(l)s Iw(z), ey I(p(r)}, where (p(]) E{ l, 2, ey k},
j E{l, 2,..., r}, and D(p(l) < D¢(2) <...< D(p(r);
3) Embed C secret bits into each image in I;
4) forv =1tok,
if the number of replaced images reaches r,
break
end
foru=rtol,
if Dgv) > Dyqw,
break;
End
if (u) is not equal to & (v), and I, () has not been
replaced,
Embed C secret bits into I¢(y);
Replace image Iy, in I by the stego image
I¢ () to obtain an intermediate image set T;
Calculate the MMD distance d between
1 and the i;
ifd <dr,
Replace I by I;
break;
end
end
end
end
5) Find the r cover images from {Iy, I, ..., Iy} which
corresponding to the stego images in set I, then the
obtained images are the finally selected r images.

Variance of MMD distance

FIGURE 3. Parameter determination.

calculation steps are executed for A times. The relationship
between A with the variance of MMD distance is shown
in Fig. 3. It can be seen that the variance is hardly decreased
any more after the value of A is larger than 15, which results
in a stable threshold dt. To save computational complexity,
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the value of A is determined as 15. On the whole, the thresh-
old of MMD is determined using the available images {I,
I, ..., Ix} which can be obtained from any image dataset.
That means the determination of the threshold of MMD is
not depended on specific image dataset. In the above deter-
mination method, we use dataset BOSSbase ver. 1.01 as an
example. For different image datasets, the values of MMD
threshold are different, while the methods to determine the
MMD threshold are the same.

In our method, it is assumed that the normal individu-
als not employ any image selection strategy (select images
arbitrarily). According to this, the r images in initial state
are selected arbitrarily to simulate the normal individuals.
For the case that the normal individuals employ a certain
image selection strategy, our method can also work by select-
ing the initial » images using the certain image selection
strategy. Beyond that, other steps are kept unchanged. Since
the behavioral differences between the normal individuals
with steganographer, the image selection strategy (if any) of
normal individuals is different from the one employed by
steganographer. Therefore, our method can always work on
secure cover selection in both image and individual levels.
In addition, our method is universal for both spatial and JPEG
steganography although the feature extraction method SPAM
used to obtain image features is designed for spatial image.
For JPEG steganography, SPAM can be executed after the
JPEG image is decompressed into spatial domain, or replaced
by JPEG steganalysis feature extraction method.

IV. EXPERIMENTAL RESULTS

In this section, we firstly setup the experimental environ-
ments using the popular database. Then we show the selected
images, and compare the proposed method with the state-of-
the-art cover selection method in image level and individual
level respectively.

A. EXPERIMENT SETUP

The image dataset used in our experiments is BOSSbase
ver. 1.01 [29] which contains 10000 grayscale images sized
512 x 512. Thereinto, 5000 images are arbitrarily selected
from all the 10000 images to form the available image set of
the steganographer (k = 5000). Other 5000 images are used
for training the steganalytic classifier in image level (A pre-
trained classifier is unnecessary in individual level).

To verify the security of the proposed method, 100 images
are selected from the available 5000 images using the pro-
posed method as cover images (» = 100). For compari-
son, 100 images are selected from the same 5000 images
using the cover selection method in [21], and 100 arbitrary
images are also selected from the same available image set.
Then three cover image sets (each contains 100 images) are
obtained.

For steganography, the popular steganographic methods
HILL, WOW and SUNIWARD are used for embedding. The
payloads of each image are set as 0.05, 0.1, 0.2, 0.3, 0.4, and
0.5 bpp respectively. Thus 54 stego image sets (each contains
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(9)

(h)

FIGURE 4. Demonstration of images (a) ~ (e) selected by the method in [21] and images (f) ~ (j) selected by the proposed method.

100 images) are formed. For data embedding, we use the
ternary embedding simulator [34] since it is widely used to
simulate the optimal embedding pattern.

For steganlaysis, the popular feature extraction meth-
ods SPAM [9] and SRMQI1 [10] are used to check the
undetectability of steganography. We employ the ensemble
classifier [8] to measure the property of feature sets. To train
the steganalytic classifier in image level, the 5000 images
used for training are also embedded with the above-
mentioned three steganographic methods and the six values
of payload respectively. The trained 36 classifiers (3 stegano-
graphic methods, 6 payloads, 2 feature extraction methods)
are then used to test the three cover sets and the 54 stego sets
respectively. The performance is evaluated using the average
of Pg over 100 random tests.

In individual level, more than one individual should be
simulated. Denote the number of individuals as w, other w-1
image sets (each contains 100 images) are selected arbi-
trarily to simulate the innocent individuals. The employed
pooled steganalytic method is the hierarchical cluster-
ing method [23]. The detection accuracy also tested over
100 random tests.

B. COMPARISONS OF SELECTED IMAGE

To demonstrate the results of cover selection visually, five
images are selected from the available image set by our
method and the method in [21] respectively. The selected
images are shown in Fig. 4, where (a) ~ (e) are the five images
selected by the method in [21], and (f) ~ (j) are selected by
our method.

It is clear that the images selected by the method in [21]
contain extremely complex texture and edge. The texture
complexity can be roughly evaluated by the summation of
horizontal and vertical residual values of an image, which is
shown in Equation (8), where x(i, j) is the (i, j)th pixel value of

57862

[0)]
TABLE 1. Texture complexity comparison.
Image Fig.4(a) Fig.4(b) Fig.4(c) Fig.4(d) Fig.4(e)
(lez)é) 11.987 11.768 10.982 11.594 11.807
Image Fig.4(f) Fig.4(g) Fig.4(h) Fig.4(1) Fig.4()
(lez)é) 3.366 5.571 5.647 7.794 11.040

an image sized M x N. Larger h means more complex texture.
Table 1 shows the & values of the corresponding images
in Fig. 4, which indicates that the texture complexity of the
images selected by [21] is higher than the images selected by
our method.

M N-1
h=Y " Ix,j) = xG,j+ D
i=1 j=1
M—-1 N
+ Y k) —xG+ L)l (@)
i=1 j=1

The complex areas are hard to be modeled, and thus the
modification trace made by steganography can be concealed
effectively. For this reason, the method in [21] performs high
security against single object steganalysis. But just because of
this, statistical properties of the selected images are different
from the whole set of all possible images, which can be
observed in Fig. 1. Therefore, the method in [21] is inse-
cure against pooled steganalysis, which will be shown in the
following subsection.

While the images selected by our method contain vari-
ous content instead of complex texture only, as shown in
Fig. 4 (f) ~ (j). This variety shortens the differences of statis-
tical properties, which results in satisfactory security against
pooled steganalysis. Meanwhile, the complex component
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FIGURE 5. Comparisons of detection accuracy for HILL with k = 5000, r = 100, w = 5, and (a) SPAM, (b) SRMQ1.
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FIGURE 6. Comparisons of detection accuracy for WOW with k = 5000, r = 100, w = 5, and (a) SPAM, (b) SRMQ]1.

contained in a part of the selected images guarantees the
security against single object steganalysis.

C. SECURITY IN INDIVIDUAL LEVEL

The comparisons of detection accuracy DA on 5 individ-
uals (w = 5) with feature sets SPAM and SRMQI1 are
shown in Fig. 5 ~ Fig. 7. Where “HILL-P”, “WOW-P”* and
“SUNIWARD-P”’ mean the cover images are selected by the
proposed method and then embedded by HILL, WOW and
SUNIWARD respectively. “HILL-Wang”, “WOW-Wang”
and “SUNIWARD-Wang” mean the cover images are
selected by the method in [21] and then embedded by HILL,
WOW and SUNIWARD respectively. While “HILL-Rand”,
“WOW-Rand” and “SUNIWARD-Rand” mean no cover
selection strategy is employed, the cover images are selected
arbitrarily.
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It can be seen from Fig. 5 ~ Fig. 7 that the detection
accuracy of pooled steganalysis is always 100% when the
cover images are selected by the method in [21]. That means
the cover selection method in [21] is extremely insecure in
individual level. This is because of the theoretical flaw of
the existing cover selection methods. The statistical prop-
erties of the selected cover images are different from the
whole set of all possible images. After steganography is
executed on the selected images, the statistical properties
differences will be further enlarged. As a result, the steganog-
rapher can be easily identified by pooled steganalysis. In our
method, the MMD distance between the stego set and a
clear arbitrary image set is restrained during cover selection.
As a result, the statistical properties differences are tiny.
Therefore, the security in individual level of our method is
guaranteed.
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FIGURE 8. Comparisons of detection accuracy for SUNIWARD with
k = 5000, w = 5, payload = 0.05 bpp, and SPAM.

Fig. 8 and Fig. 9 show the individual level security
with different values of r and w respectively. Although
the feature set SPAM is not advanced, the payload is low,
and the pooled steganalytic method is primitive, the detec-
tion accuracy of pooled steganalysis is still 100% on the
cover selection method in [21] for all cases. This veri-
fied the flaw in existing cover selection methods again.
While our method performs a comparable security with
the case of no cover selection strategy employed with a
large r.

In fact, the statistical properties between the cover images
selected by our method with the whole set of all possible
images are consistent. The consistency will be remarkable
when the number of selected images is large enough. This
is the reason that the images selected by our method per-
forms a comparable security with the arbitrarily selected
images when r is large enough. Therefore, our method
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is secure in individual level. To verify this, we also con-
duct some additional experiments for the cases of r = 500,
which are shown in Fig. 10. It is clear that our method
performs similar security with arbitrary selection for all
cases, while the detection accuracy on the method in [21]
is still 100%. In a word, the individual level security
of our method is the same with arbitrary selection. The
image level security will be discussed in the following
subsection.

D. SECURITY IN IMAGE LEVEL

In image level, the security of steganography is measured
by the testing error Pg as discussed in subsection IL.A.
The comparisons of Pg based on HILL, WOW, and
SUNIWARD with feature sets SPAM and SRMQ1 are shown
in Fig. 11 ~ Fig. 13 respectively. The meanings of the leg-
ends are the same with above subsection.
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The results indicate that the security of all approaches
are improved by using the proposed cover selection method
for all cases. It is also clear that the method in [21] per-
forms the best security in image level. However, the method
in [21] is extremely insecure in individual level as shown
in Fig. 5 ~ Fig. 10. A steganographer selects cover images
using the method in [21] can be easily identified. As shown
in the above subsection, the security in individual level of our
method is guaranteed. Therefore, the security of our method
is satisfactory in both image and individual level. In other
words, our method can resist both single object steganalysis
and pooled steganalysis meanwhile.

On the whole, no cover selection strategy outperforms
our method in individual level for small cover image set
(e.g. 100 images), and performs comparably with our method
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for large cover image set (e.g. 500 images). The possible
reason which has been analyzed in subsection IV-C is that
the consistency of statistical properties between the cover
images selected by our method with the whole set of all
possible images is remarkable when the number of selected
images is large enough. In image level, our method is always
outperforms no cover selection strategy.

Actually, there is a trade-off between image level secu-
rity with individual level security. We find an approach to
balance steganographic security in the two levels. Existing
cover selection methods spare no pains to increase the image
level security without considering individual level security.
This is the reason that the method in [21] performs out-
standing security in image level but loses it all in individual
level.
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V. CONCLUSION

In this paper, we propose a cover selection method which is
secure in both image and individual level by restraining MMD
distance and searching the minimal steganographic distortion
images. Experimental results show that the undetectability
of steganography is guaranteed against both single object
steganalysis and pooled steganalysis when using the proposed
method.

For further study, the security in image level and indi-
vidual level of steganography can be further increased by
other approaches except cover-selection, e.g., develop joint
distortion function for multiple images, which focuses on the
joint statistical properties of a number of cover images.
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