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ABSTRACT We consider the construction of capacity-approaching variable-length constrained sequence
codes based on the multi-state encoders that permit state-independent decoding. Based on the finite-state
machine description of the constraint, we first select the principal states and establish the minimal sets.
By performing partial extensions and normalized geometric Huffman coding, efficient codebooks that
enable state-independent decoding are obtained. We then extend this multi-state approach to a construction
technique based on the n-step FSMs. We demonstrate the usefulness of this approach by constructing
the capacity-approaching variable-length constrained sequence codes with improved efficiency and/or
reduced implementation complexity to satisfy a variety of constraints, including the runlength-limited (RLL)
constraint, the DC-free constraint, and the DC-free RLL constraint, with an emphasis on their application in
visible light communications.

INDEX TERMS Constrained sequence codes, variable-length codes, capacity-approaching codes,
multi-state codes, state-independent decoding, visible light communication.

I. INTRODUCTION
Constrained sequence (CS) codes, such as runlength-limited
(RLL) codes, DC-free codes and DC-free RLL codes, con-
tinue to be studied for application in digital transmission
[1]–[4], magnetic and optical recording [5]–[7], non-volatile
storage [8]–[11], DNA-based storage systems [12] and visi-
ble light communication (VLC) [13]–[18]. Most constrained
sequence codes are fixed-length codes, where codebooks
consist of source words and codewords of uniform length.
However, it has been shown that simple, variable-length
codes can achieve a higher code rate than fixed-length
codes with lower implementation complexity [19]–[29].
Single-state codes allow codewords to be freely concate-
nated, whereas in multi-state codes, the encoded sequence
is a function of both the source input and the state of the
encoder. Well designed multi-state codes have the property
that the received codewords can be instantaneously decoded
without state information, which is important in limiting error
propagation.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xueqin Jiang.

In [19]–[21] the authors present construction techniques
for synchronous variable-length codes in which the ratio
between source word length and codeword length is fixed,
and therefore the code rate is the ratio of relatively small
integers. Since the capacity of most constraints is irrational,
synchronous variable-length codes approach the capacity
only with large codebooks. In [24]–[27] the authors con-
sider the design of capacity-approaching variable-length
codes in which the constrained sequence encoder con-
tains a single state, and therefore is comprised of code-
words that can be freely concatenated. The application of
such single-state codes in various constraints is discussed
in [28], [29]. In this paper, we consider the use of multiple
encoding states during encoding and propose a framework
for designing variable-length constrained sequence codes to
achieve near-capacity performance based on a multi-state
encoder. These codes demonstrate high efficiency and retain
the property of state-independent decoding.

The construction technique described in this paper can
be applied to a large variety of constraints including the
RLL constraint, the DC-free constraint, and the DC-free
RLL constraint. We show that it is possible to construct
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constrained sequence codes with this technique to achieve
higher efficiency and lower implementation complexity than
many codes in use in current communication and data storage
systems. For some constraints, this multi-state construction
technique can also result in codes with higher efficiency
and shorter codeword lengths than the single-state technique
outlined in [24]–[27]. Similar to those variable-length single-
state codes, the codes proposed in this paper can be instan-
taneously decoded since no codeword is a prefix of another
codeword. As noted above, our new codes require no state
information during decoding.

The rest of this paper is organized as follows. In Section II
we provide a brief background of constrained sequence
coding theory, and review the construction technique
of single-state variable-length constrained sequence codes
in [24]–[27]. We propose our multi-state encoding approach
in Section III and extend this approach to a construction
technique based on n-step FSMs in Section IV. In Section V
we consider a characteristic of n-step FSMs that applies to
DC-free codes, and exploit this characteristic to construct
simple and high-efficiency multi-state DC-free codes for vis-
ible light communications (VLC). In Section VI we provide
conclusions. Examples are included throughout the paper.

II. PRELIMINARIES
A. CONSTRAINED SEQUENCE CODING
RLL and DC-free codes are two widely used classes of CS
codes. RLL coded sequences are sequenceswhere the number
of bits between transitions is bounded. One approach for
their construction is the generation of a (d, k) sequence,
where d and k denote the minimum and maximum num-
ber of logic zeros between consecutive logic ones, followed
by differential encoding that encodes a one as a change in
value and a zero as no change. This results in minimum and
maximum runlengths of d + 1 and k + 1 respectively. It is
also possible to construct RLL codes directly without first
generating a (d, k) code. DC-free codes are designed so that
the spectral components at low frequency are suppressed to
match the characteristics of the physical channel. In the time
domain, the running digital sum (RDS) of a DC-free encoded
sequence is bounded, where RDS is the ongoing summation
of encoded bit weights in the sequence, given that a logic one
has weight+1 and a logic zero has weight−1 [1]. Following
the notation in [1] we use N to denote the maximum number
of different RDS values in the DC-free sequence. This implies
that at most N − 1 consecutive logic ones or logic zeros can
exist in the coded sequence. In some systems, DC-free RLL
constraints place limits on runlength other than those implied
by the RDS bounds [30], [31].

It is well known that a constraint can be described with
an FSM that contains states, edges and labels, where labels
are the coded sequences resulting from transitions between
states. For an FSM with S states, the matrix of the directed
graph underlying the constraint is denoted by an S × S
adjacency matrix D = {dij}, where dij is the number of edges
transitioning from state i to state j. The transition probability

matrix is denoted by an S × S matrix Q = {qij}, where qij is
the probability of transitioning from state i to state j. Based on
D, the maxentropic transition probabilities and steady-state
distribution can be obtained which describes the statistical
properties when the maximum amount of information is rep-
resented by the FSM [32].

The maximum amount of information that can be carried
in a sequence that satisfies the constraint is the capacity of
the constraint C , which is defined as [33]

C = lim
m→∞

log2 U(m)
m

(1)

where U(m) is the number of constraint-satisfying sequences
of length m. Given the FSM description of the constraint,
the capacity can be evaluated as

C = log2 λmax , (2)

where λmax is the largest real root of the determinant equation

det[D− zI ] = 0 (3)

where I is an identity matrix. As discussed in [1], maxen-
tropic transition probabilities in an FSM are given by

qij = λ−1max dij
pj
pi

(4)

where 1 ≤ i, j ≤ S and p is the eigenvector of D associated
with the eigenvalue λmax .

B. SINGLE-STATE VARIABLE-LENGTH CODES
In this section, we briefly review the single-state capacity-
approaching encoding technique for variable-length con-
strained sequence codes introduced in [24]–[29]. As dis-
cussed in [26], [27], a critical step in construction of these
codes is the formation of a minimal set from which code-
words can be concatenated to generate constraint-satisfying
sequences. A minimal set M can be established by enumer-
ating all words that exit and re-enter a specific state in the
FSM. A minimal set of an FSM is not unique and can have
an infinite number of words [27], [34]. Criteria for choosing
a minimal set are discussed in [26], [27]. A partial extension
of a minimal set Mp is formed by post-fixing all words in
the minimal set to some or all words of a previous partial
extension, starting from the minimal set. After performing
partial extensions over a minimal set, we obtain a set of
codewords that are instantaneously decodable because no
codeword is the prefix of another.

Normalized geometric Huffman (NGH) coding [34,
Section 4.1] [35] is used to assign these codewords to the
corresponding source words such that the maximum infor-
mation density is approached. Starting with the desired max-
entropic codeword probabilities obtained from (2)–(4) as the
input probabilities, geometric Huffman coding merges the
two smallest probabilities qi and qj according to the following
rule to obtain the merged probability:

qmerged =

{
2√qiqj if qi < 4qj
qi if qi ≥ 4qj.

(5)
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TABLE 1. Codebook of a (d = 1,k = 3) code with efficiency of 98.9%.

The smaller probability is pruned from the Huffman tree
when the lower condition is satisfied. As in the well-known
Huffman construction technique, this process is repeated until
a single value remains, and source words are assigned based
on the merging pattern.

Given a one-to-one correspondence between variable-
length source words and variable-length codewords, the aver-
age code rate R is

R =

∑
si

2−sisi

∑
oi

2−sioi
(6)

where si is the length of i-th source word that is mapped to the
i-th codeword of length oi. The efficiency of a variable-length
code is defined as η = R/C . After obtaining R̄, NGH coding
repeats the above process with updated input probabilities
and with C replaced by R̄ when calculating the maxentropic
probabilities in (2)–(4), until R̄ converges.

Since different partial extensions result in different code-
books with different η, we establish parameters such as the
maximum number of source words in the codebook nmax ,
or maximum codeword length lmax , and exhaustively search
over all codebooks that satisfy these limits to find the onewith
the best η.
Example 1: ((d = 1, k = 3) RLL code): the FSM

of the (d = 1, k = 3) constraint is shown in Fig. 1.
According to [26], [27], we choose state 1 as the specified
state upon which to construct the code; its minimal set
is established as M = {01, 001, 0001}. We may choose
to directly perform NGH coding over the minimal set to
construct the simple codebook shown in Table 1 which
has efficiency η = 98.9%. By performing extensions
with nmax = 11, we have constructed the code shown
in Table 2 with η = 99.25%. The partial extension process
shown in Fig. 2 results in the codewords in Table 2. Start-
ing from the minimal set, the set of words is updated as
Mp = {01, 001, 0001} → {01, 00101, 001001, 0010001,
0001} → {01, 00101, 001001, 0010001, 000101, 0001001,
00010001} → {01, 00101, 00100101, 001001001, 001001
0001, 0010001, 000101, 0001001, 00010001}→ {01, 00101,
00100101, 001001001, 0010010001, 0010001, 00010101, 00
0101001, 0001010001, 0001001, 00010001}. Note that the
encoding and decoding processes are instantaneous with the
words in this table. To compare, note that a widely used (1,3)
RLL code is the Modified Frequency Modulation (MFM)
codewith η = 91% [1]. Formore examples refer to [24]–[29]
and [34, Chapter 6.4].

FIGURE 1. FSM of a (1,3) RLL code.

TABLE 2. Codebook of a (d = 1,k = 3) code with efficiency of 99.25%.

FIGURE 2. Partial extensions over the minimal set {01,001,0001}.
Underlined codewords are in the final set after partial extensions.

Although codebooks with high η can be constructed with
the single-state variable-length construction technique, two
potential drawbacks of this approach should be considered.
First, the codewords can be long, especially when long words
exist in the minimal set, which increases the complexity of
the encoding and decoding circuits. This occurs, for instance,
with a large value of k in RLL constraints and a large value
of N in DC-free constraints. Second, for some types of
constraints, a minimal set consisting of a finite number of
words does not capture all the constraint-satisfying sequences
because of loops that exist in the FSMs. This results in a
loss in the achievable code rate, as discussed in [26], [27].
Typical examples are DC-free constraints with N ≥ 4 and
most DC-free RLL constraints.

To overcome these drawbacks, in the next section we
extend the single-state encoding technique by proposing
a construction technique for variable-length constrained
sequence codes that involves multiple states in the codebook.

III. MULTI-STATE ENCODING BASED ON FSM
A. SELECTION OF PRINCIPAL STATES
As outlined in [27], the first step in the design of a single-state
variable-length CS code is selection of the specified state
used to generate the minimal set. Similar to the single-state
technique, the first step of our proposed multi-state tech-
nique is to determine which multiple states of the FSM that
describes the constraint should be considered when gener-
ating the words in the minimal set. We call these states the
principal states. Denote the j-th principal state as σj, σj ∈
9 = {σ1, σ2, . . . , σ|9|}, where9 is the set of principal states
and |9| is the size of 9. We first define how concatenation
of words in the minimal set is performed.
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Definition 1: (concatenation of words) Denote W (σj) =
{w(σj)1,w(σj)2, . . . ,w(σj)|W (σj)|} as the set of words gener-
ated by the j-th principal state. Given W (σj), let the set of
next states corresponding to words in W (σj) be H (σj) =
{h(σj)1, h(σj)2, . . . , h(σj)|W (σj)|} where h(σj)i ∈ 9, 1 ≤
i ≤

∣∣H (σj)
∣∣. The words in the minimal set are W (9) =

{W (σ1),W (σ2), . . . ,W (σ|9|)}.When considering concatena-
tion of words in W (9), w(σj)i is only allowed to be concate-
nated with words in the set W (h(σj)i).
Based on this definition of concatenation, we introduce the

definition of principal states and the criterion to select them.
Definition 2: (principal states) 9 is determined such that

all constraint-satisfying sequences can be generated through
the concatenation of words in W (9). In addition, to ensure
that it is possible to instantaneously decode the received
sequence, no word in W (σi) is the prefix of a word in W (σj)
∀σi, σj ∈ 9.

From Definition 2 it follows immediately that if a state
σj has a loop associated with itself in the FSM, then σj ∈
9 otherwise not all constraint-satisfying sequences can be
generated with finite-length codewords due to the loop at
σj. The principal states should also be selected such that
|W (σi)| = |W (σj)| ∀σi, σj ∈ 9, in order that each state
will have a codeword associated with each source word in the
codebook. Examples of the appropriate selection of principal
states follow discussion of establishing the minimal set.

B. MINIMAL SET
Similar to the construction of single-state variable-length
codes described in Section II-B, establishment of the minimal
set is an essential step in our multi-state variable-length con-
struction technique. After determining the principal states,
we establish the minimal set of the constraint based on its
underlying FSM. Given |9| principal states, the minimal
set in multi-state encoding is a tabular representation that
contains 2 |9| columns, where |9| of the columns indicate
the words generated by the principal states, i.e. W (9) =
{W (σ1),W (σ2), . . . ,W (σ|9|)}, and the other |9| columns
indicate the next states corresponding to each word, i.e.
H (9) = {H (σ1),H (σ2), . . . ,H (σ|9|)}.
Assignment of words in a minimal set with multi-

ple states will, in general, result in the necessity for
state-dependent decoding, which requires knowledge of both
the received codeword and the corresponding encoding state
in order to correctly determine the corresponding source
word. Decoding that can be performed with knowledge
of only the received codeword and without tracking the
encoder state is called state-independent decoding. To enable
state-independent decoding, the following necessary and suf-
ficient condition [19] [31] must be satisfied.
Condition 1 (state-independent decoding): When assign-

ing words from W (9) in the minimal set, the necessary and
sufficient condition for state-independent decoding is that for
1 ≤ u ≤ v ≤ y ≤ |9| and for each

Wr ∈ W (σu) ∩W (σy)

TABLE 3. The minimal set of a two-state (d = 1,k = 3) code.

FIGURE 3. FSM of a DC-free code with N = 5.

such that

Wr /∈ W (σv)

there exists a Wq ∈ W (σv) such that there exists no σl, 1 ≤
l ≤ |9|, for which Wr ,Wq ∈ W (σl).

As will become evident in the examples below, this
condition implies that in the minimal set table, a word
does not appear in more than one row. Therefore, enabling
state-independent decoding requires satisfying Condition 1,
which implies careful design of the encoder. It should be
mentioned, however, that it may not be possible for |W (σi)|
and

∣∣W (σj)
∣∣ to be equal ∀i, j. In such cases we can extend

some of the words in W (9) using H (9) with the goal of
generating an extended minimal set with |W (σi)| =

∣∣W (σj)
∣∣

for all i, j. We note that, without adequate care, this concate-
nation of words in W (9) may result in a situation where
one word becomes a prefix of another, meaning that the
codewords are not prefix-free and that the decoder would
not be able to instantaneously decode the received sequence.
In this section we focus on situations where it is possible to
have |W (σi)| =

∣∣W (σj)
∣∣ without causing the prefix problem,

and in the next section we extend the construction technique
to consider situations where the prefix problem arises.
Example 2: ((d = 1, k = 3) code) Consider the FSM

previously shown in Fig. 1. We choose states 1 and 3 as the
principal states, which we denote σ1 and σ2, respectively.
With these states, it follows that W (σ1) = {01, 00},H (σ1) =
{σ1, σ2} and W (σ2) = {01, 1},H (σ2) = {σ1, σ1}. We note
that this selection of states and codewords satisfies Con-
dition 1 and the prefix condition, therefore instantaneous
state-independent decoding is viable. The minimal set is
given in tabular form in Table 3.
Example 3: (DC-free code with N = 5) The FSM of a

DC-free sequence with N = 5 is shown in Fig. 3. Similar to
the previous example, we follow the steps of the construction
technique to select states 2 and 4 as the principal states, i.e.
σ1 = state 2 and σ2 = state 4. The minimal set of this
DC-free code with N = 5 is shown in Table 4. As in the
example above, this minimal set enables the construction of
codes with instantaneous state-independent decoders.
Example 4: (DC-free RLL codes) We also employ the

proposed multi-state encoding technique to construct codes
that satisfy both DC-free and RLL constraints. We describe
the code construction process with an example of a codethat
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TABLE 4. The minimal set of a multi-state DC-free code with N = 5.

TABLE 5. The minimal set of a DC-free RLL code corresponding to an
NRZI encoded (d = 1,k = 3) code with N = 5.

TABLE 6. The extended minimal set of a DC-free RLL code corresponding
to an NRZI encoded (d = 1,k = 3) code with N = 5.

FIGURE 4. FSM of the DC-free RLL constraint corresponding to an NRZI
encoded (d = 1,k = 3) code with N = 5.

limits to N = 5 the RDS of the sequence that arises after
non-return-to-zero-inverse (NRZI) encoding a sequence that
satisfies the (d = 1, k = 3) constraint. We will later present
results of other codes with different d, k and N values. The
FSM of the (d = 1, k = 3,N = 5) DC-free RLL constraint
(after NRZI coding) is shown in Fig. 4, where the coded
sequence has runlengths between d + 1 = 2 and k + 1 = 4,
and the RDS is limited to five different values.

We choose four states as the principal states, and refer to
them by their locations in the x-y coordinates in Fig. 4, i.e.
σ1 = (−1,−2), σ2 = (0,−2), σ3 = (1, 2), σ4 = (0, 2).
With this selection of principal states, all loops in the FSM
contain at least one principal state, and therefore the minimal
set will contain a finite number of words. This ensures that
all constraint-satisfying sequences can be generatedwith con-
catenation of words in the minimal set. We establish the min-
imal set shown in Table 5. Note that |W (σ1)| = |W (σ3)| = 2,
and |W (σ2)| = |W (σ4)| = 3. Therefore, we extend some
of the words in W (σ1) and W (σ3) by referring to H (σ1)
and H (σ3), in order to have the same number of rows in all

columns of the minimal set. After extension of the word 11
in W (σ1) and the word 00 in W (σ3), we obtain the extended
minimal set as shown in Table 6 where |W (σi)| = 3 ∀i.
Note that if we use the single-state encoding technique,

minimal sets for DC-free constraints with N ≥ 4 and for
most DC-free RLL constraints consist of an infinite number
of words, so to be practical, these sets must be truncated to
result in sets with a finite number of words. Since valid words
are removed from the minimal set, the achievable code rate is
reduced, as noted in [26], [27]. However, with the multi-state
encoding technique described above, all constraint-satisfying
sequences can be generated with the words in the minimal
set, hence full capacity can potentially be approached.

C. PARTIAL EXTENSIONS
After obtaining a minimal set or an extended minimal set,
we may perform partial extensions to obtain sets of code-
words. However, as opposed to the single-state encoding
technique where words in a minimal set can be freely con-
catenated, concatenation as defined in Definition 1 must be
performed with multi-state encoding. Therefore, in addition
to the words in W (9), we must have knowledge of H (σj)i
to determine how to extend the word w(σj)i, 1 ≤ j ≤ |9|,
1 ≤ i ≤

∣∣W (σj)
∣∣. A partial extension in multi-state encod-

ing is the simultaneous extension of words w(σj)i ∀j for a
fixed i, where extension is according to the concatenation of
words in Definition 1. Similar to the single-state encoding in
Section II-B, a partial extension can be applied to the result of
a previous partial extension where the first partial extension
starts from the minimal set.

We denote the set of codewords generated through exten-
sion ofW (σj) as α(σj) and the corresponding set of next states
as β(σj).1 The size of each set is denoted as ξ . Note that when
a word w(σj)i is extended in the table, all the other words
in the i-th row that are generated from other principal states
are simultaneously extended to ensure |α(σ1)| = |α(σ2)| =
. . . =

∣∣α(σ|9|)∣∣ = ξ .
Example 5: ((d = 1, k = 3,N = 5) DC-free RLL code)

We perform partial extensions of Table 6 to obtain a set of
codewords for the (d = 1, k = 3,N = 5) DC-free RLL
constraint. We extend the words W (σj)1,∀j and then extend
the wordsW (σj)2,∀j based on the previous partial extension,
by following Definition 1. Our set of codewords is shown
in Table 7, where ξ = 7.

D. NGH CODING AND CODE RATE EVALUATION
The last step of the encoding technique is to perform
NGH coding over the codebook to assign source words
to codewords α(σ1), α(σ2), . . . , α(σ|9|) in the codebook.
To approach capacity, we attempt to approximate the maxen-
tropic probabilities of codewords in the codebook as closely
as possible.

1When we use the words in the minimal set as the set of codewords
directly, for consistency, we still denote W (σj) as α(σj) and H (σj) as β(σj).
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TABLE 7. Partial extension of the extended minimal set of a DC-free RLL code corresponding to an NRZI encoded (d = 1,k = 3) code with N = 5.

TABLE 8. Codebook of a (d = 1,k = 3) RLL code with two states and
η = 98.91%.

We first obtain the maxentropic transition probabilities
of the constraint based on its FSM representation, which
is well studied in [1]. Based on the maxentropic transition
probabilities, we evaluate the maxentropic probability of
each codeword in the final codebook and the steady-state
distribution of 9. Denote the maxentropic probability of the
i-th codeword in αj as p(αj)i, the steady-state distribution as
π = [π (σ1), π(σ2), . . . , π (σ|9|)], and the vector of input
probabilities to NGH coding as pNGH = [p1, p2, . . . , pξ ].
The desired probability of the i-th source word is
then

pi =
|9|∑
j=1

π (σj)× p(αj)i, 1 ≤ i ≤ ξ. (7)

With this vector of desired input probabilities, NGH cod-
ing is performed to generate the corresponding source
words.

After constructing the codebook, we must evaluate the
average code rate. Assume independent and equiprobable
input bits, and let codeword α(σj)i be assigned to a source
word of length li. The probability of occurrence of that code-
word when the encoder is in state j is p(α(σj)i) = 2−li .
Note that since these probabilities are not in general equal
to the maxentropic probabilities, the steady-state probabili-
ties of the principal states are not exactly the probabilities
in the steady-state distribution of the FSM. Based on the
probability of occurrence of each codeword in the codebook,
it is possible to evaluate the steady-state distribution π̃ =
[π̃ (σ1), π̃ (σ2), . . . , π̃ (σ|9|)] of all the principal states 9 by
solving:

π̃P = π̃ (8)

where P is a |9| × |9| matrix, pji is the element in j-th row
and i-th column and

pji =
∑

k,∀h(σj)k=σi

p(α(σj)k ). (9)

TABLE 9. Codebook of a N = 5 DC-free code with η = 99.14%.

TABLE 10. Codebook of a N = 5 DC-free code with ternary source and
η = 100%.

Given the steady-state distribution of the codebook,
the average code rate R is evaluated as

R̄ =

∑
li
li × 2−li

∑
li
(
|9|∑
j=1
π̃ (σj)× o(σj)i)× 2−li

(10)

where o(σj)i is the length of the codeword emitted from state
σj due to the occurrence of the i-th source word.

Similar to single-state encoding, by performing partial
extensions, different codebooks can be generated depending
on different concatenations of words in partial extensions.
We can establish limits on nmax or lmax , use an exhaustive
search to compare all codebooks that are within these limits,
and choose the one that has the highest R̄.
Example 6: (d = 1, k = 3 RLL code) If we do not

perform partial extensions but directly perform NGH coding
over the minimal set shown in Table 3, we obtain the simple
yet efficient codebook shown in Table 8. Although |α(σ1)| =
|α(σ2)| = 2, the number of unique codewords in Table 8 is
only three. It can be verified that the steady-state distribution
for this codebook is π̃ = [ 23

1
3 ] and that the average code rate

is

R =
1× 1

2 + 1× 1
2

1
2 × 2+ 1

2 × ( 23 × 2+ 1
3 × 1)

=
6
11

which achieves 98.9% of capacity. Note that this code is
as efficient as the single-state code given in Table 1, but
that it has shorter codewords and source words. Higher
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TABLE 11. Codebook of a DC-free RLL code corresponding to an NRZI encoded (d = 1,k = 3) code with N = 5, η = 98.09%.

TABLE 12. Codebook of a DC-free RLL code corresponding to an NRZI encoded (d = 1,k = 3) code with N = 5, η = 98.47%.

TABLE 13. Codebook of a DC-free RLL code with (d = 2,k = 3,N = 5),
η = 98.62%.

efficiency can be achieved with partial extensions and a
larger codebook. To compare, another variable-length coding
technique [20] gives a rate 0.5 variable-length (d = 1, k = 3)
code with efficiency 90.7%, hence demonstrating the effec-
tiveness of our proposed construction technique.
Example 7: (DC-free codes with N = 5) Using the min-

imal set shown in Table 4 as the codebook, we are able to
construct a code with efficiency η = 96.46%. After per-
forming partial extensions with maximum codeword length
lmax = 4, we obtain the codebook shown in Table 9
which has efficiency η = 99.14%. We also note that,
as demonstrated in Table 10, with a ternary source it is
possible to achieve 100% of capacity simply by using words
in the minimal set as the codewords, since the occurrence
probability of each codeword is equal to its maxentropic
probability.
Example 8: (DC-free RLL codes) Based on the extended

minimal set shown in Table 6, if we use the words in the
extended minimal set as the codewords, the average code
rate is R̄ = 0.4167 and η = 98.09%. The corresponding
codebook is shown in Table 11. Based on the partial extension
in Table 7, we construct the codebook with R̄ = 0.4183 and
η = 98.47% shown in Table 12. Further improvement of
efficiency can be obtained via partial extensions with larger
lmax and/or nmax .

In Table 13 we present a very simple, but highly efficient,
multi-state code for the (d = 2, k = 3,N = 5) constraint.
In Table 14 we list parameters of other DC-free RLL codes
that we have constructed. Note that still higher efficiencies
can be achieved for these values of d, k and N with larger
codebooks.

To compare, a state-of-the-art fixed-length code construc-
tion technique for the (d = 1, k = 3,N = 5) DC-free
RLL constraint gives a rate 0.4 code with η = 94.16%, and

TABLE 14. Codes constructed that satisfy different DC-free RLL
constraints.

the codebook has 18 states, 256 source words and hundreds
of codewords [31]. As shown in Tables 11 and 14, how-
ever, our proposed construction gives a codebook with only
4 states, 3 source words and 6 different codewords, and has
efficiency η = 98.09%. [31] also proposed a (d = 1, k =
5,N = 7) DC-free RLL code with 20 states and 16 source
words that results in an efficiency of η = 90.96%. Our
construction gives a code with 8 states, 5 source words and
η = 98.27% demonstrating that our proposed variable-length
construction technique can significantly reduce the com-
plexity and improve the efficiency of constrained sequence
codes. The codebook is shown in Table 15. Other exam-
ples of DC-free RLL codes we constructed are summarized
in Table 14.

As is evident in the above examples, all the codes we
have presented (and the codes we construct in the rest of
this paper) are state-independently decodable. This requires
attention during the construction process. For instance, con-
sider the minimal set where Wr ∈ W (σu) ∩ W (σy) and
Wr /∈ W (σv). This indicates that state σv cannot generate
Wr because of the constraint described by the FSM. But
with an appropriate selection of principal states, state σv
would generate another word Ws such that Ws /∈ W (σu)
and Ws /∈ W (σy). State-independent code design would have
Wr and Ws constitute a row, thus satisfying Condition 1.
For example in Table 5, w(σ1)1 and w(σ2)1 are 011 while
w(σ3)1 and w(σ4)1 are 100, where it is clear that states σ1
and σ2 can generate 011 but not 100, and vice versa for states
σ3 and σ4. Words 100 and 011 constitute the first row, and
Condition 1 is satisfied. Given a minimal set that has the
state-independent decoding property, it is readily seen that
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TABLE 15. Codebook of a DC-free RLL code with (d = 1,k = 5,N = 7), η = 98.27%.

codebooks constructed through its partial extensions can be
state-independently decoded.

IV. MULTI-STATE ENCODING BASED ON N-step FSM
As demonstrated above, different principal states may have a
different number of words, i.e. there may exist i, j such that
|W (σi)| 6=

∣∣W (σj)
∣∣. This will cause imbalance in the number

of words in different states in the minimal set, i.e., the number
ofwords in different states is unequal, and hence causes possi-
bly a different number of codewords associated with different
states in the codebook after partial extensions. Although as
we illustrated in the previous section, it may be possible to
establish an extended minimal set where |W (σi)| =

∣∣W (σj)
∣∣

by extending somewords, this approach does not apply for all
constraints. For example, with a DC-free N = 6 constraint,
if we select states 2, 4 and 6 as principal states, i.e. σ1 =
2, σ2 = 4, σ3 = 6, we have W (σ1) = {01, 10, 11},W (σ2) =
{01, 10, 11, 00}, and W (σ3) = {01, 00}. A feasible code-
book requires that the number of codewords in α(σi), 1 ≤
i ≤ |ξ | to be the same. If we choose to concatenate words
in W (σ3) to compensate for the imbalance, some words in
W (σ1) and W (σ2) become prefixes of words in W (σ3), and
after partial extensions, some codewords in α(σ1) and α(σ2)
become prefixes of words in α(σ3), eliminating the possibility
of state-independent decoding. Alternatively, it is possible to
eliminate words from W (σ1) and W (σ2) to force the same
number of words in all the principal states, however this will
result in rate loss.

In this section we extend our construction technique to
include the use of n-step FSMs, and illustrate this exten-
sion with DC-free codes because of their importance in
recently-developed VLC systems. In the next section we
consider a special case of n-step FSMs for DC-free codes that
can result in even further enhancement.

A. n-STEP FSM
An n-step FSM describes transitions among states where
the edge labels represent the concatenation of n successive
edges of the initial FSM. For example, when the initial FSM
contains edge labels of a single symbol, the labels in the
n-step graph have length n. The adjacency matrix of an n-
step FSM is Dn and the n-step transition matrix is Qn. The

asymptotic steady-state distribution π of a n-step FSM is the
same as that of the initial FSM.

B. PRINCIPAL STATES AND MINIMAL SETS
Given the n-step FSM, the general code construction proce-
dure is similar to the one introduced above. The concatenation
of words and selection of principal states is the same as that
introduced in Section III-A. Should the number of words in
the principal states be unequal, we perform concatenation
over some of the words inW (9) according to Definition 1 in
an attempt to construct an extendedminimal set with the same
number of words in each principal state. Caremust be taken in
this step to ensure that the prefix condition is maintained, and
similarity in the number of words is improved. For example,
it might occur that wr ∈ W (σ1) and wr ∈ W (σ2), where
|W (σ1)| < |W (σ2)|. If we concatenate wr only in W (σ1) to
increase the number of words in state σ1, wr in W (σ2) will
become a prefix of some words in W (σ1). If we concatenate
wr in both W (σ1) and W (σ2), the inequality in number of
words might become more pronounced. To address this prob-
lem, we must choose an appropriate value of n such that some
words can be concatenated without those problems occurring
in the new minimal set, which we call the n-step minimal
set.

We observe that in n-step FSMs of DC-free codes with
N RDS values, state 1 and state N have fewer words than
state bN2 c. Note that with n = N − 1, the all-one word of
length N − 1 is generated by state 1 and the all-zero word
of length N − 1 is generated by state N . In addition, those
two words do not occur in any other states in the minimal set.
Therefore, it is possible to concatenate those two words with
other words in the minimal set according to Definition 1 to
compensate for the imbalance of words without causing the
prefix problem to arise.

This observation that the imbalance of words in the n-step
minimal set can be reduced also holds for n-step FSMs with
n = N − 2 where the all-one word is generated by states
1 and 2 and the all-zero word is generated by states N − 1
and N −2. It is straightforward to verify that this observation
applies when n is in the range

n = [
⌈
N
2

⌉
, N − 1]. (11)
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TABLE 16. The minimal set of a 3-step DC-free code with N = 6.

TABLE 17. An extended 3-step minimal set of a DC-free code with N = 6, n = 3.

From this range, we select the n that results in the highest
achievable code rate, as will be discussed in the next subsec-
tion.
Example 9: (DC-free N = 6 code) Consider the con-

struction of an n-step minimal set for the DC-free N = 6
constraint. Using (11), we obtain the range of n as [3, 5].
Selecting all states as principal states, the minimal set for the
3-step FSM is shown in Table 16.

It is clear from this table that there is an unequal number of
words in the states in this minimal set. As has been discussed,
if we extend words in this table without due care, we may
violate the prefix condition or cause greater imbalance to
arise. For example, if we extend the word 101 in W (σ1), all
other occurrences of the word 101 in the same row should
be extended as well, otherwise they will become prefixes
of the newly concatenated word. However, the extension of
the word 101 in other columns in this row will make the
imbalance more severe.

Motivated by the observation above, we perform concate-
nation of the all-one words in state σ1, σ2, σ3 and of the
all-zero words in state σ4, σ5, σ6. The resulting table is shown
in Table 17.

C. PRUNING AND ACHIEVABLE CODE RATE
Careful extension of words should reduce the imbalance
between the number of words from different states while

TABLE 18. Achievable code rates of different n values of n-step FSMs.

ensuring that the prefix condition remains satisfied. However,
should an inequality among states remain, it is possible to
truncate some of the words to obtain a pruned version of the
extended minimal set that has the same number of words in
each state. We denote this pruned set as W p(9).
The number of words that must be truncated from state σj,

denoted u(σj), is

u(σj) =
∣∣W (σj)

∣∣−min{|W (σ1)| , |W (σ1)| , . . . ,
∣∣W (σ|ψ |)

∣∣}.
(12)

Given Qn and Dn, we can evaluate the probability of the
i-th word inW (σj), 1 ≤ j ≤ |9|, which we denote p(W (σj))i.
Then, u(σj) words with the lowest probabilities in W (σj)
are eliminated. We denote the set of words in each state of
W p(9) as W p(σi), 1 ≤ i ≤ |9|, and the set of next states
corresponding to words in W p(σi) as Hp(σi).
Since some words that satisfy the constraint are not used,

we are not able to achieve full capacity. The achievable
code rate of W p(9), denoted as C̃n, is given by (13),
as shown at the bottom of this page where l(W p(σk ))v

C̃n =

|9|∑
k=1

π̃p(σk )× (
|W p(σj)|−u(σj)∑

v=1

−p(W p(σk ))v × log2p(W
p(σk ))v)

|9|∑
k=1

π̃p(σk )× (
|W p(σj)|−u(σj)∑

v=1

p(W p(σk ))v× l(W p(σk ))v)

(13)
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TABLE 19. Codebook of a pruned version of the extended 3-step minimal set of a DC-free code with N = 6.

TABLE 20. Highest average code rates of DC-free code with N = 6
codebooks with different size.

denotes the length of the v-th word in W p(σk ), and π̃p =
[π̃p(σ1), π̃p(σ2), . . . , π̃p(σ|9|)] is the steady-state distribu-
tion ofW p(9). Note that π̃p is different from the steady-state
distribution of the initial FSM of the constraint. It is eval-
uated similar to (8), but with p(α(σj))i in (8) replaced with
p(W p(σj))i. After evaluating C̃n, we choose to work with
the W p(9) with the highest C̃n and the highest achievable
efficiency η̃n = C̃n/C .
Example 10: (DC-free N = 6 code) Based on (13), using

the approach outlined in Sections IV-B and IV-C where the
all-one and all-zero words are extended and u(σj) words are
pruned, the achievable code rates of different n-step FSMs are
shown in Table 18. Note that although for illustration we use
n = 3 as an example throughout this section, C̃n is highest
with n = 4.

D. ENCODING
Since we now haveW p(9) which contains the same number
of words in each state, we can perform partial extensions and
NGH coding to obtain the codebook in a manner similar to
that introduced in Section III-D. As above, the evaluation of
the average code rate is given by (10). Within predetermined
limits on nmax and/or lmax , an exhaustive search can be per-
formed to determine the codebook with the highest R̄.
Example 11: (DC-free N = 6 code) Based on Table 17

and (12), the words 111101 and 111011 from state σ2, and
the words 000010 and 000100 from state σ5, are removed to
result in an equal number of words in all states in the 3-step
minimal set. If we use this 3-step minimal set as the code-
book, and perform NGH coding to obtain the assignment of
source words, we construct the codebook shown in Table 19
that has an efficiency of 92.8%.
By performing partial extensions over this 3-step minimal

set, we are able to construct codebooks with higher average
code rates. Some results are listed in Table 20.

Lastly, we note that the construction process introduced in
this section can be used for a variety of constraints, and in
some instances can result in a codebook with few principal

states, or an extended minimal set with an equal number of
words in all states so that so pruning is not needed. In the
next section we focus on DC-free codes for VLC systems,
and we show that appropriately designed DC-free codebooks
can benefit from both of these conditions.

V. CASE STUDY: DC-FREE CODES FOR VLC
A. BACKGROUND, 4B6B AND 8B10B CODES
Visible light communication (VLC) that provides short-range
free-space data transmission with light-emitting diodes has
recently attracted much attention [13]–[18]. On-off key-
ing (OOK) that represents binary data with the presence or
absence of light pulses is commonly used in VLC systems
due to its simplicity. In these systems, the brightness of the
light is affected by the distribution of ones and zeros in the
transmitted symbol sequence. Moreover, flicker is affected
by the length of consecutive ones and zeros in the transmitted
codewords and can be mitigated by limiting the runlength in
the coded sequence. DC-free codes have also found applica-
tions in VLC, where DC-free 4B6B and 8B10B codes have
been adopted in the standard to reduce flicker perception and
adjust dimming control [13]. These codes ensure an equal
number of ones and zeros in the transmitted symbol sequence
which helps maintain the dimming level. DC-free codes also
have an inherent RLL limit and therefore assist with flicker
mitigation. As noted earlier, themaximum runlength of coded
ones and zeros in DC-free codes with N different running
digital sum (RDS) values is limited to N − 1.
The 4B6B code satisfies the DC-free constraint with

N = 5; the codebook has 16 source words where each
source word of length 4 is mapped to a codeword of length 6,
resulting in the code rate R = 4/6 [13]. The capacity of the
N = 5 constraint is 0.7925 [1], therefore the efficiency of the
4B6B code is η = R/C = 84.12%.

The 8B10B codes are a class of rate R = 8/10 DC-free
codes with N = 6 or N = 7, which are constraints with
capacity 0.8495 and 0.8858 respectively. A survey of 8B10B
codes can be found in [1]. The N = 7 code in [36] has gained
considerable attention due to its structure which simplifies
implementation.

B. CONSTRAINED SEQUENCE CODING FOR VLC
In Section III we showed that, with our proposed encoding
method, codebooks that satisfy the DC-free N = 5 constraint
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FIGURE 5. 2-step FSM of the DC-free constraint with N = 7.

can be constructed with over 99% efficiency and with fewer
codewords than the 4B6B code noted above. Therefore, our
codes are superior in terms of both efficiency and implemen-
tation complexity. In this subsection, we now focus on coding
for the DC-free constraint with N = 7, and compare our
results with the 8B10B codes.

We present codes constructed for VLC systems based
on n-step FSMs. We show that based on n-step FSMs
with an even n, as introduced in Section V, the number
of principal states in a DC-free code can be reduced to
N/2 when N is even and either bN/2c or dN/2e when
N is odd, and that an extended minimal set with an equal
number of words in each state can be obtained such that
η̃ = 100%.
The reduction of states is based on the observation that with

DC-free constraints, when n is even, the n-step edge graphs
subdivide into two non-intersecting FSMs. An example of
this phenomenon is shown in Fig. 5, where it is evident
that in this 2-step edge graph of the DC-free constraint
with N = 7, the FSM comprised of the even-numbered
states is not connected to the FSM comprised of the
odd-numbered states. However, as discussed in [37], each
of these smaller FSMs generate all constraint satisfying
sequences, and therefore either one can be used as the basis
for our variable-length code design. It can also be verified
that the 2-step FSM comprised of the three even-numbered
states has the steady-state probability distribution π =

[0.2929.0.4142, 0.2929], whereas the 2-step FSM of the four
odd-numbered states has the steady-state probability distribu-
tion π = [0.1464, 0.3536, 0.3536, 0.1464].
Following the construction technique introduced in

Section V with the 2-step FSM, we now consider the con-
struction process specifically for DC-free codes with any
value of N . We show that it is always possible to construct an
extended minimal set with a maximum achievable efficiency
η̃ = 100%with onlyN/2 principal states whenN is even, and
with bN/2c or dN/2e principal states whenN is odd, depend-
ing on whether we work with the set of even-numbered
states or the set of odd-numbered states. We begin with the
following example for N = 7 with the set of even-numbered
states.
Example 12: (DC-free codes with N = 7) When we

consider the set of even-numbered states, the minimal set
of the 2-step FSM is shown in Table 21. The achievable
code rate of this codebook is 0.8858, which is the capac-
ity of DC-free constraint with N = 7, confirming that

TABLE 21. A 2-step minimal set of DC-free code N = 7.

TABLE 22. An extended 2-step minimal set of DC-free code N = 7.

TABLE 23. A DC-free N = 7 codebook, η = 95.53%.

TABLE 24. A 2-step minimal set of DC-free code N = 7 with the set of
odd states as principal states.

all constraint-satisfying sequences are generated by this
three-state FSM.

We extend the words 11 in W (σ2),W (σ4), and 00 in
W (σ4),W (σ6) by tracing the edges corresponding to 11 and
00 to construct Table 22. Then, we extend word 1111 in
W (σ2), and 0000 in W (σ6) by once again tracing the edges
corresponding to 11 and 00, and obtain an extended minimal
set with ξ = 9 without causing the prefix problem. Note that
with this extended minimal set, the achievable efficiency is
100% since no pruning is performed. If we use this minimal
set as the codebook and perform the encoding procedure as
outlined in Section V, we obtain the codebook in Table 23
with R̄ = 0.8462 and η = 95.53%. By performing partial
extensions with nmax = 15, we have constructed a codebook
with R̄ = 0.8535 and η = 96.35%.
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TABLE 25. A DC-free N = 7 codebook, η = 94.88%.

Example 13: (DC-free codes with N = 7) We now
consider the construction of a codebook with the set
of odd-numbered states as principal states. The mini-
mal set is shown in Table 24, where the principal states
are σ1, σ3, σ5, σ7. As in the example above, we perform
extensions by tracing the edges corresponding to 11 and 00 to
obtain an extended minimal set with an equal number of
words in each principal state. By performing NGH coding
over this extended minimal set, we obtain a codebook with
R̄ = 0.8405 and η = 94.88%, which is shown in Table 25.
By performing partial extensions with nmax = 17, we have
constructed a codebook with R̄ = 0.8468 and η = 95.59%.
While the above examples demonstrate the construction of

extended minimal sets without pruning when N is odd, it is
straightforward to verify that this approach can also be used
with 2-step FSMswhenN is even. In all cases, the all-one and
all-zero words are extended until there are an equal number of
words associated with each state. The fact that this is always
possible is given in the proof of the following theorem.
Theorem 1: For DC-free constraints with any N , we can

obtain an extended minimal set with an equal number of
words in all states based on extension of the all-zero and
all-one words, where onlyN/2 states are selected as principal
states when N is even, and when either bN/2c or dN/2e
states are selected as principal states when N is odd. These
codes have achievable efficiency η̃ = 100%, and are instan-
taneously decodable.

Proof: See Appendix A.
Recall that the 8B10B code employed in VLC has R = 0.8.

Tables 23 and 25 present simple codes with code rates R̄ =
0.8462 and R̄ = 0.8405, respectively. With similar high code
rates, the codes proposed with the single-state variable-length
coding scheme in [27] include significantly more and longer
words. Thus with multi-state encoding, we can construct
codes with fewer and shorter codewords to satisfy DC-free
constraints for VLC.

VI. CONCLUSION
We have proposed a generalized framework to construct
multi-state variable-length constrained sequence codes that
have capacity-approaching code rates and can be decoded
with state-independent decoding. We first introduced the
definition of concatenation and principal states based on an
FSM description of the constraint. We then discussed the

code construction process which includes establishing the
minimal set, performing partial extensions, and NGH coding.
Furthermore, we extended the proposed construction process
to n-step FSMs to overcome an unequal number of words
between states in minimal sets in some constraints. We then
designed DC-free codes specifically for VLC systems based
on n-step FSMs. Examples were given to show that codes
satisfying a variety of constraints, including the DC-free con-
straint that is employed in VLC, can be constructed with high
efficiency and low implementation complexity, compared to
many codes in the literature.
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APPENDIX A
PROOF OF THEOREM 1

Proof: We consider 2-step FSMs, and consider odd and
even N separately.
i) We first consider odd N with the set of bN2 c

even-numbered states as principal states, i.e. 9 =

{σ2, σ4, . . . , σN−1}. It is readily seen that the number of
words in each state in 9 is N9 = {3, 4, 4, . . . , 4, 3},
because for a state σj ∈ {σ4, σ6, . . . , σN−3}, W (σj) =
{01, 10, 00, 11}, and for the other two states, W (σ2) =
{01, 10, 11} and W (σN−1) = {01, 10, 00}. Starting from a
state σj, another state σi, i ∈ {j + 2, j − 2} is reached in
a single extension with label 11 (when i > j) or 00 (when
i < j). With each extension we reach another state in9. Since
|9| = bN/2c, the maximum number of extensions that result
in the all-one or all-zero sequence is bN/2c − 1.

We denote 1Nσj
as the number of new words generated

from an extension of the edge with label 11 or 00. Consider
σj = σ2, and consider the number of words that can occur
as an extension of the edge 11. Since that edge has reached
state σ4, when 4 < N − 1 there are four possible words:
1101, 1110, 1100, 1111 since W (σ4) = {01, 10, 00, 11},
and hence 1Nσj

= 4. Since the word 1111 has reached
state σ6, when 6 < N − 1 there are four extended words
111101, 111110, 111100, 111111, hence 1Nσj

= 4. Con-
tinuing in this manner, it can be deduced that in the first
bN/2c − 2 extensions, 1Nσj

= 4. In extension number
bN/2c − 1, however, 1Nσj

= 3 since it reaches state σN−1
where |W (σN−1)| = 3, and the extendedwords do not include
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the all-one word. Therefore, the total number of words Nσj in
state σj once the all-one word is no longer in the set is:

Nσ2 =
∑

k=2,4,6,...,N−1

1Nσk

= 3+ 4(bN/2c − 2)+ 3− (bN/2c − 1)

= 3bN/2c − 1. (14)

Similar analysis holds for σN−1. The first extension of
the edge 00 from σN−1 results in four extended words
0001, 0010, 0011, 0000 since W (σN−3) = {01, 10, 11, 00},
hence1Nσj

= 4. It can be deduced that in the first bN/2c− 2
extensions1Nσj

= 4, and the all-zero word remains in the set.
In extension number bN/2c−1,1Nσj

= 3, and this is the first
extension that does not include the all-zero word. Therefore,
the total number of words Nσj in state σj once the all-zero
word no longer appears in this state is alsoNσj = 3bN/2c−1.
For σj ∈ {σ4, σ6, . . . , σN−3}, both 11 and 00 in are traced

during extensions. It can be verified that the number of exten-
sions of the all-one word is N−1

2 −
j
2 , where 1Nσj

= 4

in the first N−1
2 −

j
2 − 1 extensions and 1Nσj

= 3 in the
last extension, since it has reached state σN−1. Similarly,
the number of extensions of the all-zero word is j

2 − 1 where
1Nσj

= 4 in the first j
2 − 2 extensions and 1Nσj

= 3 in
the last extension, since it has reached state σ2. Therefore,
the total number of words Nσj in state σj once the all-one and
the all-zero words are no longer in the set is:

Nσj = 4+ 4(bN/2c −
j
2
− 1)

+ 3+ 4(
j
2
− 2)+ 3− (bN/2c − 1)

= 3(bN/2c)− 1. (15)

Thus if all principal states are extended just to the point where
they no longer contain either the all-zero or all-one words,
each of the principal states 9 = {σ2, σ4, . . . , σN−1} have
3(bN/2c) − 1 words in the extended minimal set, and hence
η̃ = 100% since no pruning is required to construct a set in
which all principal states have the same number of words.
ii) When we choose odd-numbered N with the set of odd

states, similar to the above analysis, the total number of words
Nσj in state σj ∈ {σ1, σN } once the all-one or all-zero words
are no longer in the set is

Nσj = 2+ 4(dN/2e − 2)+ 2− (dN/2e − 1)

= 3dN/2e − 3, (16)

and the total number of words Nσj in state σj ∈

{σ3, σ5, . . . , σN−2} once the all-one or all-zero word is no
longer in the set is

Nσj = 4+ 4(dN/2e −
j+ 1
2
− 1)

+ 2+ 4(
j+ 1
2
− 2)+ 2− (dN/2e − 1)

= 3(dN/2e)− 3. (17)

Therefore all states have 3(dN/2e)−3 words, and η̃ = 100%.

iii) Similarly, when we choose even N with either the set
of even-numbered or odd-numbered states, the total number
of words Nσj in state σj ∈ {σ1, σ3, . . . , σN−1} or σj ∈
{σ2, σ4, . . . , σN } after all extensions is

Nσj = 3(
N
2
)− 2, (18)

so there is the same number of words in all principal states of
the extended minimal set and η̃ = 100%.
iv)We now prove the words in the extendedminimal set are

prefix-free such that they are instantaneously decodable. First
we observe that in the minimal setW (9), no word is a prefix
of another. Therefore, the prefix problem could only have
occurred if a word Wq ∈ W (σu),W (σv) is extended in σu,
but is not extended in σv. During the extensions described in
this proof, only the all-one word or all-zero word is extended.
Therefore, if the all-one word Wq ∈ {W (σu),W (σv)}, it is
extended in σu and it is also extended in σv, since extensions
continue until the all-one word is no longer in the set. Sim-
ilar analysis holds for the all-zero word. Hence, the prefix
problem is avoided and codebooks constructed based on
these balanced extended minimal sets are instantaneously
decodable.
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