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ABSTRACT Recently, Android malicious samples threaten billions of mobile end users’ security or privacy.
The community researchers have designed many methods to automatically and accurately identify Android
malware samples. However, the rapid increase of Android malicious samples outpowers the capabilities of
traditional Android malware detectors and classifiers with respect to the cyber security risk management
needs. It is important to identify the small proportion of Android malicious samples that may produce
high cyber-security or privacy impact. In this paper, we propose a light-weight solution to automatically
identify the Android malicious samples with high security and privacy impact. We manually check a
number of Android malware families and corresponding security incidents and define two impact metrics for
Android malicious samples. Our investigation results in a new Android malware dataset with impact ground
truth (low impact or high impact). This new dataset is employed to empirically investigate the intrinsic
characteristics of low-impact as well as high-impact malicious samples. To characterize and capture Android
malicious samples’ pattern, reverse engineering is performed to extract semantic features to represent
malicious samples. The leveraged features are parsed from both the AndroidManifest.xml files as well
as the disassembled binary classes.dex codes. Then, the extracted features are embedded into numerical
vectors. Furthermore, we train highly accurate support vector machine and deep neural network classifiers
to categorize the candidate Android malicious samples into low impact or high impact. The empirical results
validate the effectiveness of our designed light-weight solution. This method can be further utilized for
identifying those high-impact Android malicious samples in the wild.

INDEX TERMS Android malware, deep neural network, high impact malicious samples, low impact
malicious samples, static analysis, SVM.

I. INTRODUCTION
Lately Android OS is the number one system globally, with
approximately 86.1% of thewhole global mobile phonesmar-
ket share in the Q1 of 2017 [38]. Meanwhile, the prevalence
of Android operating system, combining with its openness
trait, has caused the number of Android malware skyrocketed
in both the official markets (e.g., Google Play1) and third-
party (WanDouJia2) Android application markets. In the first
quarter of 2017 alone, over 750,000 new Android malware
samples were identified by experts in G DATA security [27].

The associate editor coordinating the review of this manuscript and
approving it for publication was Khalid Aamir.

1https://play.google.com/store
2https://www.wandoujia.com/

That is, approximately a new Android malware was identi-
fied in about 10 seconds. The growing momentum Android
malware has brought great security and privacy risks to end
mobile users and mobile service providers.

To maintain a healthy and clean ecosystem for Android
applications, the research communities and security vendors
have designed many techniques to identify and prevent
Android malicious samples, e.g., software engineering anal-
ysis techniques [3], [6] and machine learning based tech-
niques [1], [2]. Generally, the current malware analysis
techniques can be divided into 3 categories: dynamic analysis,
static analysis, and hybrid analysis (combining dynamic anal-
ysis and static analysis). Static analysis is performed without
actually executing the applications, in contrast with dynamic
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analysis which is performed during the run-time of the appli-
cations. Hybrid analysis will perform both static analysis and
dynamic analysis for the candidate applications. The major-
ity of the existing works focused on determining whether
the candidate Android applications are benign or malicious.
However, along with the tremendous number of Android
malware being detected every day, only a small fraction of
them will incur serious damage to mobile users or organi-
zations. Based on this observation, we infer the importance
of predicting the impact of malware (low impact or high
impact). If the malware is with high impact, we must defend
it with high priority to be aware of its potential damage as
much as possible. In this paper, we propose a new research
problem: How to automatically predict the impact of the
detected Android mawlare?

However, there are few work on predicting the impact of
the detected Android malware so far. Most of the existing
works concerned only the identification of Android mal-
ware or classification of malware into the specific families.
To investigate the solution to the proposed research ques-
tion, we should address three critical challenges. Firstly we
need to define the impact metrics to validate the impact of
malicious Android samples. Besides, another challenge is
the lack of an Android malware dataset with impact ground
truth in terms of impact. The third challenge is about how to
effectively and efficiently make the impact prediction for the
newly encountered Android malware. To address the listed
challenges, we make four main contributions in this work:

1. We raise a new research problem: how to automatically
and accurately make the impact predict for the identi-
fied Android malicious samples?

2. We define two impact metrics (the size of affected
Android end devices, in short for SOD, and the size of
infected countries, also called SOC) to characterize the
impact of Android malicious samples.

3. We construct a new Android malware dataset (also
called Mal_Impact Dataset) containing low impact and
high impact malicious samples. To facilitate the fol-
lowing similar works related to the impact prediction
of Android malicious samples, we will release our
constructed malware impact dataset to the public.

4. We design a light-weight solution to automatically and
accurately make the impact prediction for the identi-
fied Android malicious samples. Semantic features are
decoded from AndroidManifest.xml files and disassem-
bled binary classes.dex codes to represent the intrinsic
characteristics of both low and high impact Android
malicious samples. Then we train the Support Vector
Machine and Deep Neural Network models to cate-
gorize the candidate Android malicious samples into
low or high impact. Our empirical studies validate the
effectiveness and feasibility of our designed solution.

The rest of the paper is organized as follows: Section 2
reviews the related work of Android malware analysis.
Our designed methodology is introduced in Section 3.
In Section 4, we give the experimental settings, evaluation

metrics and detailed results. In Section 5, we present the
limitations of this work. Section 6 concludes the paper and
gives the following research directions.

II. RELATED WORK
The analysis and identification of Android malware has been
an active research area in the recent years. The research
communities have proposed many techniques to deal with the
growing number and evolution of Android malware. Android
malware detection is surveyed in [40].

A. STATIC ANALYSIS TECHNIQUES
Static analysis is conducted through reverse engineering the
binary codes of the candidate Android applications with-
out actual execution. We can further divided static analysis
into three categories: The first category is called signature
related methods. These methods focus on producing a robust
malware signature based on the particular strings or seman-
tic code patterns in the applications’ code packages [16].
Then in the malware detection process, if the candidate
application’s signature is similar to one of the signatures
in the malware’s signature database, then it is regarded
as a malware. DroidAnalytics [50], AndroSimilar [15] and
ASTROID [17] are three signature related examples. The sec-
ond category is permission related methods which collect the
requested permissions declared in AndroidManifest.xml files
to detect potential malware. The permission related methods
include [36], [43] and [24]. The final category is related to
binary Dalvik bytecode classes.dex analysis. This category of
methods will obtain the source code through disassembling
the binary classes.dex bytecode, such as [4], [12], [14], [29].
When the binary classes.dex codes have been disassem-
bled into the corresponding source codes, the suspicious
API calls, CFG (control flow graphs), or FCG (function
call graphs) can be revealed to represent the discriminate
patterns between malicious Android samples and benign
samples [1], [42], [46].

B. DYNAMIC ANALYSIS TECHNIQUES
Dynamic analysis traces and analyses the malicious behav-
iors and system calls of Android applications during exe-
cution in the virtual environments. TaintDroid [13] was the
pioneer dynamic analysis system. It was efficient in dynamic
taint tracking. Another popular dynamic analysis system was
DroidScope. DroidScope can rebuild semantic information
seamlessly and simultaneously on the Java Dalvik level as
well as LinuxOS level [45]. Zhang et al. [49] created a system
called VetDroid, which can rebuild malicious and sensitive
behaviors in Android applications. Another dynamic frame-
work AppsPlayground was implemented to analyze Android
applications automatically. AppsPlayground combined many
automatic exploration and detection strategies (e.g., kernel
level system call monitoring, taint tracing tool [13]) for large-
scale Android applications analysis [34].

An alternative dynamic solution was proposed by Georgios
Portokalidis et al. to perform the detection task on remote
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TABLE 1. The differences between the state-of-the-art works and our work.

FIGURE 1. The mainly flowchart of the proposed solution for automatically Android malware impact prediction.

security servers in the cloud where execution of the appli-
cations on the device is mirrored in virtual machine envi-
ronments. The remote servers are not subject to the same
constraints with the devices, thus it is possible to employ
multiple detection techniques in parallel [31].

C. MACHINE LEARNING BASED TECHNIQUES
As we know, machine learning technique has been used
in many cyber security related areas [25], [26], [39], [44],
[47], [41]. In the malware analysis area, it is expensive
and difficult for security experts to manually generating and
updating the malware detection patterns (or signatures) for
Android malware. Inspired by the efficiency and generaliza-
tion ability of machine learning technique, many machine
learning involved methods have been designed to automat-
ically detect or further classify Android malware samples.
Drebin is a traditional and notable machine learning method
which can detect Android malicious samples directly on
the mobile devices [2]. Drebin employed semantic features
parsed from both AndroidManifest.xml files and disassem-
bled binary classes.dex files. In addition, the papers [1], [7],
[8], [18], [43], and [32] all used machine learning related
methods. In summary, the key challenge of machine learning
related methods is how to obtain the robust and informative
features to represent Android malware samples. The seman-
tic features may be directly derived from statistical features
(for example, API calls, requested or used permissions [2]),

features of a tree structure (for example, abstract syntax
tree) or features of a graph structure (for example, API call
graphs (ACG) [23], data flow graphs (DFG) or control flow
graphs (CFG)).

Table 1 compares our research work with three simi-
lar state-of-the-art works, including Drebin [2], DroidAPI-
Miner [1], HinDroid [23] and MaMaDroid [28].

III. METHODOLOGY
In this part, we give the detailed introduction of our proposed
framework in Fig. 1.

A. OVERVIEW
The proposed framework consists of three phases. Firstly,
the training Android malware samples will be collected with
low impact or high impact ground truth. Secondly, based
on the collected malware applications, reverse engineering
will be conducted to extract features from the disassem-
bled binary classes.dex codes and from AndroidManifest.xml.
These extracted semantic features will be employed to rep-
resent the impact characteristics of each Android malware
sample. Then the extracted string features will be encoded
into numerical vector representations. Finally, with the vec-
tor representations, we train the impact prediction model
to categorize the candidate Android malware samples into
low impact or high impact. The details of each step will be
presented in the following sections.
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FIGURE 2. The steps of how to construct the Android malware dataset with impact ground truth (Mal_Impact dataset).

B. DATA COLLECTION
The critical challenge of the proposed research problem ori-
gins from the absence of an Android malware dataset with
impact ground truth available. Thus, to further validate our
proposed solution to the research problem, we have to con-
struct a dataset with high impact or low impact ground truth.
Fig. 2 presents the steps of how to construct the Android
malware dataset together with impact ground truth (called
Mal_Impact Dataset, denoted as D).

In this work, the constructed Mal_Impact Dataset is built
on three open sourced Android malware datasets with family
labels:

Source_1: contagion mobile3

The contagion mobile website is actively open for sharing
the malware dataset. Anyone can upload the mobile malware
samples to Contagio mobile mini-dump through dropbox.
And people can download any malware samples. Currently,
contagion website contains malware samples with family
labels from 2011 till now.

Source_2: Android malware samples4

The repository contains live Android malware applica-
tions. Anyone can upload and share the Android malware
samples in this repository. At the time when this paper is writ-
ten, this site contains about 144 Android malicious samples
within 26 families.

Source_3: Android Malware Dataset5

Android Malware Dataset, also known as AMD. It is a
well-labeled and deep-studied dataset. For eachmalware fam-
ily, it provides detailed profile information. Lately, it contains
approximately 24,553 samples from 71 Android malware
families between 2010 and 2016. AMD provides a snapshot
of the current Android malware landscape along with the
detailed descriptions, results and reports of the malware’s
behaviors.

If an instance of malware appears in two or three sources,
then we aggregate these malware samples together and

3http://contagiominidump.blogspot.com.au/
4https://github.com/ashishb/android-malware
5http://amd.arguslab.org/

remove the duplicates. The final malware dataset will be the
union of the three malware sources as shown in Eq.(1).

Source_1 ∪ Source_2 ∪ Source_3 (1)

C. METRICS FOR MALWARE IMPACT
The next challenge is on how to define metrics to evaluate
the Android malware impact. Theoretically, there are many
metrics available that we can employ to scale the malware
impact, for instances, the economic loss or the number of
compromised devices resulted by the Androidmalicious sam-
ples. But in reality, it is difficult to collect all the precise
metrics values due to various reasons, e.g., it is infeasible for
individuals to access the accurate value of global economic
loss. Thus, as a proof-of-concept, we define two metrics to
evaluate the Android malware impact in this paper:

Impact Metrics_1: The size of affected Android end
devices that the malware family has resulted in, also named
SOD for short.
Impact Metrics_2: The size of countries the candidate

malware family has infected, also called SOC for short.
Having defined the Android malware impact metrics,

we should set the impact metrics threshold value to segregate
low and high impact Android malicious samples. In this
work, all the malicious samples within the candidate Android
malware family are labeled as high impact malicious samples
once one of the two setting conditions is met. Otherwise the
malware samples within this Android malware family are
then categorized to the low impact samples.
Condition 1: SOD≥ 1e5, the specific malware family has

affected over 1e5 end devices.
Condition 2: SOC≥ 10, the specific malware family has

infected more than 10 countries.

D. SETUP THE GROUND TRUTH
To setup the ground truth, the best and most reliable way is
the manual annotation at individual malware sample level.
However, this is difficult, infeasible and resources consuming
for us to setup the impact ground truth for many malicious
samples. In addition, the following impact prediction model
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TABLE 2. The detailed introduction of the labeled Android malware data with high impact ground truth (High_Mal ).

is trained without considering the family-boundary of the
data. As a proof-of-concept, the ground truth (low impact
or high impact) of Android malware samples are annotated
on Android malware family-grained. The malicious sam-
ples within the high impact families are all annotated as
high impact (denoted as High_Mal), while Android mali-
cious samples within other Android malware families will be
labeled with low impact ground truth (denoted as Low_Mal).

The baseline Android malware families listi (denoted as
Fam_list) can be accessed from this website.6 For each mal-
ware family f , we retrieve the values of the defined two
impact metrics SOD and SOC from open-source information
from various sources. In this work, we collect the related
information from various sources, e.g., cyber-security news,
white papers, or other related reports published by security
vendors, or security-labs (for example, CheckPoint, Syman-
tec, Kaspersky and McAfee).
Let’s explain the ground truth annotation process through

a case study. According to a published research report of
CheckPoint in 2016, the Android malware family called
Copycat has affected more than 14 million mobile devices,
rooted about 8 million infected devices, earned about
$1.5 million in false advertisement income for the hackers
behind the malware campaign.7 Therefore, all the malware
samples within Copycat are annotated with high impact
ground truth.

E. CONSTRUCT THE ANDROID MALWARE
IMPACT DATASET
With the available Android malware data and the correspond-
ing impact ground truth, we construct the final Android mal-
ware dataset with impact ground truth, called theMal_Impact

6https://forensics.spreitzenbarth.de/
android-malware/

7https://www.checkpoint.com/downloads/resources/
copycat-research-report.pdf

TABLE 3. The detailed introduction of the annotated Android malware
data with low impact (Low_Mal ).

Dataset (D). The information about the collected high impact
malware samples (High_Mal) is listed in Table 2, and the
details of Android malicious samples (Low_Mal) with low
impact ground truth can be found in Table 3.

F. REVERSE ENGINEERING, FEATURE
EXTRACTION AND EMBEDDING
After theMal_Impact DatasetD is constructed, the robust and
informative semantic feature set F are decoded to capture
the patterns for high impact malware data (High_Mal) and
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TABLE 4. The detailed description of the extracted feature set F used to represent malicious samples.

low impact malware data (Low_Mal) in order to accurately
separate them.

In this paper, we perform reverse engineering of malware
samples to parse the features. Generally, the semantic features
are parsed from the disassembled binary classes.dex codes
and the AndroidManifest.xml files. Each Android applica-
tion package must contain the AndroidManifest.xml file. This
AndroidManifest.xml file contains the essential information
of the application, such as the components, the requested
permissions, hardwares and filtered intents of the application.
We will extract these information to characterize the impact
of malware samples. In the following experiment setup, such
information are parsed as features to represent each Android
malware sample.

Android application packages are usually implemented
using Java programming language and then compiled into
classes.dex bytecodes for its execution in the Dalvik virtual
machine. The classes.dex bytecode contains the comprehen-
sive semantic knowledge about the critical API calls and
data access within an application. Besides, the classes.dex
bytecode can be efficiently disassembled and parsed.

Table 4 presents the detailed information of the extracted
features. The first 4 feature sets are captured based on the
AndroidManifest.xml files, and the rest 4 are extracted based
on the disassembled classes.dex codes.
In order to feed the training malware samples to the

machine learning models (denoted as M ), we encode the
string features of each malware sample as a numerical vector.
After the string features for the training malware samples
have been extracted, then we map all these features to a joint
feature vector space. In this feature vector space, each mal-
ware x is embedded into vector representations. We employ
the one-hot-encoding strategy to represent each malicious
sample as a vector. For each feature fi, if it is presented in x,
then the i-th dimension feature value is set to 1, otherwise
the corresponding dimension feature value is 0. Iteratively,
we map each Android malware into the joint feature vector
space. In this space, the malware sharing similar impact
characteristics (low impact or high impact) will lie close to
each other, but low and high impact malicious samples are
expected to be separated with long distances. In addition,
due to the large number of API calls, permissions and other
features, the one-hot-encoding embedding method will gen-
erate extremely high dimensional vector. In order to reduce
the storage memory and improve the computation speed,

the produced feature matrices of malware samples are stored
in the Compressed Sparse Column (CSC) format.

G. IMPACT MODEL TRAIN AND PREDICTION
This phase is to learn the Android malware impact pre-
dict model M . The collected Android malware impact
dataset Mal_Impact Dataset (D) is class-imbalanced, how-
ever, the imbalanced rate is not too high, less than 5.0. Thus
we expect the traditional machine learning classifiers can
work well in this scenario. In this work, we employ the
classical Linear Support Vector Machine (SVM) [20] and
Deep Neural Network (DNN) [5] to train the malware impact
prediction models.

The Linear Support Vector Machine has been used in many
cyber security related classification tasks. In addition, it is an
inherent interpretable classifier which is suitable for feature
explanation. We can easily obtain the core features which are
helpful for us to figure out the core features in predicting the
Androidmalware impact. TheDeepNeural Network has been
used to achieve many great successes in various applications,
e.g., image recognition, machine translation or cyber secu-
rity related areas [9], [22], [33], thus we design a specific
Deep Neural Network to predict the impact of Android mal-
ware samples. As a nonlinear model, Deep Neural Network
complements the Linear SVM to provide a comprehensive
empirical evaluation.

According to previous academic papers and engineering
applications, Linear SVM model is suitable for the small
dataset classification scenarios, while DNNs can learn the
complex and accurate patterns from large-scale dataset. In our
work, we construct an initial and relatively small Android
malicious samples impact dataset with impact ground truth.
Thus, SVM is expected to perform better than DNN. How-
ever, if we can collect more malicious samples together with
impact ground truth, then DNN will achieve the best per-
formance in Android malicious samples’ impact prediction
task.

The SVM aims to learn an optimal hyperplane which sepa-
rates the high impact and low impact malware with maximal
margin as presented in Fig. 3. To determine the optimal
hyperplane, the following objective function Eq.(2) should be
minimized [10].

min
1
2
||w||2 s.t., yi(wT xi + b) ≥ 1, i = 1, . . . , n (2)
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FIGURE 3. The schematic depiction of the SVM malware impact
prediction model.

Once the SVM based impact prediction modelM has been
trained, it will be used to predict the testing malware into low
or high impact by computing their distances to the separating
hyperplane as shown in Eq.(3).

< w, φ(xi + b) ≥ +1 >, for xi is high impact

< w, φ(xi + b) ≤ −1 >, for xi is low impact (3)

The learned weights w can also be used to evaluate the
importance of features to the construction of the classifier.
In this work, we will use the learned feature weights to
measure the contributions of features to the Android malware
impact prediction model.

DeepNeural Networks have become an increasingly preva-
lent technique for malware analysis related applications.
Their power of learning complex patterns and behaviorsmake
Deep Neural Networks an appropriate technique for malware
detection or classification. In this paper, we also create a Deep
Neural Network structure to conduct the malware impact pre-
diction task. To determine the structure and hyperparameters
of Deep Neural Network, we have tried several combina-
tions of the layer number and the related neurons number.
The activation functions are selected from sigmoid, ReLU
and tanh. The optimizer is selected from SGD, Adadelta,
RMSprop and Adamax. We have also tried several loss func-
tions, e.g., Mean_Squared_Error, Mean_Absolute_Error and
Squared_Hinge. Based on the malware impact performance,
we finally determined the structure of the network as pre-
sented in Fig. 4. The details of our designed Deep Neural
Network can be found in Table 5.
For our designed Deep Neural Network, suppose that

the (l − 1)-th layer has m neurons, then the output of the
l-th layer’s j-th neuron can be formulated as the following
equation [19]:

alj = σ (z
l
j) = σ (

m∑
k=1

wljka
l−1
k + blj) (4)

FIGURE 4. The architecture of the Deep Neural Network based malware
impact prediction model.

TABLE 5. The architecture information of the deep neural network
designed in our work.

Here σ is the activation function, a1k is the k-th input feature
xk for l = 2. The matrix formulation of Eq.(4) is:

al = σ (zl) = σ (W lal−1 + bl) (5)

Then the final loss function can be represented as Eq.(6).

J (W , b, x, y) =
1
2
||σ (W LaL−1 + bL)− y||22 (6)

During the learning of W and b, we can compute their
gradient with respect to J , and then apply the Back Propa-
gation [35] optimization algorithm to train the network.

Overfitting is a common problem of Deep Neural Net-
works [19]. Once a Deep Neural Network is overfitted with
the specific malware impact training set, the derived net-
work becomes less useful. To address the overfitting prob-
lem, the dropout regularization strategy [37] is used in our
designed Deep Neural Network impact prediction model.
With a fixed probability, the Dropout strategy randomly
removes a number of incoming and outgoing connections of
some neurons. Using the Dropout strategy makes the network
relatively independent on a particular set of neurons and the
associated weights as well as the biases [19]. In this paper,
the dropout rate of the deep neural network is 0.5.

IV. EXPERIMENTAL ANALYSIS
To validate the effectiveness of our approach, this section
presents an empirical validation of our proposed method.
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To fully evaluate the effectiveness of our proposed solution,
we will address the 3 research questions:

- Research Question 1: How effective is it to represent
both low and high impact Android malicious sam-
ples using AndroidManifest.xml based information (for
example, requested permissions, application compo-
nents or hardware components)?

- Research Question 2: How good is the performance
if we represent the low and high impact Android mali-
cious samples exploiting the features decoded from the
disassembled binary classes.dex codes (for example,
suspicious API calls, critical API calls)?

- Research Question 3: How can we make impact pre-
diction for the newly identifiedAndroidmalicious sam-
ples in the wild?

A. EXPERIMENTAL SETUPS
The following experiments were implemented on a worksta-
tion equipped using two E5-2690 v3 2.60GHz CPUs, in total
of 48 logical CPU cores. The workstation offers 3.5 TB stor-
age and 64 GBmemory which meets the required experiment
conditions.

In the reverse engineering part, we use the open sourced
tool Androguard [11]. Androguard is a tool developed using
python language to reverse engineer Android application
packages, e.g., parse AndroidManifest.xml files or disas-
semble classes.dex bytecodes. Using Androguard we can
decode the semantic features to represent Android malicious
samples.

During the impact prediction stage, we employ the open-
source python Machine Learning package scikit-learn [30] to
perform the training and predicting task of SVMbased impact
model. We employ the grid search strategy to search the
optimal parameters C and gamma for the impact prediction
model. 50% of the constructed Mal_Impact Dataset is splited
as training dataset while the other 50% serves as the test data.

To implement the Deep Neural Network based malware
impact prediction model, we use the Tensorflow8 and Keras9

packages to perform the malware impact prediction task.
When training the Deep Neural Network, 20% of the training
dataset is divided as the validation dataset, then we track
the accuracy trends of both the training and validation data.
Meanwhile we keep checking whether the model training is
finished successfully to prevent overfitting. Once the accu-
racy growing trend of training and validation data are not
consistent, then the training process will be immediately
stopped, and network weight parameters are then revised to
retrain again to prevent the overfitting issue.

B. EVALUATION METRICS
The proposed Android malware impact prediction research
problem is a class-imbalance problem due to the fact that
the size of low impact malicious samples (Low_Mal) is

8https://www.tensorflow.org/
9https://keras.io/

significantly larger than that of high impact malicious sam-
ples (High_Mal). Thus to comprehensively validate the effec-
tiveness of our proposed solution, in this work, we employ the
next 7 performance metrics:

- TP: the size of low impact Android malicious samples
being correctly predicted as low impact malware.

- TN: the size of high impact Android malicious data
being correctly predicted as high impact malware.

- FP: the size of low impact Android malicious samples
being incorrectly predicted as high impact malware.

- FN: the size of high impact Android malicious data
being incorrectly predicted as low impact malware.

- Precision: as shown by Equation 7, the size of cor-
rectly identified high impact malware over the size of
correctly identified high impact malicious samples and
incorrectly identified high impact malicious samples.

P = TP/(TP+ FP) (7)

- Recall: as defined in Equation 8, the size of correctly
identified high impact malicious samples divided by
the size of correctly identified high impact malicious
samples and incorrectly identified low impact mali-
cious samples.

R = TP/(TP+ FN ) (8)

- F1-score: F1-score is a combination of TN, TP, FN
and FP. It can reflect the prediction effectiveness of the
classifiers in a more comprehensive way. Equation 9
provides the formula for the computation of F1-score.

F1 = 2
P× R
P+ R

(9)

C. REPRESENT THE LOW AND HIGH IMPACT MALICIOUS
SAMPLES USING ANDROIDMANIFEST.XML
BASED FEATURES
In this part, we address our first research question, we per-
form the impact prediction task based on information
from AndroidManifest.xml files. Both low impact malware
(Low_Mal) samples and high impact samples (High_Mal) are
characterized using AndroidManifest.xml based features.

To investigate the discriminative ability of AndroidMani-
fest.xml based features, we visualize the malware data using
t-SNE (t-Distributed Stochastic Neighbor Embedding) algo-
rithm [21]. t-SNE is a popular algorithm for reducing dimen-
sions that is suited for high dimensional data visualization.

Fig. 5 shows the visualization result of the trainingmalware
samples. We can observe the low and high impact malicious
samples are clearly distinct in the reduced 2-D feature space.
That is, the AndroidManifest.xml based features imply poten-
tial discriminant power in separating low and high impact
malicious samples. Fig.6 shows the visualization result of the
testing malware samples. From Fig. 6 and Fig.5, we observe
that the testing malware distribution is similar to that of
the training malware, which implies a good malware impact
prediction performance.
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FIGURE 5. Visualization result of the training Android malware samples
using features from AndroidManifest.xml.

FIGURE 6. Visualization result of the testing Android malware samples
using AndroidManifest.xml based features.

TABLE 6. The malware impact prediction results of SVM employing
semantic features decoded from AndroidManifest.xml files.

TABLE 7. The malware impact prediction results of Deep Neural Network
employing features parsed from AndroidManifest.xml files.

Table 6 and Table 7 list the detailed impact prediction
performance of SVM and Deep Neural Network, it can be
seen that the semantic features decoded from AndroidMan-
ifest.xml files perform better in characterizing those low
impact malware samples. In addition, we can see that the
impact prediction performance of SVM is superior to that of
Deep Neural Network. The reason is that Deep Learning is
hungry for the data volume and is good at learning complex
pattern from a large amount of data. However, in our work,

TABLE 8. The most top ten significant features parsed from
AndroidManifest.xml files.

FIGURE 7. Visualization of the training malware data characterized by
features from disassembled code.

the size of the malware, especially the high impact malware
is too few for training robust Deep Neural Networks.

In order tomeasure the contributions of different individual
features in separating low impact and high impact malware,
based on the SVM malware impact prediction model (each
weight is assigned to a certain feature), we list the most top 10
features in the descending order according to the absolute
values of the weight scores (denoted as ||w||) in Table 8.
From Table 8, among the top 10 features, 5 features are
permission involved and 3 features are intent filters involved.
We conclude that the intent filters and requested permis-
sions involved features have better discriminative power in
separating low impact and high impact malicious samples.
In addition, the common sensitive and suspicious features
all appear in the top 10 feature list, e.g., the SMS related
permissions, reboot related permissions or camera related
permissions.

D. REPRESENT THE LOW AND HIGH IMPACT MALICIOUS
SAMPLES EMPLOYING THE INFORMATION PARSED
FROM DISASSEMBLED CLASSES.DEX CODE
In this part, to answer the third research question, we rep-
resent the Android malicious samples using features decoded
from the disassembled classes.dex codes, and then we vector-
ize the malicious samples for the following impact prediction
task.

Fig. 7 shows the visualization result of the training mal-
ware dataset, and Fig. 8 is the visualization result for the
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FIGURE 8. Visualization of the testing malware data characterized by
features from disassembled code.

TABLE 9. The malware impact prediction outcomes of SVM exploiting
features decoded from disassembled classes.dex codes.

TABLE 10. The malware impact prediction results of deep neural network
employing features decoded from disassembled classes.dex codes.

testing malware samples. There is a clear boundary between
low impact and high impact malicious samples. Therefore,
the disassembled classes.dex involved features can also dis-
criminate the low and high impact Androidmalicious samples
with satisfactory performance.

We represent all the malware samplesDwith features from
disassembled classes.dex code, then we perform the mal-
ware impact prediction task. Table 9 and Table 10 show the
malware impact prediction results of SVM and Deep Neural
Network. Compared with the performance using Android-
Manifest.xml based features, we find that the prediction per-
formance is slightly worse but also satisfactory. Besides,
the performance of SVM is better than that of Deep Neural
Network due to the data size limitation.

E. PREDICT THE IMPACT OF NEWLY IDENTIFIED
ANDROID MALWARE IN THE WILD
As we know, Android malware evolve over time due to many
factors, e.g., the employment of obfuscation or encryption
techniques. Meanwhile, the properties of both low and high
impact malware will also change over time. Thus the impact
prediction accuracy might significantly decrease if we ignore
such evolution of newly Android malware in the wild. There-
fore it is essential to take into account such evolution of
impact characteristics while validating the effectiveness of
our proposed solution. In this section, our goal is to address

TABLE 11. The most top ten significant features from disassembled
classes.dex code.

the third research question: Is it possible to accurately and
automatically make the impact prediction for those newly
identified malware in the wild?

In order to investigate this research question, we simulate
the malware evolution scenario by training the impact pre-
diction models with ‘older’ malware samples (the low impact
and high impact malicious samples were all detected between
2011 to 2015), while testing the model with ‘newer’ samples
(thesemalware were detected in 2016 and 2017). In the exper-
iments, the number of ‘older’ training low impact and high
impact malicious samples is 15912 and 3409, respectively,
and the ‘newer’ testing dataset includes 4537 low impact
malicious samples and 928 high impact malicious samples.

In this work, we define a new evaluation metric prediction
power to evaluate the contributions of different semantic
feature subsets (e.g., requested permissions f _rp, filtered
intents f _fi or suspicious API calls f _sa. . . ) in malware
impact prediction. Since the collected Android malware
impact dataset is class-imbalanced, to make a comprehen-
sive evaluation, we selected F1-score rather than accuracy
or precision as the evaluation metric of prediction power.
The higher prediction F1-score is, the corresponding feature
subset is considered to have greater prediction power. Dif-
ferent feature subsets are individually employed to represent
the malware samples for the following impact prediction.
The prediction power of each feature set is shown in Fig.9.
Firstly, among all the semantic feature set extracted from
AndroidManifest.xml files, application components set f _ac,
requested permissions set f _rp and filtered intents set f _fi
have the optimal prediction power for low impact malware
samples (Low_Mal) as well as high impact malware sam-
ples (High_Mal), while hardware components feature set
f _hc has the worst prediction power, particularly for those
high impact malicious samples (High_Mal). In addition, for
feature sets extracted from disassembled classes.dex codes,
the prediction power of suspicious API calls feature set
f _sa and Used permissions feature set f _up are superior to
that of network addresses set f _na and critical API calls
set f _ca. In conclusion, in the task of Android malicious
samples impact prediction, features decoded from Android-
Manifest.xml files have more strong prediction power than
features parsed from disassembled classes.dex codes.
Table 12 and Table 13 shows the impact prediction perfor-

mance of SVMandDeepNeural Network using features from
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FIGURE 9. The comparison results of every feature type’s prediction power.

TABLE 12. The malware impact prediction results of SVM using features
from both disassembled binary classes.dex codes and
AndroidManifest.xml files to represent malware samples.

TABLE 13. The malware impact prediction results of deep neural network
using features from both disassembled binary classes.dex codes and
AndroidManifest.xml files to represent malware samples.

both disassembled binary classes.dex codes and Android-
Manifest.xml. Aggregating more features should produce bet-
ter prediction performance. SVM also performs better than
Deep Neural Network in the impact prediction of those newly
identified Android malware. However, employing more fea-
tures also implies it cost more expensive resources (e.g., time
consumption, memory consumption) in reverse engineering.
In reality, the security practitioner should balance the tradeoff
between accuracy and efficiency.

V. CONCLUSIONS AND FUTURE DIRECTIONS
Android malware cause great security and privacy damage to
our society. Despite huge research efforts, with the tremen-
dous growth in Android malware applications, detecting the
malware or classifying malware into specific families has no
longer sufficient for security risk management. In this work,
we raise a novel research problem: Is it possible to accurately
and automatically make the impact prediction for the newly
identified Android malicious samples? We attempt to design
a light-weight solution to address this research question.
Firstly, we construct a new Android malware dataset with
low impact or high impact ground truth. Then, we perform
feature engineering to parse semantic features to represent the

malware samples. Thirdly, we build up the SVM and Deep
Neural Network models to predict the impact of Android
malicious samples. In the end, the empirical experiments
validate the effectiveness of our proposed solution in the
Android malware impact prediction.

In the future, our research work will focus on the follow-
ing directions: On the one hand, we will investigate more
impact relatedmetrics, for example, the economic loss caused
by the malware, to directly reflect the impact of Android
malware. Besides, we may collaborate with security corpo-
rations or labs to obtain more accurate and trusted metrics
values. On the other hand, we will collect more Android
malware samples from other sources to update the created
dataset in this paper. What’s more, more advanced and infor-
mative features, e.g., graph based features (FCG, CFG),
tree based features (abstract syntax tree), will be introduced
to accurately capture the impact characteristics of Android
malware.
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