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ABSTRACT Healthcare recommender system (HRS) has shown the great potential of targeting medical
experts or patients, and plays a key role in improving an individual’s health by providing insightful
recommendations. The HRSs generate recommendations based on a successful and widely applied method
known as collaborative filtering (CF). Despite its success, the CF suffers from data sparsity and cold-start
problem, which results in the poor quality of recommendations. In particular, it is a great challenge to
seeking information relevant to patients’ condition, and understanding the medical terms and relationships
between them in HRSs. To address these problems, we design a novel collaborative variational deep learning
model (CVDL) to exploit multi-sourced information for providing appropriate healthcare recommendations
in primary care service. CVDL employs additional variational autoencoder (VAE) to learn deep latent
representations for item contents (the description of primary care doctors) in latent space, instead of
observation space through an inference network. Meanwhile, the CVDL extracts latent user (patient) features
by incorporating user profile in a VAE neural network. Therefore, the CVDL can learn better implicit
relationships between items and users from item content, user profile, and rating matrix. In addition,
a Stochastic Gradient Variational Bayes (SGVB) approach is proposed to calculate the maximum posterior
estimates for learning model parameters. The experiments conducted on three datasets have indicated that
our method significantly outperforms the state-of-the-art hybrid CF methods.

INDEX TERMS Collaborative topic regression, variational autoencoder, healthcare recommender system,
side information, implicit feedback.

I. INTRODUCTION
Primary care acts as the principal point of both daily and
long-term care for patients within a healthcare system [1].
It can facilitate the delivery of equitable healthcare and satisfy
over 80% health needs of an individual throughout his/her
life. However, patients usually face the challenge of look-
ing for the right primary care physicians (doctors) without
appropriate healthcare recommendation mechanism. Mean-
while, most primary care providers (PCPs) often lack the
capability of transforming their services to more patient-
centered approaches, which means most PCPs are unable to
provide the applicable doctor recommendation service for
patients [2]. The gap between the rapidly changing institu-
tional environment and increasing patient autonomy makes it
more complicated to recommend the most suitable doctors
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to patients. The increasing need of matching patients and
doctors results in the presence of healthcare recommender
systems (HRS) [3].

HRS can help to target patients (users) or medical
experts (items) based on their medical records, and has
shown huge potential of improving an individual’s health by
providing insightful recommendations, such as medication,
diagnosis, treatment and even primary care physicians. Col-
laborative filtering (CF) is one of the key techniques to build a
patient-centered HRS, due to its accuracy and scalability [4].
The essence of CF is to infer users’ preferences from the
behavior data of themselves and other users, and CF only
depends on user-item rating which indicate how much users
liked items. Most traditional CF methods are based on matrix
factorization (MF) [5], which maps users and items into a
shared latent space and utilizes a latent feature vector to rep-
resent either a user or an item [6]. However,MF-basedmodels
suffer from data sparsity and cold-start problem, so that
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the accuracy of learning latent user/item representations is
limited. To address these problems, large numbers of previous
works incorporate user-specific or item-specific information
into traditional MF. In order to extract more accurate latent
factors from auxiliary information of user/item, some studies
employ latent Dirichlet allocation (LDA) [7], [8], Bayesian
personalized ranking [9], [10], denoising autoencoder (DAE)
and its variants [11]–[14] to model user/item side
information.

Among those methods mentioned above, collaborative
topic regression (CTR) [8] is a probabilistic graphical model,
which seamlessly integrates the conventional MF model with
probabilistic topic modeling, and can generate more accurate
recommendations based on item contents and other user’s
ratings. To improve CTR, previous works [15], [16] integrate
social matrix factorization (SMF), into CTRmodel for jointly
taking advantage of user ratings, user contexts, item contents
and social relationships to achieve better predicting perfor-
mance. By contrast, some studies directly learn the attention
for rating prediction, where users allocate to their neighbors
without uniformity [17], or directly extend CTR by integrat-
ing the user rating, item content, and social ensemble among
items into the same hierarchical Bayesian model [18], [19].
These enhanced models are simple in principle and follow
the same approximate inference procedure in a batch learning
mode, but their representation capability is limited by LDA,
and latent representation learning is not effective enough as
the side information is very sparse.

In the last decade, deep learning models, e.g. convolutional
neural network (CNN), recurrent neural network (RNN) and
autoencoder (AE) have been taken advantage of in many
fields, such as industrial design [20] and image recog-
nition [21]. Lately, some works have applied variational
autoencoder (VAE) [22] to perform CF task in recommen-
dation, such as CVAE [23], CAVAE [24], CLVAE [25] and
VAECF [26]. VAE is a non-linear probabilistic model, and it
has the capability of capturing non-linearity and uncertainty
in recommender systems with big data. Despite the effec-
tiveness of these VAE-based methods, there are still several
drawbacks, such as, CVAE and CAVAE directly use content
information to extracts the latent item vectors. CLVAE and
VAECF only exploit rating data, which results in poor perfor-
mance under extremely high data sparsity scenario and cannot
deal with cold-start problem [27].

In primary care systems, the additional information of
patients and doctors are very rich, and have not been fully
utilized for the improvement of recommendation perfor-
mance, which makes HRS still in their infancy concern-
ing trustworthiness and reliability. To solve those problems
above, we devise a collaborative variational deep learning
model (CVDL) for HRS in primary care, to provide insight
and personalization into the care of patients by using their
preferences. CVDL generates both latent user/item vectors
through a variational neural network framework, which can
effectively learn non-linear latent representations of users and
items for further CF task. Meanwhile, the side information

of user and item is incorporated into their latent factors
generative processes, which means CVDL can mitigate data
sparsity and model better latent representations of users and
items. In inference process, we derived a Stochastic Gradient
Variational Bayes (SGVB) approach to infer the posterior of
latent factors of users and items, which makes the parameters
of our model can be effectively learned. The rest of our
paper is arranged as follows: Section 2 provides an overview
of related works on CTR models. Section 3 introduces the
CDVL model, and discusses parameters learning process.
Section 4 shows experimental results and discussions, fol-
lowed by conclusions and future work in section 5.

II. RELATED WORK
CTR utilizes item content to enhance CF methods and has
achieved promising performance by integrating both user
rating and item content [8], as shown in Figure 1. CTR com-
bines the merits of both probabilistic MF (PMF) and topic
modeling (LDA) models, and includes the latent variable
for offsetting the topic proportions when modeling the user
ratings, and the offset variable can successfully capture the
item preference for a particular user considering their ratings.

FIGURE 1. The framework of CTR.

However, CTR does not exploit user information and
cannot learn reliable latent user representations. To address
this issue, some studies have been proposed using different
variants that incorporate social information into CTR. For
instance, CTRSMF [15] and C-CTR-SMF2 [16] integrated
CTR with SMF model using a strategy that is similar to
SoRec, where the social relationships are simultaneously
factorized with the rating matrix. However, they do not reveal
the underlying relations among users due to the lack of phys-
ical explanation. Compared to CTRSMF and C-CTR-SMF2,
LACTR [17] and RCTR [18] directly learn the amount of
attention that users allocate to other users and leverages this
learned influence to alleviate sparsity problem. These two
methods assume that the social interactions of users usually
follow topically similar contents, so they are very sensitive
to different type of datasets and the prediction accuracy may
vary with the distributions of datasets. For social recommen-
dation, CTRSTE [19] integrates user ratings, item contents
and trust ensemble into CTR, which is simple in algorithmic
principle, but its representation capability is limited due to
LDAmodel, and the latent representation learned is not effec-
tive enough when the side information is very sparse.
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Recently, several works utilize deep learning models to
help perform the CF task in CTR, due to the non-linear
nature of neural networks, such as CDL [11], CVAE [23],
CAVAE [24] and CTRDAE [28]. All of CDL, CVAE and
CAVAE combine stacked DAE (SDAE) or VAE with CTR,
and enable themselves to balance the influences of user rat-
ings and item content, but the auxiliary information of user
profile is not considered at al. By contrast, CTRDAE employs
DAE and LDA to learn user social representation and item
content representation respectively, to prevent user correla-
tion overfitting under the sparse social relations scenarios.
However, the content representation capability of CTRDAE
is the same as CTR, which is limited due to topic modeling
model. Although these works have improved CTR in separate
aspects by using either content or social network informa-
tion, a critical problem remains,i.e., how to effectively inte-
grate item contents, user ratings and user profiles/relations
into CTR [29]. Unlike previous CTR-based recommenda-
tion methods, this paper constructs the generative processes
of users and items through a neural variational framework,
which enables our model to capture non-linear latent repre-
sentations of both users and items.

III. COLLABORATIVE VARIATIONAL DEEP
LEARNING FOR HRS
In this section, we introduce the collaborative variational
deep learning model (CVDL) for HRS, which contains two
main components: the deep generative model for feature
extraction and PMF model for rating prediction, as shown
in Figure 2.

FIGURE 2. The graphic model of CVDL.

In CVDL, the items contents and user profiles/relations are
generated by their latent variables, and rating predictions are
generated jointly through both latent item and user variables.
Latent item variables are incorporated with item contents
information through latent content variables by employing
an additional VAE model, due to the variety of. Latent user
variables are linked with user profiles/relations via latent trust
variables by a standard VAE model. Then, the users’ and
items’ latent vectors are fed into the PMF model to learn the
user-item relations, and finally predict the ratings.

A. NOTATIONS
Table 1 summarizes the symbols and notations in this paper.
GivenM users andN items, the latent factors of user and item
are denoted by U = {ui|i = 1, . . . ,M} ∈ RK×M and V =
{vj|j = 1, . . . ,N }∈ RK×N respectively, where K denotes the
dimensions of latent factors. For implicit feedback, the user
rating matrix is denoted by R ∈ RM×N , where Rij = 1
indicates that the i-th user has interacted with the j-th item,
otherwise Rij = 0.

TABLE 1. Symbols and notations.

The side information of users and items is denoted by two
bag-of-words vectors over users and items, X = {Xi|i =
1, . . . ,M} ∈ RP×M and Y = {Yj|j = 1, . . . ,N } ∈ RQ×M ,
respectively, where P and Q are the dimensions of user side
information and item side information respectively. Here,
we call X and Y latent profile representation and latent con-
tent representation, respectively. Besides, the tag information
of item contents are represents by T∈ RN×S , and T is a binary
matrix, where Tjs = 1 means s-th tag is associated with item
vj and Tjs = 0 otherwise. Given R, X , Y and T , the problem
is to infer latent user factor ui and latent item factor vj, and
then to predict the unknown ratings R∗.

B. FEATURE EXTRACTION
As mentioned in [26], most MF-based models assume that
the prior distributions of user and item latent factors are stan-
dard Gaussian distributions, and predict rating only through
rating data. To extract more effective latent vectors from side
information, CVDL incorporates both user’s and item’s side
information into feature extraction, which can make positive
contributions to the further rating prediction.

1) GENERATIVE MODEL
To learn better user and item features, two variational neural
networks are built. The generative process of CVDL is similar
to the deep latent Gaussian model [22]. For each user ui,
the generative model starts by sampling a K−dimensional
latent representation zu ∼ N (0, IK ) from a standard Gaussian
prior. The sample variable X∼pθ (X|zu) is generated from
its latent variable zu through a decoder with the generative
parameter θ . The pθ (X|zu) can be generated from a multivari-
ate Bernoulli distribution (binary-value) or Gaussian distribu-
tion (real-value).
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The generative process of user profile is defined as follows:

(1) For each layer l ∈ [1,L] of the generative network,

a) For each column n of weight matrix W d
l , draw

W d
l,n ∼ N (0, λ−1w IK )

b) Draw bias vector bdl ∼ N (0, λ−1w IK )
c) For each row i of hdl , draw

hdl,i ∼ N (σ (hdl−1,iW
d
l + b

d
l ), λ

−1
t IK )

(2) For each Xi,

a) If Xi is binary, draw Xi ∼ B(σ (hdl W
d
l + b

d
l+1))

b) If Xi is real-value, draw

Xi ∼ N (hdl W
d
l + b

d
l+1, λ

−1
X IK )

where, λw, λt and λX are hyperparameters, hdl represents
hidden layers of decoder. Similar to SDAE, λt is taken to
infinity for computational efficiency.

The latent representation zu can be drawn by a Gaussian
prior distribution with zero mean and identity matrix: zu ∼
N (0, IK ). The user’s latent representation ui consists of latent
user offset and the latent user profile vector, i.e. ui = εi+ zui .
The generative process of item content is a little different

from that of user profile. CVDL employs additional VAE
to generate latent content vectors, which integrates the item
content information and its tag information as inputs and can
effectively learn the latent vector. The generative process of Y
is defined as follows:

(1) For each layer l
′

∈ [1,L] of the generative network,

a) For each column n of weight matrix W d
l′ , draw

W d
l′ ∼ N (0, λ−1w IK )

b) Draw additional weight matrixWs∼N (0, λ−1s IK )
c) Draw bias vector bl′ ∼ N (0, λ−1w IK )
d) Draw additional bias vector bs ∼ N (0, λ−1s IK )
e) For each row j of hdl′ , draw

hdl′,j ∼ N (σ (hdl′−1,jW
d
l′ +bl′ + TWs+bs), λ−1t IK )

(2) For each Yj,

a) If Yj is binary, draw Yj ∼ B(σ (hdl′W
d
l′ + bl′+1))

b) If Yj is real-value, draw

Yj ∼ N (hdl′W
d
l′ + bl′+1, λ

−1
X IK )

(3) For each Ts,

a) If Ts is binary, draw Ys ∼ B(σ (hdl′Ws + bs+1))
b) If Ts is real-value, draw

Ys ∼ N (hdl′Ws + bs+1, λ−1s IK )

where, λs is a hyperparameter, hdl′ denotes hidden layers
of decoder. Then, the item latent representation vj can be
denoted by vi = εj + zvj .

2) INFERENCE MODEL
The inference model is an encoder network corresponding
to the one in the generative model. For user, the inference
process is to approximate the intractable posterior distribution
pθ (zu|X) which is determined by the generative network.
Using the Stochastic Gradient Variational Bayes (SGVB)
estimator, the posterior of latent user profile variable zu
can be approximated by a tractable variational distribution
qφ (zu |X ).

qφ (zu |Xi) = N
(
µφ (Xi) , diag

(
σ 2
φ (Xi)

))
(1)

where, µφ∈ RK and σ 2
φ∈ R

K are the mean value and standard
deviation of the approximate posterior respectively, which are
non-linear functions of Xi and the variational parameter φ,
and they are inference outputs.

Similar to [26], the zu inference process is defined as
follows:
(1) For each layer l of the inference model,

a) For each column n of weight matrixW e
l , draw

W e
l,n ∼ N (0, λ−1w IK )

b) Draw bias vector bel ∼ N (0, λ−1w IK )
c) For each row i of hel , draw

hel,j ∼ N (σ (hel−1,jW
e
l + b

e
l ), λ

−1
s IK )

(2) For each user ui
a) Draw latent mean vector

µi ∼ N (helW
e
µ + b

e
µ, λ
−1
s IK )

b) Draw latent covariance vector

log σ 2
i ∼ N (helW

e
σ + b

e
σ , λ
−1
s IK )

c) Draw latent content vector zu ∼ N (µi, diag(σ 2
i ))

As explained in [26], the evidence lower bound (ELBO)
for Xi can be estimated using SGVB estimator:

L(θ, φ;Xi)
= Eqφ(zu|Xi )

[
log p (ui |zu )+ log pθ (Xi |zu )

]
−β · KL

(
qφ (zu |Xi ) ‖p (zu)

)
≈ log p

(
ui
∣∣zu,l )+ 1

L

L∑
l=1

logpθ
(
Xi
∣∣zu,l )

−β · KL
(
qφ (zu |Xi ) ‖p (zu)

)
(2)

KL
(
qφ (zu |Xi ) ‖p (zu)

)
=

1
2

M∑
i=1

(
µ2
i +σ

2
i −log σ

2
i −1

)
(3)

zui,l = µi + σi ⊗ εi,l (4)

where, KL is the Kullback-Leibler divergence, β ∈ [0, 1] is a
parameter to control the regularization strength for addressing
the posterior collapse problem [30], εi,l ∼ N (0, 1), and ⊗ is
the element-wise product.
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The inference process of item content is similar to user
profile inference process, and the ELBO for item network can
be derived in the same way:

L(θ, φ;Yj,Ts)
= Eqφ(zv|Yj,Ts )

[
log p

(
vj |zv

)
+ log pθ

(
Yj,Ts |zv

)]
−β · KL

(
qφ
(
zv
∣∣Yj,Ts ) ‖p (zv))

≈ log p
(
vj
∣∣zvj,l′ )+ 1

L

L∑
l=1

logpθ (Yj,Ts
∣∣zvj,l′ )

−β · KL
(
qφ
(
zv
∣∣Yj,Ts ) ‖p (zv)) (5)

Then, the generative process of the CVDLmodel is defined
as follows:
(1) For each user ui,

a) Draw latent user offset εi ∼ N (0, λ−1u IK ))
b) Set latent user vector as ui = εi + zui

(2) For each item vj,
a) Draw latent item offset εj ∼ N (0, λ−1v IK ))
b) Set latent item vector as vj = εj + zvj

(3) For each user-item pair (ui, vj), draw rating

Rij ∼ N (u>i vj, c
−1
ij )

C. OPTIMIZATION
Through the CVDL model, we utilize maximum a poster
probability estimator to learn parameters of our model. The
objective function includes three parts: the latent loss, the reg-
ularization loss and the KL loss, shown as follows.

L=−
∑
i,j

Cij
2

(
Rij − u>i vj

)2 λw
2

L∑
l=1

(
‖Wl‖

2
F+‖bl‖

2
F

)

−
λs

2

L∑
l=1

(
‖Ws‖

2
F+‖bs‖

2
F

)
−
λu

2

M∑
i

Eqφ(zu|Xi ) ‖ui − zi‖
2
F

+Eqφ(zu|Xi )
[
log p (Xi |zu )

]
−β · KL

(
qφ (zu |Xi ) ‖p (zu)

)
−
λv

2

N∑
j

Eqφ(zv|Yj,Ts )
∥∥vj − zj∥∥2F

+Eqφ(zv|Yj,Ts )
[
log p

(
Yj,Ts |zv

)]
−β · KL

(
qφ
(
zv
∣∣Yj,Ts ) ‖p (zv)) (6)

where,Cij is the confidence parameter forR, and ||·||F denotes
the Frobenius norm.

This objective function can be optimized by taking the
gradient L with respect to ui and vj and setting them to zero.
The update equations are derived as follows:

∂L
∂ui
=

∑
i∈R+j

Cij
(
Rj − u>i vj

)
vj − λuEqφ(zu)

[
ui − zui

]
(7)

∂L
∂vj
=

∑
i∈R−j

Cij
(
Rj − u>i vj

)
ui − λvEqφ(zv)

[
vj − zvj

]
(8)

where R+i denotes the items that ui has rated, and R
−

j repre-
sents the users who have rated vj.

Let the gradients with respect to ui and vj be zero, we have

ui←
(
VCiV> + λuIK

)−1 (
VCiRi + λuEqφ(zu)

[
zui
])

(9)

vj←
(
UCjU> + λvIK

)−1 (
UCjRj + λvEqφ(zv)

[
zvj
])

(10)

where Ci is the diagonal matrix with Cij(j = 1, 2, ..,N ) as its
diagonal elements and Ri = (Rij)Nj=1 for user ui.

For each item vj, Cj and Rj are similarly defined. It can be
easily found that the Eqφ (z) [z] equals to µ produced by the
encoder. Given U and V , the gradient with respect to µ and
σ of z can be computed as follows:

∂L(θ, φ;Xi)
∂µi

≈
λu

L

L∑
l=1

(
ui − zui,l

)
+

log pθ
(
Xi
∣∣zui,l )

∂zui,l
− β · µi (11)

∂L(θ, φ;Yj,Ts)
∂µj

≈
λv

L

L∑
l=1

(
vj − zvj,l′

)
+
log pθ

(
Yj,Ts

∣∣zvj,l′ )
∂zvj,l′

−β · µj

(12)
∂L(θ, φ;Xi)

∂σi

≈

[
λu

L

L∑
l=1

(
ui − zui,l

)
+

log pθ
(
Xi
∣∣zui,l )

∂zui,l

]
⊗ εl

−β ·
(
σi − σ

−1
i

)
(13)

∂L(θ, φ;Yj,Ts)
∂σj

≈

[
λv

L

L∑
l=1

(
vj − zvj,l′

)
+

log pθ
(
Yj,Ts

∣∣zvj,l′ )
∂zvj,l′

]
⊗ εl′

−β ·
(
σj − σ

−1
j

)
(14)

where log pθ
(
Xi
∣∣zui,l ), log pθ (Yj,Ts ∣∣zvj,l′ ) are determined

by Xi and (Yj, Ts), respectively. If Xi and (Yj, Ts) are in
binary,pθ (X|zu) and pθ (Y , T|zv) are Bernoulli distributions;
if Xi and (Yj, Ts) are in categorical, pθ (X|zu) and pθ (Y , T|zv)
follow Categorical distributions; if Xi and (Yj, Ts) are in real-
valued, pθ (X|zu) and pθ (Y , T|zv) are Gaussian. Consequently,
the weight gradients of decoder and encoder can be obtained
by using back propagation.

D. PREDICTION
After the optimal parameters are learned, CVDL can be
employed for in-matrix (non cold-start) and out-matrix (cold-
start) prediction. Assumed that O is the observed rating data,
and both types of predictions can be evaluated by point
estimation. For in-matrix prediction, we have

E
[
Rij |O

]
≈ E [ui |O]> E

[
uj |O

]
=
(
E [εi |O]+ E

[
zui |O

])>
×
(
E
[
εj |O

]
+ E

[
zvj |O

])
(15)

VOLUME 7, 2019 55683



X. Deng, F. Huangfu: Collaborative Variational Deep Learning for Healthcare Recommendation

Rij ≈ u>i vj = (εi + E
[
zui |O

]
)(εj + E

[
zvj |O

]
)

= (εi + µi)
>
(
εj + µj

)
(16)

For out-matrix prediction, the item is new and has not been
rated by other users or the user is new and has not rated any
item, which means E

[
εj
]
= 0 or E [εi] = 0, so the rating

predictions can be calculated by

E
[
Rij |O

]cold−item
≈ E [ui |O]> E

[
vj |O

]
=
(
E [εi |O]+ E

[
zui |O

])> E [zvj |O ]
(17)

E
[
Rij |O

]cold−user
≈ E [ui |O]> E

[
vj |O

]
= E

[
zui |O

]> (E [εj |O ]+ E
[
zvj |O

])
Rcold−itemij ≈ (εi + µi)

> µj

Rcold−userij ≈ µ>i
(
εj + µj

)
(18)

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
1) DATASETS
In this section, three real-world datasets are selected to eval-
uate our model. First two are public datasets from CiteULike
which are citeulike-a and citeulike-t. The third one is an
anonymized healthcare dataset collected from 16 hospital
in Georgia State (denoted by GHC), which includes over
2 million transactions and over 50 distinct attributes over
7 years. Table 2 summarizes the characteristics of CiteULike
and GHC datasets.

TABLE 2. Statistics of citeULike and GHC datasets.

The two CiteULikedatasets are from the work [11].
The citeulike-a contains 5,551 users and 16,980 articles
with 204,986 observed user-item ratings. Users with fewer
than 10 ratings are not included and the sparsity of citeulike-
a is 99.78%. citeulike-t includes 7,947 users and 25,975 items
with 134,860 observed ratings, and its sparsity is 99.93%,
which is much sparser than the former one. Similar to
citeulike-a, users with fewer than 3 ratings are excluded. Each
item in the two datasets has a title and abstract, and the content
information is the concatenation of the titles and abstracts.
The vocabulary for each dataset is selected according to the
tf-idf value of each word. The citeulike-a has a vocabulary
size of 8,000, while the citeulike-t has a vocabulary size
of 20,000. Each article is represented with a bag-of-words
vector and all the content vectors are then normalized over
the maximum occurrences of each word in all articles.

FIGURE 3. Performance comparison of all methods on citeulike-a in the
sparse and dense settings.

The anonymized dataset GHC contains the transactions of
healthcare services for treat a clinical condition or procedure.
Patients are assigned a unique ID across the healthcare net-
work located in Georgia State. We first preprocess the data
identify consistent IDs of patient and doctor in healthcare net-
work, and then derive one interaction between a patient and a
doctor. After data cleansing, we have 35 million interactions
between around 1.1 million patients and 7,960 doctors. For
each patient, the basic demographic characteristics such as
gender, age, residence zipcode, etc. and tags of clinical condi-
tion are obtained. For each doctor, the demographic character-
istics, education, and their medical specialties are collected.
The interactions between a patient and a doctor are regarded
as reviews associated with a rating ranging from 1 to 5, and
patients with less than 5 reviews and doctors that have been
rated by less than 10 users are deleted. Then, the rating matrix
is binarized using value 3 as a threshold. The final dataset
obtains 452,116 patients (users), 6,872 doctors (items) and
2,998,351 ratings, of which the sparsity is 99.90%.

2) BASELINES AND EVALUATION METRICS
To evaluate our CVDL, five representative CTR models are
selected as Baselines.

(1) CTR [8] is a probabilistic topic modeling based col-
laborative filtering recommendation model that incorporates
both ratings and item contents.
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FIGURE 4. Performance comparison of all methods on citeulike-t in the
sparse and dense settings.

(2) CDL [11] is a probabilistic joint learning model of CTR
and SDAE, which can achieve promising performance.

(3) CTRDAE [28] is similar model to CDL, a combination
of CTR and DAE for exploring the effects of communities on
learning users’ preferences.

(4) CVAE [23] is a Bayesian generative model that
jointly models CTR and VAE to bridge auxiliary information
together with deep architecture.

(5) CAVAE [24] is the improved version of CVAE, which
integrates CTRwith additional VAE to extract effective latent
vector from side information.

To evaluate the performance of our models, Recall [11] is
adopted as the evaluation metric. The predictive ratings of
candidate items are sorted, and the first k items are recom-
mend to the target user. The Recall is defined in following
equation.

Recall@k=
The items the user likes among the top k

The items the user likes
(19)

3) PARAMETER SETTINGS
To comparatively evaluate our model, we set the same dimen-
sionality of latent space K = 50 and the same tuning confi-
dence parameters a = 1 and b = 0.01 for all algorithms.
Then we use fivefold cross validation to find the optimal
hyperparameters for CTR, CDL, CTRDAE, CVAE, CAVAE

FIGURE 5. Performance comparison of all methods on GHC in the sparse
and dense settings.

and CVDL, and the optimal parameters for each method are
listed in Table 3.

TABLE 3. Parameter settings of all methods.

For CTR, it is found that it can achieve best performance
when λu = 0.1 and λv = 1, and it is first pretrained with LDA
to get the initial topic proportions and CTR is performed to
jointly learnU , V and topic proportions iteratively. For CDL,
the best performance is achieved with λu = 0.01, λv = 10,
λn = 1000 and λw = 0.0001. For CTRDAE, the autoen-
coder is pretrained with a single layer before joint-learning
with CTR, and the model receives the best performance as
λu = 0.1, λv = 100 and λn = 0.1. The ratio λn:λu is found to
be 1:1 for the best performance. For CVAE, CAVAE and our
CVDL, the models gain the best predictive accuracy when
λu = 0.1, λv = 10 and λw = 0.0001, and the specified
parameter λr is set to 10 for CVAE. To select the parameter β,
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FIGURE 6. Performance comparison of different K on citeulike-a in
sparse and dense settings.

the training procedure starts with 0 and gradually increases
to 1, and β is set to 0.2 for best performance.

B. EXPERIMENTAL RESULTS
1) OVERALL PERFORMANCE COMPARISON
In our experiments, each dataset is split into two parts: train-
ing datasets and testing datasets. For the training set, experi-
ments are carried out with a setting of 80% random sample of
each user ratings, and the rest of user ratings (20%) are used
for testing. We randomly select P items associated with each
user to form the training set and use all the rest of the dataset
as the test set. To evaluate and compare the models under both
sparse and dense settings, we set the parameter P to 1 and 10,
respectively. For each P, we conduct the five independent
evaluations with different randomly selected training sets and
get the average performance.

Figures 3-5 show the Recall@k results that compare
CDL, CTR, CTRDAE, CVAE, CAVAE and CVDL on three
datasets under the sparse setting (P = 1) and the dense
setting (P = 10).

From Figures 3 and 4, it is obvious that CVDL outper-
forms all the other baselines on both CiteULike datasets with
different settings. The comparison results from two CiteU-
Like datasets indicate that CVDL, CAVAE, CVAE and CDL
achieve better performance than CTR and CTRDAE, which is

FIGURE 7. Performance comparison of different K on citeulike-t in
sparse and dense settings.

because that CTR’s latent representation capability is limited
due to the LDA, and CTR cannot learn potential represen-
tation effectively, especially when side information is very
sparse. In addition, CVDL, CAVAE and CVAE show consis-
tent performance on two CiteULike datasets, while CDL only
has better performance on citeulike-t than citeulike-a. These
can be explained that CVDL, CAVAE and CVAE employ
VAE for seeking probabilistic latent content variable model,
which can learn latent vectors effectively. By contrast, CDL
utilizes SDAE to learn latent content vectors by corrupting
input data, easily leading to data overfitting.

From Figure 5, it can be easily found that the proposed
CVDL achieves the best performance on GHC dataset, which
sustains the powerful latent representation learning capability
of our model. We also found that CTRDAE outperforms
CTR and CDL when k is no larger than 250, and it can
be explained that CTRDAE learn user profile representa-
tions jointly with item contents for better regularizing latent
user and item factors, leading to better performance. When
the training data comes denser, the performance CTRDAE
becomes worse than CDL, due to the higher diversity in users
preferences. To focus on the performance comparison of the
VAE-based models, it is clear that CVDL achieves better
performance than CVAE and CAVAE. This can be explained
that CVDL integrates both user and item side information
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FIGURE 8. Performance comparison of different K on GHC in sparse and
dense settings.

as inputs to learn latent vector compared with CVAE and
CAVAE, which can extract more robust latent vectors from
content/profile. Therefore, the Recall metric proves the effec-
tiveness of our CVDL.

2) SENSITIVITY ANALYSIS
To evaluate the sensitivity to hyperparameters, the similar
procedure [18] is conducted to evaluate the performance of
our CVDL with different K values based on recall for all
datasets with sparse and dense settings. The K indicates the
dimensionality of latent space, and different K values make
a difference between the latent vector of content/profile and
the latent variable for PMF.

Figures 6-8 shows the results of CVDL on three datasets
for different K in both sparse setting and dense setting. The
influence of K depends on three parts, the latent variables
for the representation of item content and user profile, and
the latent variable for the matrix factorization model. It is
clear that the larger K enables CVDL to learn a better repre-
sentation from item content and user profile, which leads to
upgraded prediction performance. However, if K goes large
enough, its influence becomes trivial since the representation
capability is enough for modeling item content and user
profile. Comparing the influence of K in the sparse and dense
settings, it is evident that the larger K has greater impact in

the dense setting, which is mainly because the denser ratings
can facilitate the process of variational inference.

V. CONCLUSION
In this paper, we propose a hybrid collaborative deep learning
model (CVDL) for healthcare recommendation, which jointly
models the generation of item content and user profile while
extracting the implicit relationships between items and users
collaboratively. On the one hand, the proposed CVDL can be
considered as a Bayesian probabilistic generative model, and
its variational inference is deduced from a stochastic gradient
variational Bayesian model. CVDL unifies the collabora-
tive information, item content and user profile through deep
learning model and graphical model, which leads to robust
recommending performance. On the other hand, our CVDL
can unify multimedia in different forms for recommenda-
tion, due to its inference of stochastic distribution in latent
space instead of observation space. Experimental results have
shown the proposed CVDL can significantly outperform the
current CTR approaches for recommendation jointly with
item content and user profile, with more robust performance,
especially on the healthcare dataset.

CVDL is proposed by utilizing MLP as the inference and
generation models, which can also fit into other deep learning
models, depending on the data type of additional information.
In future, we try to investigate different mappings between
healthcare communities and relevant topics, and plan to incor-
porate knowledge graph to obtain more side information to
further improve the precision of HRS.
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