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ABSTRACT As a kind of forensic evidence, a shoeprint conveys many important human characteristics,
and it plays a vital role in forensic investigations. Millions of shoeprints are acquired from crime scenes,
and it is a challenging task to retrieve the most similar shoeprints for a query shoeprint. Most shoeprint
retrieval methods sort shoeprint images by feature similarities with respect to the query shoeprint; however,
the results are not always what the investigator expects because the retrieval algorithm cannot determine
what the investigator prefers based on only the content of the query shoeprint. This paper proposes a method
to guide the shoeprint retrieval process to approximate what the user wants by applying learned opinion
scores. Additionally, this paper improves shoeprint retrieval effectiveness by implementing the following
four perspectives: 1) using the opinion scores of multiple examples to guide the results to meet the forensic
experts’ expectations; 2) proposing a learning-based method to refine opinion scores, which corrects the
labeled opinion scores of multiple examples and their neighbors; 3) using a manifold ranking method to
propagate the opinion scores to other dataset shoeprints; and 4) introducing a coefficient matrix to prevent
the tendency of the ranking scores to become low values. The experiments show that the cumulative match
scores of the proposed method are more than 96.6% in the top 2% of the dataset composed of 10,096 crime
scene shoeprints.

INDEX TERMS k nearest neighbors, opinion scores, shoeprint image retrieval, manifold ranking, multiple
examples.

I. INTRODUCTION
As a kind of forensic evidence, shoeprints cannot only serve
as a clue to a case but also serve as an exhibit for bring-
ing charges for a crime. In past decades, investigators took
photos of shoeprints when a case occurred and manually
compared them with those captured from other crime scenes
to reveal some clues about that particular case. However,
manual comparisons are challenging when there are a large
number of shoeprints for comparison. Therefore, proposals
for automatic shoeprint retrieval methods are necessary to
perform comparisons in a more efficient manner.

The goal of shoeprint retrieval algorithms is to obtain
a ranking list of shoeprints in a database according to
their similarities to the query shoeprint. In the past few
years, many shoeprint image retrieval methods have been
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proposed, and they have performed well in terms of their
datasets [3], [7], [9], [11], [21], [27]. However, most of these
methods only take high quality shoeprints into account, and
the performance becomes comparatively low when applied
to poor quality crime scene shoeprint retrieval. For example,
Figure 1 shows four shoeprints that were left by the same
shoe, and they represent good quality characteristics for crime
scene shoeprints in practice. However, most of the existing
algorithms have poor performance. We believe this poor per-
formance is due to the following two reasons. The first reason
is that few current shoeprint retrieval algorithms consider the
well-known gap between semantic concepts and low-level
features, and the other reason is that most of the methods
neglect forensic experts’ opinions.

Bouridane et al. [2] propose a semi-supervised learn-
ing retrieval method, which introduces experts’ opinions
into the retrieval method, and the method has a good
performance under the condition that shoeprint examples
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FIGURE 1. Shoeprints with the same patterns left in different crime
scenes by the same culprit.

are correctly labeled. Here, the shoeprint examples denote
shoeprints captured from the same scene where the query
shoeprint is acquired. However, in practice, different experts
may label the same example with different opinion scores
depending on their perspectives, which leads to different
ranking results. Therefore, we propose a learned opinion
score guided shoeprint retrieval method (LOSGSR) to guide
the ranking results using the learned opinion scores. Our
motivations are (i) to use a learning-based method to refine
opinion scores, which corrects the labeled opinion scores
of multiple examples and their neighbors and (ii) to use
the refined opinion scores of shoeprint examples to guide
shoeprint retrieval. The experiments show that the cumulative
match score of our method is improved by 3.07% and 7.79%
above those of Bouridane et al. [2] and Zhou et al. [22] on
average respectively, and the cumulative match score in the
top 2% of the dataset is more than 96.6%. To the best of
our knowledge, the performance outperformed those of other
methods.

The main contributions of this paper are as follows:
1) We use the opinion scores of multiple shoeprint exam-

ples to guide the ranking scores to meet the forensic experts’
expectations.

2) We propose a learning-based method to refine opinion
scores, which corrects the labeled opinion scores of multiple
examples and their neighbors.

3) We present a manifold ranking method which can
narrow the well-known gap between low-level features and
semantic concepts. The differences from the previous man-
ifold ranking methods include the following: (i) we take
into account the experts’ opinion scores assigned for mul-
tiple shoeprint examples, and the results are therefore in
accordance with the experts’ opinions; (ii) the feature sim-
ilarities between the query and dataset shoeprint images
are used as a constraint criterion; (iii) the refined opin-
ion scores of the neighbors are taken into consideration;
and (iv) a coefficient matrix is used to prevent the ten-
dency of the computed ranking scores from becoming low
values.

4) Ourmethod canwork well for real crime scene shoeprint
retrieval. The cumulative match score is more than 96.6% in
the top 2% of the database composed of 10096 real crime
scene shoeprint images.

The remainder of the paper is organized as follows.
Section II provides a brief review of related work.

Section III details the problem and presents the proposed
method. Section IV provides the experimental results fol-
lowed by the conclusion and future work.

II. RELATED WORK
In this section, we briefly review some existing shoeprint
retrieval methods. According to the type of features used for
retrieval existing methods can be broadly classified into three
categories: 1) holistic appearance feature-based methods,
2) regional appearance feature-based methods, and 3) interest
point feature-based methods.

Methods of the first class usually view a shoeprint
as a whole. Bouridane et al. [2] provide a fractal-based
feature extraction and matching method. However, this
method is sensitive to variations in rotations and transla-
tions. The moments invariant features are used for auto-
matic shoeprint retrieval, such as Hu’s moments [3] and
Zernike moments [4], [5], and they report good results of
their methods; however, the shoeprints that they used are
clear and complete; partial data is not considered. Patil
and Kulkarni [6] provide a retrieval method that uses the
Radon transform and the Gabor feature to align and represent
a shoeprint, and the method shows good performance for
partial shoeprints generated from full shoeprints in a rig-
orous manner. Chazal et al. [7] and Gueham et al. [8], [9]
use the Fourier transform to analyze the frequency spec-
tra of shoeprint images, but the methods are sensitive
to partial shoeprints. Cervelli et al. [10], [12] perform the
Fourier transform on the cropped shoeprint images How-
ever, this method is sensitive to geometry transformations.
Alizadeh and Kose [13] implement a sparse representa-
tion method to retrieve shoeprints. They show good per-
formance on shoeprint retrieval. However, features used in
this method are sensitive to variations in rotations and trans-
lations. Richetelli et al. [14] compare different methods on
a scene-like shoeprint database. The authors have tested
phase-only correlation (POC) method, Fourier-Mellin trans-
formation and the scale-invariant feature transform (SIFT)
method on shoeprint image retrieval. Results on a scene-like
shoeprint database show that the POC method has better
performance than the Fourier-Mellin transformation and the
SIFT method; however, their performances may consider-
ably drop when applied to degraded crime scene shoeprints.
Kong et al. [15] use the pre-trained convolutional neural
network to extract multi-channel deep features, and match
these features with their proposed multi-channel normalized
cross-correlation method. Their results show good perfor-
mance. However, this algorithm requires a large amount of
computation to compute feature similarities.

In the second class of methods, shoeprints are always
divided into different semantic regions. Tang et al. [16], [17]
represented a shoeprint with an attributed relational
graph (ARG) whose nodes are the fundamental shapes
in shoes such as lines, circles, ellipses, etc. The authors
show that their method is robust to distortions and partial
shoeprints. However, it is a challenge work to deal with
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shoeprints with random extrusions, intrusions, breaks and
complex patterns that cannot be represented by such fun-
damental shapes Pavlou and Allinson [18], [19] use the
maximally stable extremal regions (MSER) feature detec-
tor to detect region features. However, shoeprints with
noises and distortions may lead to an incorrect detection.
Kortylewski et al. [21] describe a periodic pattern-based
shoeprint retrieval algorithm. The method detects periodic
patterns of the shoeprint first and then evaluates the sim-
ilarity through comparing the Fourier features of the peri-
odic patterns. The algorithm can perform well on shoeprints
with periodic patterns. However, how to address degraded
shoeprint images remains a problem. Wang et al. [1] divides
a shoeprint into top regions and bottom regions, and then
wavelet-Fourier-Mellin transform based features of both
regions are extracted for retrieval. The method performs
well for its invariant features and matching score estimation
method, but it does not attempt to narrow the gap between
the semantic concepts and the low-level features. Kortylewski
and Vetter [23] learn a compositional active basis model to
each reference shoeprint, which is used to evaluate against
other query images at testing time.

Methods of the third class always extract interest points
first, and then the rotation, scaling and translation (RST)
invariant features are used for performing shoeprint retrieval.
Pavlou and Allinson [19] utilizes the MSER features and
SIFT descriptors to describe the shoeprint images for
shoeprint retrieval. Nibouche et al. [24] use the SIFT descrip-
tor to represent shoeprint images, and the random sam-
ple consensus (RANSAC) method is used to estimate the
matching performance. Crookes et al. [25] and Su et al. [26]
also perform shoeprint retrieval with a Harris detector and
the SIFT descriptors. Almaadeed et al. [28] use multiscale
Harris and Hessian detectors to extract interest points, and
the SIFT descriptor is employed to describe the shoeprint
images Wang et al. [29] utilize the SIFT descriptors to
describe shoeprints, they report good performance with clear
shoeprints, but the performance may dramatically diminish
with degraded crime scene shoeprints Most of the inter-
est point-based methods have good performance with clear
shoeprints, but the performance may considerably diminish
with degraded crime scene shoeprints. A possible reason for
this outcome may be that the real crime scene shoeprints are
highly degraded and randomly incomplete.

Bouridane et al. [2] considers both feature similarity and
manually labeled opinion scores of multiple examples, and
the results correlate well with the forensic experts’ opin-
ions, but they neglect the effect of the mislabeled opinion
scores and the contribution of the opinion scores of the
neighborhood.

III. METHODS
A. PROBLEM STATEMENT
Let D = {d1,d2, · · · ,dN } ⊂ Rm

+ denote N shoeprint images
collected from different crime scenes. q1 represents the query

shoeprint image, and {q2, · · · ,qn} ⊂ Rm
+(n ≥ 2) denotes

multiple shoeprint examples acquired from the same crime
scene as the query shoeprint. oi(i = 2, · · · , n) denotes the
rating score of qi assigned by the forensic expert interactively,
and this is according to its similarity to the query shoeprint q1
Let U = Q ∪ D =

{
u1,u2, . . . , un,un+1, . . . ,un+N

}
⊂

Rm
+Q = q1 ∪ {q2, · · · ,qn} ⊂ Rm

+, and O = o1 ∪
{o2, · · · , on} ⊂ Rm

+ Given D, Q and O, the goal of this
paper is to find a function f : U → R+ that assigns to each
shoeprint ui ∈ U a ranking score fi ∈ R+, 0 ≤ fi ≤ 1,
and fi should be as close as possible to the opinion score
assigned by the forensic expert. Let f = [f1, f2, · · · , fK ], and
K = n+ N = |U|

B. MOTIVATIONS AND FORMULATIONS
Most of the shoeprint retrieval methods sort shoeprint images
by feature similarities in contrast to the query shoeprint Addi-
tionally, sometimes the ranking lists are not truly what the
investigator expects because the algorithms do not take into
consideration what the investigator requires. Therefore our
motivation for this paper is to design and train an algorithm
with features that describe what the investigator would prefer
by assigning opinion scores to shoeprint examples.

FIGURE 2. Intuitive illustration of the proposed LOSGSR method.

Figure 2 shows the basic idea of our proposed LOSGSR
method. The samples from the datasetD are represented with
‘+’s and ‘∗’s, and symbol denotes a certain kind of shoeprint
in the feature space. In addition, the samples from each kind
of shoeprint have a closer distance in the semantic space,
and d1 and d2 are samples from different types of shoeprints
that are represented by a circle and a filled circle. q1, q2
and q3 are shoeprint examples from a crime scene. q1 is
the query shoeprint, which is represented by a rectangle; q2
and q3 are represented by a triangle and a filled triangle,
respectively. We aim to implement ranking scores that can
meet the following two criteria: (i) shoeprints closer to the
query shoeprint in the semantic space should have higher
ranking scores; and (ii) nearby shoeprints in the semantic
space should share similar ranking scores. In the feature
space, it is very difficult to discern which one of the d1 and d2
is closer to the query shoeprint q1. To rank the shoeprints
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according to the investigator’s expectations, we introduce
the investigator’s opinions into the shoeprint retrieval. The
investigator assigns rating scores o2 and o3 to q2 and q3,
according to their similarity in the semantic space to q1.
Assume that o2 is greater than o3. Through the guidance
provided from the opinion scores of q2 and q3, the ranking
score of d1 that is computed by the retrieval algorithm should
be greater than that of d2; otherwise, the ranking results will
not be consistent with the human evaluation. Finally, through
the opinion scores of q2, q3 and their neighbors, the ranking
scores can be guided to meet the investigator’s expectations.

Based on these results, we formulate our method using the
following optimization problem.

f∗ = argmin
f
Q(f) =

1
2
α
∑
ui∈U

Ri,i (fi − yi)2

+
1
4
β
∑
ui∈U

∑
uj∈U

Wij

(
1
√
Cii

fi −
1√
Cjj

fj

)2

+
1
2
γ
∑
qi∈Q

(fi − ŷi
)2
+

∑
ul∈Nk (qi)

(
fl − ŷl

)2 (1)

where α, β, γ are the regularization parameters, and 0 <

α, β, γ < 1, and α < β. Nk (qi) denotes the k nearest
neighbors of qi. We denote the initial ranking score list as
y = {yi|i = 1, 2, · · · ,K }T, where yi is the feature similarity
value for the ith shoeprint image in the dataset. yi is computed
according to (9). For the ranking score list is considered to be
reasonable, the target image has a relatively high probability
of ranking at the top of the ranking list; thus, we re-rank
the top-m images in the ranking score list and encourage the
ranking scores of the rest to be low values. The newly defined
initial ranking score list is y = {yi|i = 1, 2, · · · ,K }T. If a
dataset image ui does not rank at the top-m of the ranking list,
then its corresponding initial ranking score yi = 0. ŷi denotes
the learning-based opinion score of the ith example from the
crime scene, and ŷl denotes that of one of its neighbors.
The first term is the initial ranking score correlation term.

The shoeprints closer to the query shoeprint in the feature
space should have higher ranking scores. R is a diagonal
K × K matrix, in which the ith element Ri,i represents the
initial rank order index in a descending order of the fea-
ture similarity values to the query shoeprint. The process of
computing Ri,i is as follows: (i) compute the feature similar-
ity values between the query image and the dataset images
according to (9); (ii) rank the dataset images in descending
order depending on the feature similarity values, and let
Ind (ui) denote the index position of ui in the ranking list;
and (iii) the initial rank order index is Ri,i =

Ind(ui)
K .

The second term is the smoothness term. The shoeprint
images nearby in the feature space should share similar rank-
ing scores. W represents an affinity matrix, and Wi,j =

w
(
ui,uj

)
is computed according to (9). C denotes a diagonal

matrix, in which the ith element Ci,i denotes the sum of

ith row of the affinity matrixW. Formally, Ci,i =
K∑
j=1

Wi,j.

The third term is the fitting term. This term associates a cost
for the degree of deviation from the learning-based opinion
scores. With the help of the second term, the opinion scores
can be propagated to other shoeprint images in the dataset.

Due to the convenience of solving the problem, we rear-
range the third term in (1); thus, the cost function can be
rewritten as follows:

Q(f) =
1
2
α

K∑
i=1

Ri,i (fi − yi)2

+
1
4
β

K∑
i=1

K∑
j=1

Wij

(
1
√
Cii

fi −
1√
Cjj

fj

)2

+
1
2
γ

K∑
i=1

Ai,i
(
fi − ŷi

)2 (2)

where Ai,i = 1Q∪Nk (Q) (ui), which indicates whether ui is in
the union set ofQ and its neighborhood set Nk (Q) or not, and
Nk (Q) = {Nk (q1), · · · ,Nk (qn)}.
The matrix-vector formulation of (2) is:

Q(f) =
1
2
α (f− y)T R (f− y)+

1
4
βfTLf

+
1
2
γ
(
f− ŷ

)T A (f− ŷ
)

(3)

where L denotes a symmetric normalized Laplacian matrix,
L = I−C-1/2WC−1/2 and f = {fi|i = 1, 2, · · · ,K }T, and ŷ ={
ŷi|i = 1, 2, · · · ,K

}T. If a dataset image ui does not belong
to the neighbor set of any examples, then its corresponding
opinion score ŷi = 0.

The proposed LOSGSR algorithm has three phases:
off-line feature extraction offline opinion score prediction
model training and on-line retrieval. The flow diagram of the
proposed LOSGSR is shown in Figure 3. In the off-line fea-
ture extraction phase, wavelet-Fourier-Mellin based features
of every image in the database D are firstly extracted and
pooled into the feature database; and then the affinity matrix
of the database D is computed and prepared for retrieval.
In the offline opinion score prediction model training phase,
firstly, forensic experts are asked to assign rating scores to
the training shoeprints depending on their similarities to the
reference shoeprint; and then the feature similarities of these
training shoeprints to the reference image are computed;
finally, parameters of the opinion score prediction model can
be acquired. In the on-line retrieval phase, firstly, the rating
scores of multiple examples qi(i = 2, · · · , n) are assigned
by the user, and then the labeled opinion scores of multiple
examples and their neighbors can also be computed; sec-
ondly, the affinity matrix of the database U is constructed;
and then the predicted opinion score can be acquired by using
the trained prediction model, and the opinion scores can be
refined based on the labeled and predicted opinion scores;
finally the ranking scores are computed and the ranking list is
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FIGURE 3. The flow diagram of the proposed LOSGSR method Two dotted boxes denote the process of manually rating scores.
In the off-line opinion score prediction model training phase, it is in accordance with forensic experts’ opinions. In the on-line
retrieval phase, it depends on the users’ opinions.

acquired based on the ranking scores. We detail the proposed
LOSGSR algorithm in the following sections.

C. LEARNING-BASED OPINION SCORE
COMPUTATION METHOD
There are mainly two methods to obtain the opinion scores.
One method requires the forensic experts to manually label
the examples, and the other method requires learning. In prac-
tice, the formermethodmay involve different experts labeling
the same example with different opinion scores according to
their opinions; hence this method leads to different ranking
results. Therefore, we proposed a learning-based method to
correct the labeled opinion scores. The learning-based opin-
ion scores ŷ can be formally defined as follows:

ŷ (ui) =
(
1− ap

)
ys (ui)+ apyp (ui) (4)

where ys and yp denote the labeled opinion scores and the
predicted opinion scores, respectively, and ap denotes the
weighted value.

The labeled opinion score ys is defined as follows:

ys (ui) =

{
oi ui ∈ Q
w
(
qj,ui

)
oj ui ∈ Nk

(
qj
) (5)

where w
(
qj,ui

)
denotes the similarity value between

qj and ui. This equation means that if ui is manually labeled,
its labeled opinion score is equal to the rating score oi;
otherwise, its labeled opinion score is a weighted version of
the training score of the closest example to it.

The predicted opinion score yp is defined as

yp (ui) = h (w (q1,ui) , λ) , ui ∈ Q ∪ Nk (Q) (6)

where h
(
w
(
q1,uj

)
, λ
)
denotes the pre-learned logistic func-

tion, λ denotes the model parameter vector, and w
(
qj,ui

)
denotes the similarity value between the shoeprint qj and ui.

1) LABELED OPINION SCORES
For an image qi ∈ Q, its labeled opinion score equals the
rating score that is labeled by the experts. The procedures are
as follows:

Step 1: The labeled opinion score of the query shoeprint
image ys (q1) = o1;
Step 2: Five levels are used to evaluate the similarity

between the query shoeprint and other examples These levels
are the extremely high, high, medium, low and extremely
low levels, in decreasing order. The ratings between the
extremely low and extremely high levels are mapped to num-
bers between 0.2 and 1, and the numbers are defined as the
rating score shown in Table 1.

TABLE 1. Shoeprint similarity rating scale.

Step 3: An expert is then asked to judge the similarity level
of each example qi and to assign a score by using the provided
shoeprint similarity rating scale shown in Table 1.

For example, six shoeprints collected at a crime scene
are shown in Figure 4, and let o1, o2, o3, o4, o5, o6 denote
the rating scores of the six images, which are interactively
labeled by the investigator according to the rating scheme
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FIGURE 4. Rating scores of the query shoeprint and the other examples.
(a) o1 = 1. (b) o2 = 1. (c) o3 = 0.8. (d) o4 = 0.6. (e) o5 = 0.4. (f) o6 = 0.2.

described in Table 1. We assume that the first image is the
query shoeprint; thus, we set o1 equal to 1, and o2 should have
the same opinion score because the second shoeprint has the
same pattern as the query shoeprint. Similarly, o3, o4, o5, o6,
corresponding to their similarity level, can be labeled 0.8, 0.6,
0.4 and 0.2, respectively.

For an image ui ∈ Nk
(
qj
)
, its labeled opinion score is the

weighted version of the rating score of qj, and it is defined
as ys (ui) = w

(
qj,ui

)
oj. If ui is in the intersection of the

neighbor sets of different multiple examples, qj represents the
one closest to it. That is, qj = argmax

qj∗

(
w
(
qj∗ ,ui

))
.

2) PREDICTED OPINION SCORES COMPUTATION
Inspired by the methods of objective image quality assess-
ment [30], we approximate the predicted opinion score yp (i)
by using a four-parameter logistic function, which is defined
as follows:

yp (i)

= h (w (q1,ui) , λ) =
λ1 − λ2

1+ exp (w (q1,ui)− λ3/ |λ4|)
+ λ2

(7)

Here, λ =
[
λ1 λ2 λ3 λ4

]
, and the λi’s are the parameters

that parameterize the function, mapping the similarity value
to the opinion score.

Given a training set T =
{ (
x(i), y(i)

)
, i = 1, 2, · · · ,M

}
,

the optimal values of parameters λ can be acquired by using
the least square method:

λ∗=argmin
λ

M∑
i=1

{
λ1− vλ2

1+ v exp
(
x(i)−λ3/ |λ4|

)+λ2−y(i)}2

(8)

where x(i) represents the feature similarity between the
ith image and its reference image, and y(i) represents the
rating scores.

The training set T is constructed as follows:
Step 1: The training shoeprint images are randomly divided

into L groups. Each group Gl (l = 1, 2, . . . ,L) consists of
one reference shoeprint image and nl different shoeprint
images.

Step 2: Each group of shoeprint images is shown to dif-
ferent forensic experts, and the forensic experts will score
other images in this group, depending on their similarities to
the reference image, while basing their score on the rating
scheme described in Table 1.

Step 3: The mean score of different experts for each image
is recorded as y(i), and its feature similarity to the reference
image is recorded as x(i).

Step 4: The training set

T =
{ (
x(i), y(i)

)
, i = 1, 2, · · · ,

L∑
l=1

nl

}
.

D. AFFINITY MATRIX COMPUTATION METHOD
Each of the elements in the affinity matrix W denotes the
similarity of every two images in the feature space, andwe use
the holistic and regional appearance-based features proposed
in [2] to compute the similarity value. Here, we give a brief
overview about this method.

The matching score between two shoeprint images is
defined as a weighted sum of both holistic and regional
similarity values, and it is formally defined as:

W (i, j) = arSr
(
ui,uj

)
+ ahSh

(
ui,uj

)
(9)

where ar and ah denote the weighted parameters and subject
to ar + ah = 1. Sr

(
ui,uj

)
denotes the regional appearance

feature similarity value, and Sh
(
ui,uj

)
denotes the holistic

appearance feature similarity value.
For a shoeprint image ui, its feature extraction process has

four steps as follows.
Step 1: Separate the shoeprints from different backgrounds

and then normalize the shoeprints.
Step 1.1: Binarized shoeprint image extraction. Firstly,

the collected crime scene shoeprints are split into a grid of
cells; secondly, a thresholding method (e.g. Otsu’s method)
is used to extract sub shoeprints in each cell; finally, morpho-
logical operations are applied to smooth edges and eliminate
small holes.

Step 1.2: Resolution normalization. The picture of the print
is taken with a forensic scale near to the print in a forensic
scene, and it is rescaled to a predefined dpi.

Step 1.3: Orientation normalization. The shoeprint contour
model (SPCM) described in [1] is applied to normalize the
shoeprint.

Step 2: The binarized and normalized shoeprint image ui
is divided into the top region and the bottom region, and they
are denoted as Stop (i) and Sbottom (i), respectively.
Step 3: The whole shoeprint ui and its two corresponding

regions Stop (i) and Sbottom (i) are decomposed at a specified
number of levels by using the Haar wavelet. At each level,
we can acquire one approximation and three details. The
coefficients can be represented as follows:

FW (ui)

=

{
F(ui)W (l, h, v) |0 ≤ l ≤ L, h, v = 0, 1

}
FW

(
Stop (i)

)
=

{
F(

Stop(i))
W (l, h, v) |0 ≤ l ≤ L, h, v = 0, 1

}
FW (Sbottom (i))

=

{
F(Sbottom(i))W (l, h, v) |0 ≤ l ≤ L, h, v = 0, 1

}
(10)
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where L is the maximum level. To avoid merging the useful
neighbor patterns, L should be able to meet the criterion:
2L−1 ≤ Dmin, where Dmin represents the minimum dis-
tance between two neighbor patterns, which can be specified
interactively.

Step 4: The Fourier-Mellin transform is performed on
each band of the wavelet coefficients, and then a band-
pass filter proposed in [35] is used to weaken the effect
of the connections between patterns and noises, such as
small holes, intrusions, extrusions and broken patterns. The
filtered Fourier-Mellin domain coefficients of FW (ui) are
used as holistic appearance features of the shoeprint ui,
and those of FW

(
Stop (i)

)
and FW (Sbottom (i)) are used as

region features. Here, we use FMW (ui), FMW
(
Stop (i)

)
and

FMW (Sbottom (i)) to denote the holistic and region appear-
ance feature of the shoeprint ui.
For two shoeprint images ui and uj, the holistic appear-

ance similarity Sh
(
ui,uj

)
between them is computed by

their correlation coefficient of the appearance features. The
regional appearance similarity between them is a weighted
sum of correlation coefficients of both FMW

(
Stop (i)

)
and

FMW (Sbottom (i)). Please refer to (7)–(19) in [1] for details
about how to set the weights adaptively.

E. SOLUTION
The dimensions of the matrix R, W, L, C and A are K ×
K s, and it requires high memory to simulate the formulation
when there are a large number of shoeprints in the dataset.
In this study, we apply the solution of iterative formulation as
follows.

By differentiation of Q(f) with respect to f, we can obtain

∂Q
∂f
= αR (f− y)+ βLf+ γA

(
f− ŷ

)
= 0 (11)

Equation (11) can be transformed into

αRf (f− y)+ β (I− S) f+ γA
(
f− ŷ

)
= 0 (12)

where S = C−1/2WC−1/2. Then, we transform (12) into the
following form.

f=
(

βI
βI+γA

S−
αI

βI+γA
R
)
f+

γA
βI+γA

ŷ+
αR

βI+γA
y

(13)

Finally, we can obtain the iterative formulas as follows:

f(t)=
(

βI
βI+γA

S−
αI

βI+γA
R
)
f(t−1)+

γAŷ+αRy
βI+γA

(14)

where t denotes the number of iterations.

F. CONVERGENCE ANALYSIS
Similar to the convergence analysis performed in [31],
we show the sequence {f(t)} converges and compute the limit
as follows.

We assume that f(0) = γAŷ+αRy
βI+γA , and by the iterative

equation, we can obtain

f(t) =
(

βI
βI+γA

S−
αI

βI+γA
R
)t
γAŷ+αRy
βI+ γA

+
I

βI+ γA

×

t−1∑
i=0

(
βI

βI+ γA
S−

αI
βI+ γA

R
)i (

γAŷ+ αRy
)
(15)

where 0 < α, β, γ < 1, α < β and the spectral radius
satisfies ρ

(
βI

βI+γAS−
αI

βI+γAR
)
< 1; we can determine the

limit of f(t) as follows:

lim
t→∞

f(t) = lim
t→∞

(
βI

βI+ γA
S−

αI
βI+ γA

R
)t
γAŷ+ αRy
βI+ γA

+
I

βI+ γA
lim
t→∞

t−1∑
i=0

(
βI

βI+γA
S−

αI
βI+γA

R
)i

×
(
γAŷ+ αRy

)
(16)

Hence, we can determine the limit value f∗ as follows:

f∗ = 0+
I

βI+ γA

(
I−

βI
βI+ γA

S+
αI

βI+ γA
R
)−1

×
(
γAŷ+αRy

)
=(αR+β (I−S)+γA)−1

×
(
γAŷ+ αRy

)
(17)

where f∗ is equivalent to (αR+ β (I− S)+ γA)−1(
γAŷ+ αRy

)
.

IV. EXPERIMENTS
A. EXPERIMENT CONFIGURATION
1) DATASETS
We test the proposed method on three shoeprint databases.
The first one is a real crime scene shoeprint image database
namedMUES-SR10KS2S [1], and the others are public avail-
able shoeprint databases, i.e. FID-300 [23] and CS [14].

Probe image set and gallery image set in MUES-
SR10KS2S are all crime scene shoeprint images. We refer
this kind of shoeprint retrieval as scene to scene (S2S)
shoeprint retrieval [20]. Gallery shoeprint images in FID-300
and CS are reference shoeprints and of high quality, and
the probe shoeprint images are crime scene or scene-like
images. We refer this kind of shoeprint retrieval as scene to
reference (S2R) shoeprint retrieval [20].

a: MUES-SR10KS2S DATABASE
The MUES-SR10KS2S dataset consists of one gallery set,
one probe set and one training set. The definitions and
descriptions of the three data sets are detailed as follows.

(i) Probe set: A probe set is a collection of probe images
that need to be retrieved [32], [33]. The probe set contains
twelve kinds of patterns, and the total number of the probe
set is 72. The probe images have been derived from different
crime scenes with different image quality.
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(ii) Gallery set: A gallery set is a collection of
recorded shoeprint images against which a probe image is
matched [32], [33]. The gallery set consists of 10096 crime
scene shoeprints, which include 72 probe images,
432 synthetic versions of probe images and 9592 crime scene
shoeprints.

(iii) Training set: The training set is a collection of
shoeprint images used to train the opinion score prediction
model. The training set contains 15 groups of crime scene
shoeprints that are not contained in the gallery set. Each
group has a different number of images, and the total number
of shoeprint images in the training set is 100. There is one
reference shoeprint in each group.

FIGURE 5. Sample shoeprints in the MUES-SR10KS2S database.
(a) The probe shoeprint and its five counterparts from real crime scenes
in the gallery set. (b) Corresponding binarized versions of the probe
shoeprint and its five counterparts in the gallery set.

Some samples of the MUES-SR10KS2S database are
shown in Figure 5. Figure 5(a) shows one probe shoeprint and
its five counterparts in the gallery set, and Figure 5(b) shows
their binarized and normalized versions.

b: FID-300 DATABASE
The FID-300 database contains two different kinds of
shoeprint images. The first kind of shoeprint images is
derived from crime scenes by forensic investigators, which
are used as the query shoeprints, and the total number of the
query shoeprints is 300. The second kind of shoeprint images
is the reference shoeprints, which are generated by using a
gelatine lifter on the outsole of the reference shoe, and then
by scanning the lifters. These reference shoeprint images are
used as the gallery images, and they are of very high quality.
The total number of the gallery images is 1175.

Some samples of the FID-300 database are shown
in Figure 6. Figure 6(a) shows one group of query shoeprints,
and Figure 6(b) shows the corresponding reference shoeprints
of the query shoeprints shown in Figure 6(a).

c: CS DATABASE
The CS database consists of one gallery set and four probe
sets. The reference shoeprint images are used as the gallery
images, and they are of very high quality. The total number
of the gallery images is 100 The first kind of probe shoeprint

FIGURE 6. Samples of the query shoeprint and its corresponding
reference shoeprints in the FID-300 database. (a) The query shoeprint
from crime scenes. (b) Corresponding reference shoeprints of the query
shoeprints.

images is 66 crime scene-like dust shoeprint images which
are generated by using black gelatine lifters on the prints
that walked by analysts after stepping in a tray of collected
vacuum dust, and then by scanning the lifters. The second
kind of probe shoeprint images is 53 crime scene-like blood
shoeprint images which are generated by using a scanner
on the crime scene-like blood impressions. The third kind
of probe shoeprint images is the same 53 blood replicates
enhanced by using leuco-crystal violet (LCV). The fourth
kind of probe shoeprint images is 100 high quality shoeprint
images. The exemplars are prepared by using an accepted
Handprint method [36] and digitized by using the scanners.
Samples of four kinds of query shoeprints from CS database
are shown in Figure 7(c)–(f), and their corresponding refer-
ence shoeprints are shown in Figure 7(a) and Figure 7(b).

FIGURE 7. Samples of the query shoeprint and its corresponding
reference shoeprints in the CS database. (a) The reference shoeprint
of (c). (b) The reference shoeprint of (d), (e) and (f). (c) Dust shoeprint.
(d) Blood shoeprint. (e) Blood shoeprint enhanced by LCV. (f) High quality
shoeprint.

2) EVALUATION METRIC
The cumulative match characteristic curve (CMC) is often
used to evaluate the performance of a retrieval algorithm
operating in the closed-set identification task [34]. The CMC
shows how often the query image appears in the top n
matches, and its top n can be defined as follows:

CMC (n) = 100
Rn
|P|

(18)
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TABLE 2. Comparisons with the state-of-the-art methods with the same affinity matrix.

where P, |P| and Rn denote the query images, the number of
the query images and the number of images in the gallery set
which match the query images in the top n ranked images,
respectively.

B. PERFORMANCE EVALUATION
In this section, we conduct three kinds of experiments to
evaluate the performance of the proposed method. First,
we compare the proposed method with some state-of-the-art
algorithms, whose inputs are affinity matrixes, so that we
can evaluate the ranking performances under the condition
that the affinity matrixes are the same. Second, comparisons
are conducted on the public available databases so that we
can compare the retrieval performance with methods whose
results have been reported in the same public databases.
The third experiment is conducted on the MUES-SR10KS2S
dataset, and we compare the retrieval performance with the
state-of-the-art methods.

1) COMPARISONS WITH STATE-OF-THE-ART METHODS
WITH THE SAME AFFINITY MATRIX
We compare the proposed method with the works of
Wang et al. [20] and Zhou et al. [22]. Zhou et al. [22] pro-
vides a manifold-based ranking algorithm, and the manifold
regularization term of our proposed ranking cost function
is inspired based on its idea. Wang et al. [20] also provides
a manifold-based ranking algorithm, and it considers the
manually labeled opinion scores in the ranking result.

In this subsection, to ensure a fair comparison, the affinity
matrixes of all the methods are set to be the same, and they are
computed according to the method in section III (D) on the
dataset MUES-SR10KS2S. The cumulative match scores of
the algorithms are listed in Table 2, and the CMC curves of the
algorithms are shown in Figure 8. Figure 9 provides a visual
illustration of the top 10 shoeprint images in the ranking
lists of our algorithm. The results show that our proposed
method outperforms state-of-the-art methods with the same
affinity matrix on the MUES-SR10KS2S database, and the
cumulative match score of our proposed methods reaches
more than 96.6% of top 2% of the dataset.

The cumulative match scores show that the performance
of our method is approximately 7.79% above the method
of Zhou et al. [22] on average and is approximately 3.07%
above the method of Wang et al. [20] on average. The rea-
sons why our proposed method outperformed the com-
pared methods are as follows: (i) Zhou et al. [22] provides

FIGURE 8. CMCs of our method and the compared methods on the
MUES-SR10KS2S database (the total number of the gallery set is 10096).

a manifold-based ranking algorithm, but it loses sight of the
roles for the examples collected from a crime scene with
the query shoeprint; and (ii) Wang et al. [20] consider both
the similarity rank order index and the manually labeled
opinion scores, but neglect the effect of the mislabeled opin-
ion scores and the contribution of the opinion scores of the
neighborhood.

2) COMPARISONS WITH STATE-OF-THE-ART METHODS
ON TWO PUBLIC AVAILABLE DATABASES
To further prove the validity of our proposed method,
we compared the proposed method with the works of
Richetelli et al. [14], Wang et al. [20] Kortylewski and
Vetter [23], Almaadeed et al. [28] andKong et al. [15] on two
public available datasets (e.g. the CS dataset [14] and the FID-
300 dataset [23]). The performances of all methods are shown
in Table 3 and Table 4, respectively. Among them, the results
of the phase-only correlationmethod (POC) on the CS dataset
are borrowed from Richetelli et al. [14], and the results of
Kortylewski and Vetter [23] and Kong et al. [15] on the FID-
300 dataset are borrowed from Figure 5 in Kong et al. [15],
and the others are obtained by our own programs.

The results show that the performances of most of the
methods fall with image quality declines on two datasets in an
order: high quality > blood + LCV > blood > dust > FID-
300. It indicates that the image quality can exert a great influ-
ence on the precisions of all the shoeprint retrieval methods.

The results also show that: (i) performances of interest
point based methods [14] may surpass those of some fre-
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FIGURE 9. Results of our method. The top 10 in the ranking list of our method are presented. Shoeprints encircled by the solid boxes are the query
shoeprint and shoeprints collected from the same crime scene, and those encircled by dotted boxes are the counterparts of the query shoeprint.

TABLE 3. Comparisons with the state-of-the-art shoeprint retrieval algorithms on the CS database.

TABLE 4. Comparisons with the state-of-the-art shoeprint retrieval algorithms on the FID-300 database.

quency domain methods (e.g. POC) when there are vari-
ations on scale and orientation. For example, results on
FID-300 dataset show the performances of interest point
based methods surpass that of POC based method [14];
(ii) interest point based methods can achieve a similar

performance to frequency-based methods on dealing with
shoeprints of high quality and of the same capturingmodality.
For example, Table 3 shows the cumulative match scores of
the top 1% of both kinds of methods are more than 94%
on the high quality image subset of the CS database; and
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TABLE 5. Comparisons with the state-of-the-art shoeprint retrieval algorithms on the MUES-SR10KS2S database.

FIGURE 10. Performance of our method with and without the opinion
score term.

(iii) however, performances of interest point based methods
may decrease dramatically when retrieving shoeprints with
low quality or of different imaging ways. For example, results
on low quality image sets (e.g. Dust and Blood subset in
CS dataset) show the performances of interest point based
methods are much lower than those of frequency domain
based methods. The possible reasons are as follows:

(i) Shoeprint images of low quality are always incomplete
and interfered with fractures, complex backgrounds and other
artifacts, and these factors result in many false interest points
and incorrect descriptors. Furthermore, descriptors of the
local corresponding patches also differ greatly because of
the severe interferences. As a result, there are many wrong
matching points between images. On the other hand, although
shoeprints from the same shoe could differ in local appear-
ance, their macro structural features such as orientation,
periodicity of primitive pattern elements are similar; there-
fore, frequency domain based methods can be much more
effective.

(ii) The types of both the query shoeprint and its corre-
sponding shoeprints are different (e.g. Dust and Blood subset
in CS dataset) and this cause difference in local descriptors.
There are many different types, ranging from impressions of
dust or blood on hard surfaces to impressions made in soft

surfaces. Different types may result in difference of local
characteristics (e.g. magnitude of gradient), wrong matching
points therefore occur. Frequency domain based methods
can capture global not local characteristics of shoeprint pat-
terns, and they are much more robust to imaging modality
than interest point based methods for cross modal shoeprint
retrieval.

Almaadeed et al. [28] improved the performance of the
interest point based method depending on two perspectives:
(i) selecting region of interest (ROI) so that specific pat-
terns can be selected without other unwanted information;
and (ii) using multiple point-of-interest detectors to detect
more stable interest points. The results show that method
in [28] can achieve a good performance on shoeprint retrieval
and be superior to the POC based method.

The results also show that our method has a good perfor-
mance on the two public databases and outperforms the com-
pared methods except for the case that the query shoeprint is
a small patch that has not periodical patterns. For example,
although the performance of our method on the FID-300
dataset is approximately 3.8% above that of the works of
Kong et al. [15] in the top 20% of the ranked list, the cumu-
lative match score of our algorithm does not surpass that of
Kong et al. [15] in the top 1% and 5% of the ranking list. The
main reason is that some of the probe images are of small size.
Kong et al. [15] use a template matching method to search
over both translations (with a stride of 2) and rotations, and
the template matching method can work well for small patch
retrieval

3) COMPARISONS WITH STATE-OF-THE-ART METHODS
ON THE MUES-SR10KS2S DATABASE
We also compare our method with some other shoeprint
retrieval methods on the MUES-SR10KS2S database. The
results of the cumulative match score of the top 2% and
the mean average running time are shown in Table 5.
Because some original papers do not release codes, the results
in Table 5 are obtained by running our own implemented
codes according to the original papers. The results of
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FIGURE 11. Performance of methods with two kinds of opinion scores in two scenarios. (a) Performance of incorrect labeled opinion scores.
(b) Performance of correct labeled pinion scores.

Kong et al. [15] are obtained by running their published
codes.

The results show that our method outperforms the state-of-
the-art methods. The reasons are as follows: (i) the holistic
and regional appearance-based features used in our method
can work well on representing different modality or degraded
shoeprint images; and (ii) we take into consideration forensic
experts’ opinions, and tell the algorithm what the investi-
gator would prefer by assigning opinion scores to shoeprint
examples.

Our hardware configuration consists of a 3.33-GHz CPU
with 8-GB RAM. All of the compared methods are imple-
mented with MATLAB codes. To compare the running
times, the mean average running time is defined and
applied.

MAT =
nq∑
i=1

T (i)/nqK (19)

where i denotes the ith query shoeprint, T (i) represents the
running time of the ith query, nq denotes the number of query
shoeprints, and K is the number of the dataset shoeprints.
Since the affinity matrix and the parameters of the prediction
model used in these methods are pre-computed offline, their
running times are not added.

C. ANALYSIS AND DISCUSSION
In this section, we further analyze the effect of differ-
ent components of the cost function on the ranking result,
which includes the roles of the opinion score, the learning-
based opinion scores, the coefficient matrix A and the
neighbors of multiple examples. The influence caused
by the number of multiple examples is also discussed.
Finally, we also verify the convergence of the proposed
method.

1) EFFECTIVENESS OF THE OPINION SCORES
In the proposed method, we aim at using the opinion scores
to guide shoeprint retrieval results. In (1), the third term
is the opinion score correlation term that associates a cost
for the degree of deviation from the opinion scores. To verify
the effectiveness of the opinion scores, we conduct experi-
ments to compute the ranking scores in two scenarios, which
include the opinion score correlation term and exclude it. The
performances of the experiments are shown in Figure 10. The
experimental results show that opinion scores can improve the
effectiveness of shoeprint retrieval.

2) EFFECTIVENESS OF THE LEARNING-BASED
OPINION SCORES
To verify the effectiveness of the learning-based opinion
scores for the proposed method, we conduct experiments to
compute the ranking scores by using two kinds of opinion
scores. The first kind of opinion score is the labeled opinion
score labeled by the experts. The second kind of opinion
score is the proposed learning-based opinion score computed
according to (4). Comparisons between the two kinds of
opinion scores are conducted in two scenarios. One scenario
involves all of the labeled opinion scores assigned by skilled
forensic science experts, and we refer to this kind of opinion
score as the correctly labeled opinion scores. The other sce-
nario involves the opinion scores that are incorrectly labeled
opinion scores.

Figure 11 shows the results of the quantitative comparisons
in the scenarios in which the examples are labeled correctly
or incorrectly. The results show that the method with the
learning-based opinion scores achieves a higher performance
than the one using only incorrect labeled opinion scores, and
they also show a similar performance to the case that using
correct labeled opinion scores.
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FIGURE 12. Results of the scenario in which the examples are labeled incorrectly. Shoeprints encircled by the solid boxes are the query
shoeprint and shoeprint examples collected from the same crime scene, and those encircled by dotted boxes are its counterparts in the
dataset. (a) Labeled opinion score. (b) Learning-based opinion score.

FIGURE 13. Performance of our method with and without neighbors in two scenarios. (a) Performance of our method with
coefficient matrix A. (b) Performance of our method without coefficient matrix A.

Figure 12 shows a visual example of the top 10 shoe print
images in the ranking lists in the scenario where examples are
labeled incorrectly. The results also show that the proposed
method is robust to wrong-labeled opinion scores.

3) EFFECTIVENESS OF THE NEIGHBORS OF MULTIPLE
EXAMPLES AND THE COEFFICIENT MATRIX A
In the proposed method, we consider the contribution of the
opinion scores of the neighbors, and introduce the coeffi-
cient matrix A to prevent the ranking scores tendency to
become low values. In this section, we conduct three kinds of
experiments to show how the neighbors of multiple examples
and the coefficient matrix A affect the effectiveness of the
retrieval.

The first kind of experiment is to show the effectiveness
of neighbors of multiple examples. The performances of the
experiments are shown in Figure 13. The experimental results
show that the neighbors of multiple examples can improve the
effectiveness of the shoeprint retrieval.

The second kind of experiment shows the effective-
ness of the coefficient matrix A. The performances of the

experiments are shown in Figure 14. The experimental results
show that the coefficient matrix A can improve the effective-
ness of shoeprint retrieval.

The third kind of experiment shows the effectiveness of the
neighbors of multiple examples and the coefficient matrix A.
The comparison results are shown in Figure 15. The results
show that methods with A and neighbors significantly out-
performs methods without A and neighbors. The results also
demonstrate the effectiveness of the proposed method.

4) INFLUENCE OF EXAMPLES FROM EACH SIMILARITY LEVEL
In this section, we conduct experiments to show how the
examples from different similarity levels affect the effective-
ness of the shoeprint retrieval.

We conduct six experiments, and we only select one exam-
ple in descending similarity order to obtain a pair with the
query shoeprint in each experiment. The results are listed
in Table 6 and shown in Figure 16. The experimental results
show that examples from each similarity level can improve
the effectiveness of shoeprint retrieval. The examples that
have higher similarity with the query shoeprint can obtain a
better performance.
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FIGURE 14. Performance of our method with and without the coefficient matrix A in two situations. (a) Performance of our method with
neighbors. (b) Performance of our method without neighbors.

TABLE 6. Comparison of the performance of examples from different similarity levels.

FIGURE 15. Performance of our method with and without the coefficient
matrix A and neighbors.

5) INFLUENCE OF THE NUMBER OF MULTIPLE EXAMPLES
In this section, we conduct three kinds of experiments to show
how the number of examples affects the effectiveness of the
retrieval.

The first kind of experiment shows the performances of the
different number of examples from different similarity levels.
We conduct six experiments, and we append one example
in descending similarity order to Q in each experiment. The
initial element of Q is the query image.

The results are listed in Table 7 and shown in Figure 17.
The experimental results show that increasing the number of
query examples of different similarity levels can improve the
effectiveness of shoeprint retrieval.

The second kind of experiment is performed to show the
performances of different numbers of examples from the
same similarity levels. For each similarity level, we conduct
three experiments. The initial element of Q is the query
image; then, we append one more example from the same
similarity level to Q in each experiment. Here, we list the
performance of examples from the extremely high level
in Table 8. The results show that adding one example to Q
can significantly improve shoeprint retrieval effectiveness,
but that adding one more example can only offer a slight
improvement. We think that the two examples have a closer
distance in the semantic space, and do not complement one
another. When we conduct shoeprint retrieval, the two exam-
ples may have similar effects on guiding shoeprints. To verify
this result, we conduct the third kind of experiment with the
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TABLE 7. Comparison of the performance of different numbers of examples.

TABLE 8. Comparison of the performance of the proposed method with different numbers of examples from the same similarity level.

FIGURE 16. Performance of the proposed method with examples from
different similarity levels.

two examples that complement one another from the same
similarity level. The two examples are partial shoeprints gen-
erated from two full prints. The first example only contains
the bottom region, and the second example only contains the

FIGURE 17. Performance of the proposed method with different numbers
of examples.

top region.We list the results in Table 9. The results show that
adding two examples which complement one another from
the same similarity level to Q can significantly improve the
shoeprint retrieval effectiveness.

MAO (t) =

nq∑
i=1

Q(i)
(
f (t)
)

nqK
(20)

MAR (t) =

nq∑
i=1

∥∥(αR(i) + βL(i) + γA(i)) f (t) − αR(i)y− γA(i)ŷ∥∥2
nqK

(21)
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TABLE 9. Comparison of the performance of the proposed method with different numbers of examples which complement one another from the same
similarity level.

FIGURE 18. Convergence curves of the mean average objective function
values of our algorithm. The figure shows that the MAO monotonically
decreases until convergence within a few iterations.

FIGURE 19. Convergence curves of the mean average residual values of
our algorithm. The figure shows that the MAR monotonically decreases
until convergence within a few iterations.

6) CONVERGENCE STUDY
In this section, we analyze the convergence behavior of the
proposed method on the MUES-SR10KS2S database.

For analyzing the convergence of the proposed method,
the mean average objective values (MAO) and the mean
average residuals (MAR) are defined and applied. (20) and
(21), as shown at the bottom of the previous page, where i
represents the ith probe image, t denotes the iteration number
and nq is the number of probe images.
Figure 18 and Figure 19 show the convergence curves of

the proposed method with regard to the MAO and MAR.
In both figures, the abscissae represent the rounds of the
iterations while the ordinates are the MAO values or MAR
values for each round. The results show that the proposed
method converges within 10 iterations.

V. CONCLUSION AND FUTURE WORK
We proposed a learned opinion score guided shoeprint
retrieval (LOSGSR) method for shoeprint retrieval. The
method improves the effectiveness of the shoeprint retrieval
depending on four perspectives: (1) use the opinion scores
of the multiple shoeprint examples to guide the ranking
scores to meet the forensic experts’ expectations; (2) pro-
pose a learning-based method to refine opinion scores, which
corrects the labeled opinion scores of multiple examples
and their neighbors; (3) take into account the feature sim-
ilarity between the query and dataset shoeprint images;
and (4) introduce a coefficient matrix to prevent the ten-
dency of the computed ranking scores from becoming low.
The experiments on the real crime scene datasets show that
the cumulative match score of the proposed algorithm in the
top 2% of the dataset is more than 96.6%, and it is not only
significantly higher than the traditional manifold ranking
method, but also higher than the state-of-the-art shoeprint
retrieval algorithms.

Our future work will involve taking into account the rela-
tionship between every two shoeprint clusters.
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