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ABSTRACT Automated image translation and completion is a subject of keen interest due to their impact on
image representation, interpretation, and enhancement. To date, a conditional or a dual adversarial framework
with a convolutional auto-encoder embedded as a generator is known to offer the best accuracy in image
translation. However, although the frequency is excellent, the adversarial framework may suffer from a lack
of generality, i.e., the accuracy dropswhen translating incomplete and corrupted data given as untrained noisy
input data. This paper proposes an approach to robust image-to-image translation that offers a high level of
generality while keeping accuracy high as well. The proposed approach is referred to here as a dual auto-
encoder with bidirectional latent space regression or Bi-directionally Associative DualAE, for short. The
proposed BA-DualAE is configured with two auto-encoders the individual latent spaces of which are tightly
associated by a bidirectional regression network. Once the two auto-encoders are trained independently
for their respective domains, and then, the bidirectional regression network is trained to learn the general
association between data pairs. With its capability of robust and bidirectional image translation, BA-DualAE
performed direct image completion with no iterative search. The experiments with photo-sketch datasets
demonstrated that the proposed BA-DualAE is highly robust under incomplete or corrupted data conditions
and is far superior to adversarial frameworks in terms of generality and robustness.

INDEX TERMS Convolutional neural network, auto-encoder, bidirectional latent space regression, image-
to-image translation, generative adversarial network.

I. INTRODUCTION
Automated translation of images has implications for a broad
range of image processing tasks, including image coloring,
styling, de-noising, modification, and completion. In par-
ticular, the deep learning approach to image translation is
to learn a general association embedded in pairwise data
that can affect data interpretation and enhancement. Recent
advances in deep learning networks, for instance, conditional
and dual adversarial frameworks with convolutional auto-
encoders embedded as generators, together with the avail-
ability of a wide range of training data sets, offer powerful
means of achieving high-quality image-to-image translation.
This is because the aim of an adversarial framework is to

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohammad Shorif Uddin.

force the convolutional auto-encoder to generate its out-
puts as close as possible to the distribution specified by
the training data set. However, although these generative
adversarial network (GAN) based frameworks are high in
accuracy, there remains an important issue to be addressed:
achieving sufficient generality while keeping accuracy high
or, in short, achieving high robustness in image translation.
For instance, our experiments show that the image translation
based on a conditional GAN (cGAN) framework tends to
carry a corrupted or occluded part of the input image to the
corresponding output image in translation unless the network
is trained explicitly with such corrupted or occluded images
a priori. To achieve high robustness in image translation
and completion, this paper proposes a framework of dual
auto-encoders the latent space of which are bi-directionally
connected by an association network. The proposed
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framework exploits the capability of the latent space asso-
ciation network for generalization, while taking advantage
of dual auto-encoders for the accurate reconstruction of input
images independently in their own domains. For more details,
refer to the Section III: Proposed Approach.

The rest of the paper is organized as follows: Section II
and Section III present, respectively, the related work and
the proposed Bi-directionally Associative DualAE frame-
work for cross-domain image-to-image translation in more
detail. Section IV and Section V explain the details of the
proposed network architecture and the training procedure
of the proposed Bi-directionally Associative DualAE frame-
work for image-to-image translation and completion. Finally,
Section VI presents the comparative performance analysis
by experiments for corrupted and occluded testing samples,
before the conclusion in Section VII.

II. RELATED WORK
Within-domain image translation has applications in domain
adaptation [1]–[6], super-resolution [7], style transfer [8], and
photo editing [9], Target and anomaly detection [10]–[13],
and cross-domain image translation has applications in
data generation [14], data interpretation [15], transforma-
tion of 3D images to their corresponding 3D representation
for interpretation of deep CNN [16], and image comple-
tion [15], [17], [18]. The availability of a large amount
of paired data for image translation makes convolutional
neural network (CNN) approaches to regression highly
attractive for both within- and cross-domain image trans-
lation, surpassing the performance of the state-of-the-art
non-CNN approaches [19], [20]. A number of deep gener-
ative networks, such as autoencoder (AE) [21], variational
auto-encoders (VAEs) [22], [23], generative adversarial net-
work [14], moment matching networks [24], pixel-CNN [25],
and plug-and-play generative networks [26], have been pro-
posed that are to learn the distribution of input data for
generating realistic images. Recently, many variants of deep
auto-encoders as well as of GAN have been proposed, includ-
ing [22], [23], LapGAN [27], DCGAN [28], WGAN [29]
and conditional generative adversarial network (cGAN) [15].
However, it is the combination of AE and GAN that has
shown the best performance in automated image transla-
tion [15]. Shrivastava et al. [17] addressed the problem of
performance degradation to real images after training on
synthetic images and proposed translating synthetic images
to real images using a conditional generative adversarial net-
work, or cGAN, in which the L1 distance between synthetic
and real images is minimized together with the adversarial
loss. Isola et al. [15] proposed training a pix2pix cGAN
to represent the exact pixel correspondence of images for
translation.

In contrast, Yi et al. proposed dualGAN [18], where a dual
configuration of GAN allows the network to be not only bidi-
rectional in image translation but also trainable in an unsu-
pervised way without the need of explicit correspondences.

To assess various deep learning-based approaches to image
translation, we define the following criteria: 1) accuracy mea-
suring the translation error from the ground truth, 2) gener-
ality representing the dependency of accuracy on untrained
noisy data such as incomplete and corrupted data, and 3) util-
ity indicating the ease of training and the flexibility in appli-
cation. First, the conditional adversarial framework with a
convolutional AE or its variant used as its generator has been
shown to be superior to direct translation based on GAN or
AE alone [21], [28]. Notably, the dual configuration of GAN
with forward and inverse paths has been reported to show
the highest accuracy to date, especially for cross-domain
translation [15].

However, conditional and dual adversarial frameworks as
well as direct translation based on AE or GAN have shown
limitations in generality [15]; that is, they suffer from a
sudden loss of accuracy under conditions of incomplete or
corrupted data unless they are trained explicitly [30]. These
frameworks tend to weigh more on accuracy than on gener-
ality such that the incomplete or corrupted part of the input
is undesirably incorporated into the corresponding output.
To reduce the burden of preparing for a large scale of noisy or
labeled data for training, approaches that provide high robust-
ness or allow unsupervised learning such as dualGAN [18]
are preferred. In addition, approaches capable of bidirectional
image translation [18] can extend their applicability to more
diverse translation problems.

FIGURE 1. cGAN based Image-to-Image translation [15]. Left: A schematic
of cGAN implemented. Right: Ground truth images (Top) and cGAN
generated images (Bottom).

A. PROBLEM SETTING
We implemented a well-known cGAN approach to image-to-
image translation that was available in the literature [15] for
evaluation. The left side of Fig. 1 schematically illustrates the
cGAN we implemented. We used the UT-Zap50K data set
of shoe/handbag images and their corresponding line sketch
data set [31]–[33] to train and test the implemented cGAN.
As illustrated in the right of Fig. 1, it showed excellent per-
formance as reported in the literature. However, we found that
it was not robust against the incomplete or corrupted images
given as the test input. This is illustrated in Figs. 2 and 3,
where, unlike its high-quality performance with complete and
corruption-free input images, the cGAN approach failed to
produce the translation that we were looking for when it was
tested with incomplete and corrupted input images. Specifi-
cally, the cGAN approach was not able to compensate for a
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FIGURE 2. cGAN based image-to-image translation applied to incomplete
images (Top: Complete sketches given as references, Middle: Incomplete
sketches given as input images, Bottom: Translated output images).
Notice that the translated output images inherit the missing parts of the
given input sketches.

FIGURE 3. cGAN based image-to-image translation applied to corrupted
images. (Top: Complete sketches given as references, Middle: Corrupted
sketches given as input images, Bottom: Translated output images).
Notice that the translated output images inherit the corrupted parts of
the given input sketches.

missing or noisy part of the given input images to produce
the typical, complete, and noise-free output images that we
expected. This could have been because cGAN emphasizes
learning the exact joint probability distribution of the image
pairs given as the training data set rather than their general-
ization. As seen in Figs. 2 and 3, cGAN tends to incorporate
the variation of an input into that of the corresponding output
to emphasize accuracy in pair-wise association, but only at
the expense of generality. Therefore, robust image-to-image
translation that achieves a high degree of generality while
keeping accuracy high remains a key issue to be solved.
In addition, it would be desirable if we could establish a
single unified framework with the capability of bidirectional
translation that can directly handle applications that share a
common ground of image translation, including image color-
ing, styling, de-noising, modification, and completion.

III. PROPOSED APPROACH
As a solution for the problem described above, we propose
dual auto-encoder with bidirectional latent space regression
or Bi-directionally Associative DualAE for short. The pro-
posed BA-DualAE is configured with two auto-encoders the
individual latent spaces of which are tightly associated by a
bidirectional regression network. Once the auto-encoders are
trained independently for their respective domains, the bidi-
rectional regression network is trained to learn the general
associations between data pairs. The proposed approach aims
at achieving a sufficient level of generality while keeping

accuracy high, for dealing with untrained, incomplete and
corrupted data. This is based on the capability of an auto-
encoder to abstract the input data into its latent space and of
a regression network to learn the general association between
the two latent space representations. With the capability
of robust and bidirectional image translation, the proposed
BA-DualAE is able to perform direct image completion with
no iterative search, paving a way to a unified framework in
image translation.

FIGURE 4. The proposed robust cross-domain image to image translation
network. The networks, AE-1 and AE-2, are trained to generate their
output images same as their corresponding input images in their own
domains, while LSAN is trained to regress the cross-domain relationship
between the two latent spaces of AE-1 and AE-2. Note that the proposed
architecture with LSAN allows a bidirectional cross-domain translation.

IV. NETWORK ARCHITECTURE
The proposed BA-DualAE consists of two deep auto-
encoders (AEs) and a latent space association net-
work (LSAN), as shown in Fig. 4. AEs are to map their
input distributions into their respective latent space domains,
while the LSAN is to define the cross-domain relationships
by regressing themapping between the two latent spaces from
their respective AEs.

A. DEEP AUTO-ENCODERS
The first deep auto-encoders, AE-1, is trained based on the
image data set of its own domain, 1, such that it transforms
an RGB image, y1ε , given as an input into the correspond-
ing latent space point,q1 (z1 | y1), of a lower dimension by
its encoder, Enc1 (y1), while reconstructing the latent space
representation back to a close proxy, y

′

1, to the given input
image by its decoder, Dec1(z1|y1). Formally, the latent space
of AE-1 is described as

q1 (z1 | y1) = Enc1 (y1) , (1)

q1(z1|y1) is then transformed back to the reconstructed input
image y

′

1 by the decoder of AE-1.

y
′

1 = Dec1 (z1 | y1) , (2)
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Similarly, AE-2 takes an RGB image, y2 , as an input and
maps it to the corresponding latent space point, q2(z2|y2),
by its encoder, Enc2(y2). The decoder takes q2 (z2 | y2) and
reconstructs the input image y

′

2 as follows:

q2 (z2 | y2) = Enc2 (y2) (3)

y
′

2 = Dec2 (z2 | y2) , (4)

The following L2 regression losses are used to train AE-1 and
AE-2 for their respective domains:

LAE1 = ‖y1 − Dec1(z1|y1)‖ , y1 1 (5)

LAE2 = ‖y2 − Dec2(z2|y2)‖ , y2 2 (6)

The same architecture is used for AE-1 and AE-2 with the
same numbers of layers and parameters; both have 16 layers
with the input RGB images having resolution of 128×128×3.
The number of filters is doubled up to the fourth layer and in
the remaining four layers, the filters are doubled after two
consecutive layers. We used stride of 2 in each layer and
there is no pooling layer in our framework. In each layer,
the convolution is followed by batch normalization [34]
layer and activation layer. We used the ReLU [35] activation
function in each of these layers except the last layer, where
we used tanh activation function.

B. LATENT SPACE ASSOCIATION NETWORK
FOR REGRESSION
For bidirectional image translation, we used LSAN, a fully
connected association network that makes the correspon-
dence between the projected latent space distributions of
both the domains. In order to a build cross-domain rela-
tionship between the two AEs, LSAN makes the association
between the marginal distribution of domain 2, projected by
AE-2 with domain 1 marginal distribution projected by AE1.
LSAN takes projected latent space fromAE-1 and transforms
it to the latent space of AE-2, where it then acts as input
to the decoder of AE-2 for cross-domain translation from
domain 1 to domain 2. Similarly, to transform from domain 2
to domain 1, LSAN takes the projected latent space from
AE-2 and transforms it into the latent space of AE-1. The
combined loss of LSAN is:

LLSAN = q1 (z1 | y1)− LSAN (q2 (z2 | y2))+ q2 (z2 | y2)

−LSAN (q1 (z1 | y1)) . (7)

where q1 (z1 | y1) and q2 (z2 | y2) are the encoder output
of AE-1 and AE-2 respectively. LSAN is the association
between two latent representations of both the domains. Both
the loss function of the same domain and the cross-domain
translation are minimized using the stochastic gradient
method.

The combined loss of AE-LSAN is:

LAE−LSAN = LLSAN + LAEs. (8)

V. TRAINING DETAILS
The training of BA-DualAE is based on two steps: The
first step of training focuses on same-domain translation,

where AEs are trained separately in their own domains. Once
the translation in the same domain is complete, the next
step is to associate the latent spaces of individual domains.
In this step, we do cross-domain image translation by train-
ing LSAN; LSAN associates the latent spaces of two domains
bidirectionally by minimizing the regression loss between its
output the ground truth latent distribution. Here, the input to
LSAN is the latent space representations from the encoders
of AE-1 and AE-2, and its output is the latent space rep-
resentations cross-transformed from one domain to another.
After LSAN is trained, the latent space outputs from LSAN
are connected to the respective decoders of AE-1 and AE-2.
During the training, we used different data sets with different
numbers of training samples, and we also used different
mini-batch sizes for different data sets: For the small data
sets, we used a smaller mini-batch and a larger mini-batch
for larger data sets. Considering that in a highly nonlinear
space, a high or a low learning rate may either overshoot
the desired minima or keep the network lingering around the
local minima, we adopted the learning rate of 0.000025 for
updating the parameters of both AEs and LSAN; we also
used Adam [36] to optimize the network parameters with
beta = 0.5.

FIGURE 5. Analysis of the proposed approach for same as well as
cross-domain image to image translation. The sketch-based input testing
samples are translated to sketched based samples in the same domain as
well as to its corresponding real representation in the cross-domain.

VI. EXPERIMENTS
First, we assessed the performance of BA-DualAE in terms
of the bidirectional translation of images from one domain
to its corresponding cross-domain and vice versa; this was
based on pairwise data of natural images and their sketches
from two data sets: UT-Zap50K [31] and the handbag set [33].
UT-Zap50K contains about 50k samples of different types of
shoes with 200 separate testing samples; the handbag data
set contains about 138k samples with 200 samples sepa-
rated as testing samples. The edge-based representations for
both data sets are obtained based on the Holistically Edge
Detection (HED) algorithm [32]. The experimental results
are shown in Figs. 5 to 12, and the detailed analysis of
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FIGURE 6. Analysis of the proposed approach for same as well as
cross-domain image to image translation. The real representation-based
input testing samples are translated to real samples in the same domain
as well as to its corresponding sketch-based representation in the
cross-domain.

FIGURE 7. Analysis of the proposed approach for the same as well as
cross-domain image to image translation. The real representation based
input testing samples are translated to real samples in the same domain
as well as to its corresponding sketch-based representation in the
cross-domain.

these results is given in Section 5.1. Second, we evaluated
BA-DualAE in terms of its capability of direct image com-
pletion as a means of providing an insight into data interpre-
tations and generality in learning. The experimental results
are shown in Figs. 13 to 16, and the detailed analysis of
these results is given in Section 5.2. It is noted that we
analyzed the experimental results not only qualitatively but
also quantitatively by defining the mean square error from
the ground truth to the translated images, as shown in TABLE
1 and 2. During the experimental setup, we used RGB images
with 128× 128× 3 as the resolution.

FIGURE 8. Comparative analysis of the proposed approach with
cGAN [15] based on the complete and uncorrupted data as shown.

FIGURE 9. Comparative analysis of the proposed approach with
cGAN [15] based on the complete and uncorrupted data as shown.

FIGURE 10. Comparative analysis of the proposed approach with
cGAN [15] based on the incomplete data as shown.

A. CROSS-DOMAIN IMAGE-TO-IMAGE TRANSLATION
Shoes-to-Sketch Translation: In this experiment, we used
the UT-Zap50K data set along with their corresponding
sketch-based representations for training. Figure 5 shows
the results of translation from the sketch to shoes with
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FIGURE 11. Comparative analysis of the proposed approach with
cGAN [15] based on the incomplete data as shown.

FIGURE 12. Comparative analysis of the proposed approach with
cGAN [15] based on the corrupted data as shown.

the sketch-based input testing samples as inputs. The input
testing samples were translated to within-domain sketches
as well as to their cross-domain real images, as shown in
Figure 5. Fig. 6 shows the within- and cross-domain trans-
lations from the real images to their corresponding real
images and sketches. Figs. 5 and 6 illustrate that the proposed
BA-DualAE produced realistic within-domain and cross-
domain image translations with high accuracy.

Handbags-to-Sketch Translation: We repeated the
experiments for UT-Zap50K for the handbag dataset. The
within- and cross-domain results are illustrated in Fig. 7. Sim-
ilar to the case with UT-Zap50K, the proposed BA-DualAE
produced realistic within- and cross-domain image transla-
tions with high accuracy for the handbag dataset.

1) COMPARATIVE ANALYSIS WITH COMPLETE
AND UNCORRUPTED DATA
We performed a comparative analysis of BA-DualAE with
cGAN [15] for cross-domain image translation. The results

FIGURE 13. Illustration of our models on image completion by utilizing
the cross-domain correspondence between the images. The ground truth
samples are cropped at random locations and the incomplete input
testing samples are then translated to the corresponding cross-domain
and same domain respectively.

FIGURE 14. Illustration of our models on image completion by utilizing
the cross-domain correspondence between the images. The ground truth
samples are cropped at random locations and the incomplete input
testing samples are then translated to the corresponding cross domain
and same domain respectively.

are shown in Figs. 8 and 9, where Fig. 8 presents the results
of translation from sketch to real image while Fig. 9 shows
real image to sketch for both cGAN and BA-DualAE.
For the comparative analysis, we trained both cGAN and
BA-DualAE on the UT-Zap50K data set and its correspond-
ing edge representation. We set the batch size to 32 in both
cases.

The ground truth of real images and sketches, illustrated
in Figs. 8 and 9, was used to assess accuracy. Note that
the capability of BA-DualAE for bidirectional translation
allows it to carry out both direction and translation with-
out additional training. The results indicate that both cGAN
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FIGURE 15. Comparative analysis of the proposed approach with direct
image completion approach. The ground truth samples are cropped at
random locations and the incomplete input testing samples are then
translated for image completion using the proposed approach and the
direct image completion approach.

FIGURE 16. Comparative analysis of the proposed approach with direct
image completion approach for image completion. The ground truth
samples are cropped at random locations and the incomplete input
testing samples are then translated for image completion using the
proposed approach and direct image completion approach.

TABLE 1. The Mean square error based on UT-Zap50K and its edge-based
representation.

and BA-DualAE produce high accuracy in cross-domain
translation with some interesting differences: For instance,
cGAN preferred to maintain the fine details of the sam-
ples while BA-DualAE preferredmaintaining global features.
As mentioned previously, this clearly indicates the emphasis
of cGAN on accuracy over generality whereas the proposed
BA-DualAE focuses much more on generality while keeping

TABLE 2. Mean square error based on reconstructing partially occluded
samples using UT-Zap50K and its edge-based representation.

TABLE 3. Mean square error and SSIM based on reconstructing
incomplete samples using UT-Zap50K and its edge-based representation.

accuracy high. Note that cGAN as we implemented it has skip
connections for improved performance.

TABLE 1 shows the quantitative performance analysis
of cGAN and BA-DualAE based on the mean square error
from the ground truth. The error is calculated based on the
first 100 samples of the UT-Zap50K test data set and their
corresponding sketches. TABLE 1 shows that the proposed
BA-DualAE has about 20% advantage over cGAN based on
the mean square error. To analyze the robustness, we con-
ducted the same performance test with the input test samples
intentionally modified by occlusion; TABLE 2 shows the
result, that the proposed BA-DualAE has again a 20% advan-
tage over cGAN. However, in the cases of the occluded parts,
indicated by circles in Figs.10 and 11, BA-DualAE showed
much greater capacity to recover the missing parts and greater
robustness. During this analysis, we also observed that the
proposed approach successfully recovers the shape to a cer-
tain point of occlusion but that when the occlusion is heavy,
the occluded samples are transformed to the nearby samples
in the database, demonstrating the generality of BA-DualAE.

We also evaluated the proposed network in terms of the
mean square error and structural similarity index (SSIM) for
randomly selected two batches of incomplete testing samples
as shown in TABLE 3. The proposed approach outperformed
cGAN [15] and AE [21]. The SSIM shows the structural
similarity between the data generated by the network and their
corresponding ground truth samples; the SSIM was higher
with the proposed approach in terms of the incomplete input
testing data than with AE [21] and cGAN [15].

2) COMPARATIVE ANALYSIS WITH INCOMPLETE
AND CORRUPTED DATA
We conducted the qualitative evaluation of BA-DualAE
and cGAN based on incomplete and corrupted data
(Figs. 10 and 11). In Fig. 10, parts of the real images (the first
and the second rows) from UT-Zap50K dataset are removed
at random locations and used as the input samples for test-
ing (the third and the fourth rows). On the other hand, in
Fig. 11, parts of sketches are removed out at random locations
and then used as the input samples for testing. The results
clearly show the advantage of the proposed approach over
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cGAN based approach. The cGAN based approach carries
the missing parts from the input images to the translated
output images, as illustrated by the red circles. In contrast,
the BA-DualAE successfully translates the complete images
by recovering the missing parts in the input images, as illus-
trated by the blue circles.

Furthermore, as shown in Fig. 12, we also corrupted
the input testing data by adding noise at random locations,
as illustrated by darker lines. Then, we input the corrupted
data to cGAN based approach and to BA-DualAE for com-
parative analysis. Fig. 12 shows clearly that BA-DualAE is far
more robust to the corruption in the input testing samples than
was cGAN: BA-DualAE successfully removed the unneces-
sary corruption in the data, whereas cGAN based approach
reflected the corrupted portions in the output images. The
comparative analysis with incomplete and corrupted data
indicates clearly that the proposed BA-DualAE approach
is more robust than the cGAN based approach. As briefly
mentioned before, the cGAN based approach puts its empha-
sis more on accuracy due to the nature of cGAN, whereas
the proposed BA-DualAE approach exploits the respective
capabilities of LSAN and DualAE for the generalization in
association and the accuracy in the construction.

B. IMAGE COMPLETION
Image completion aims at completing the missing pixels
in an image with a most likely pixel configuration for the
surrounding context; we need an efficient yet robust way of
estimating a correct pixel configuration, preferably without
explicit training with incomplete data. We found that we
could take advantage of the robust and bidirectional image
translation capability of the proposed BA-DualAE to make
direct yet robust image completion possible in a two-step
process: 1) input an incomplete, partially occluded or cor-
rupted image to be completed to an AE of BA-DualAE in
the same domain as the input and obtain the corresponding
cross-domain output image and 2) input the cross-domain
output image obtained from 1) to another AE of BA-DualAE
in the same domain as the output image from 1) and obtain the
corresponding cross-domain output image. Then, the result-
ing output image from 2) represents the completed image we
target. The above two-step image completion process has a
clear advantage in image completion in that during the first
pass, the network estimates the most likely configuration of
the missing pixels while during the second pass, the network
makes use of the most likely configuration of missing pix-
els from the first pass to further refine the configuration of
missing pixels.

To evaluate the proposed direct two-step image completion
based on BA-DualAE, we conducted the following experi-
ments: First, wemodified the input testing samples by remov-
ing parts of the images at random locations; we then used the
modified samples are then used as input to BA-DualAE to
follow the two-step process described above. Figs. 13 and 14
illustrate the intermediate and final outputs from the two-
step image completion process that we applied for the sketch

domain (Fig. 13) and the real domain (Fig. 14) image com-
pletion. The figures show clearly how the incomplete samples
originally input into the network are transformed to the corre-
sponding cross-domain samples and, eventually, transformed
back to the original domain as the complete samples. Note
that the recovered missing pixels in the incomplete samples
are highlighted by blue and green circles; the blue circles
represent the actual recovery of the missing pixels, and the
green circles represent the additional pixels the network gen-
erated as the missing pixels. The reason for this recovery of
additional pixels is the generality of the proposed approach
in image translation: When the corrupted samples resemble
several other samples in the training data, the network tends
to generalize the image translation by accommodating those
samples. For the same reason, we also observed that the
heavily corrupted samples were transformed into different
samples that more resemble the corrupted samples. Note
that because our proposed framework is bidirectional, it is
straightforward to change the domain of incomplete input
images in order to suit applications.

Furthermore, to evaluate the proposed image completion
objectively, we performed a comparative analysis of the
proposed image completion against the direct shape com-
pletion [21]; by direct image completion, we mean using
AE-1 or AE-2 separately for the image completion in its
domain without going through LSAN. The experimental
results based on the sketch and real image data are shown
in Figs. 15 and 16, respectively; the figures show clearly
that the proposed framework outperforms the direct image
completion based on AE. The direct image completion failed
to complete the missing pixels in most of the examples as
marked by the red circles in Figs. 15 and 16.

Note that there are some examples for which the direct
image completion produces better results in color represen-
tation, although it lacks considerably in generality compared
with the proposed approach.

VII. CONCLUSION AND DISCUSSION
We presented a bidirectionally associative dual auto-
encoder with a latent space regression network—in short,
BA-DualAE—to solve the problem of robustness in con-
ventional approaches. As we demonstrated, the proposed
BA-DualAE is highly robust against untrained, incomplete,
or corrupted data, resulting in a high degree of generality
while keeping accuracy high. As far as the mean square error
representing a rough measure of robustness, BA-DualAE is
20% better than conventional approaches, particularly show-
ing marked performance advantages around incomplete or
corrupted parts. Furthermore, the capability of BA-DualAE
for robust and bidirectional translation enables it to perform
direct image completionwithout an iterative search or explicit
training. It is noted that the proposed network can be applied
to various within-domain and cross-domain image translation
tasks, is extensible to unsupervised learning, and is easily
configurable into distributed AEs. These extensions will be
best left as future works.
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