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ABSTRACT Active learning selects the most critical instances and obtains their labels through interaction
with an oracle. Selecting either informative or representative unlabeled instances may result in sampling
bias or cluster dependency. In this paper, we propose a multi-standard optimization active learning (MSAL)
algorithm that considers the informativeness, representativeness, and diversity of instances. Informativeness
is measured by the soft-max predicted entropy, whereas representativeness is measured by the probability
density function obtained by a non-parametric estimation. Themultiplex of the two is used as an optimization
objective to reduce model uncertainty and explore the distribution of unlabeled data. Diversity is measured
by the difference between the selected critical instances. This is used as a constraint to prevent the selection of
instances that are too similar. Learning experiments were performed with 12 datasets from various domains.
The results of significance tests verify the effectiveness of MSAL and its superiority over state-of-the-art
active learning algorithms.

INDEX TERMS Active learning, diversity, informativeness, representativeness.

I. INTRODUCTION
Active learning [1], [2] is a subfield of machine learning
in which the algorithm is able to interactively query an
oracle to obtain labels. It is widely employed in applications
where the query incurs a heavy manual labeling cost [3], [4].
Initially, the training set is small, or even empty. Some critical
instances are then selected and added to the training set to
update the classifier. This process is repeated until the classi-
fier achieves the desired accuracy or the maximum labeling
cost is reached. Therefore, the active learner needs to consider
a key issue: Which instances are critical?

Various active learning algorithms have been proposed to
handle this issue. One popular approach is to query the most
informative instances, such as in the query-by-committee [5],
uncertainty sampling [6], and optimal experimental design [7]
methods. Sun et al. [5] used a typical correlation analysis to
find highly informative instances, while Tong and Chang [6]
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explored valuable instances through version space splitting.
These approaches are unable to exploit the abundance of
unlabeled data, making them prone to sample bias. Another
direction in active learning is to select the instances that
are most representative of the unlabeled data [8]–[10]. For
example, Zhao et al. [8] utilized the structure information
of unlabeled instances to choose representative samples.
Wang et al. [11] built a master tree to express the cluster
structure and designed a deterministic instance selection
strategy. These approaches are heavily dependent on the
quality of the clustering results.

Several active learning algorithms attempt to combine
informativeness with representativeness to find the optimal
query instances. Zhao et al. [8] proposed a sampling algo-
rithm that exploits both the cluster information and the clas-
sificationmargins, and Donmez et al. [12] extended the active
learning approach by dynamically balancing uncertainty and
instance density. Huang et al. [13] developed a systematic
approach for using the information of both labeled and unla-
beled instances.

56772
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-3290-1036


M. Wang et al.: Active Learning Through Multi-Standard Optimization

In this paper, we propose a multi-standard optimization
active learning (MSAL) algorithm that considers the informa-
tiveness, representativeness, and diversity of instances. The
contributions of this paper are fourfold. First, we use the
soft-max predictive entropy to measure the instance infor-
mativeness. Using the ‘‘clustering by fast search and find of
density peaks’’ (CFDP) algorithm [14], we select the cen-
tral instances as the initial training set for building a soft-
max regression model. Soft-max regression is then used to
obtain the probability that each instance belongs to each
category. Finally, we calculate the information entropy for
each instance.

Second, we adopt a non-parametric estimation method
to obtain a probability density function for measuring the
instance representativeness. Non-parametric estimation can
be used with arbitrary distributions without assuming the
form of the underlying density. We calculate the number of
instances that fall into the window function. The Gaussian
kernel function and window width are then selected. Finally,
we estimate the probability density function with the statisti-
cal probability.

Third, we calculate the difference as a constraint and eval-
uate the diversity of critical instances. With the norm of the
vector, we define the difference between the instances and set
the difference threshold. The difference is used as a constraint
to avoid choosing toomany similar instances. An instance can
only be queried if its difference is greater than the threshold.
Finally, we define the diversity evaluation function.

Fourth, we design a multi-standard optimization active
learning (MSAL) algorithm. Fig. 1 illustrates the MSAL
process using a running example. The top part shows the
input Seeds dataset, which is often used in standard machine
learning tasks. The middle part shows the multi-standard
optimization method, which considers the informativeness,
representativeness, and diversity of instances. We choose
the instance with the largest multiplex of informativeness
and representativeness. If the instance satisfies the difference
constraint, we query its label. Once the given N labels have
been used, the loop terminates. The bottom part shows the
output. With the selected critical instances, we use k-Nearest
Neighbors (kNN) to classify the remaining instances. In this
way, all labels are either queried or predicted.

Experiments are undertaken on 12 UCI datasets. Seven
of the datasets are selected from different application areas
(e.g., botany, material, iconology, and so on), and the other
five are generated artificially. We compare the MSAL algo-
rithm with popular classifiers and state-of-the-art active
learning algorithms. We use a Friedman test and a Nemenyi
post-hoc test to verify the significance of the differences
between MSAL and the other algorithms. The results show
that MSAL outperforms all of the other algorithms in terms
of classification accuracy.

The remainder of this paper is organized as follows.
In Section II, we briefly review three typical critical instance
selection strategies. Section III presents a detailed descrip-
tion of the proposed approach. Section IV introduces the

pseudocode of the MSAL algorithm and computes its time
complexity. SectionV presents and analyzes the experimental
results, before Section VI summarizes our conclusions.

II. RELATED WORK
This section reviews three typical active learning criti-
cal instance selection strategies, namely informativeness-
based [15], representativeness-based [11], [16], and hybrid
selection strategies [13].

A. INFORMATIVENESS-BASED INSTANCE SELECTION
STRATEGY
Querying the most informative instances is probably the most
popular approach for active learning. Exemplar approaches
include query-by-committee [15], [17], optimal experimen-
tal design [18], [19], and uncertainty sampling [3], [20].
Seung et al. [15] proposed the query-by-committee (QBC)
algorithm. The word ‘‘committee’’ emphasizes that the
choice of each critical instance is determined by a group of
classifiers. The most inconsistent instances have the highest
informativeness. To measure the level of disagreement, there
are two main approaches. The first is the vote entropy [21]:

x∗VE = argmax
x
−

∑
i

V (yi)
C

log
V (yi)
C

, (1)

where V (yi) is the number of ‘‘votes’’ that a label receives
from among the committee members’ predictions and C is
the size of the committee.

Another proposed disagreement measure is the average
Kullback–Leibler (KL) divergence [22]:

x∗KL = argmax
x

1
C

C∑
c=1

D(Pθ (c) ‖Pc ), (2)

where

D(Pθ (c) ‖Pc ) =
∑
i

Pθ (c) (yi |x ) log
Pθ (c) (yi |x )
Pc(yi |x )

. (3)

Here, θ (c) represents a particular model in the committee and
C represents the committee as a whole; thus, Pc(yi |x ) =
1
C

∑C
c=1 Pθ (c) (yi |x ) is the ‘‘consensus’’ probability that yi is

the correct label.
The QBC algorithm suffers from high time complex-

ity [17]. Gilad-Bachrach et al. [17] proposed the kernel
QBC algorithm (KQBC) to decrease the runtime. Their key
idea was to project the version space into a low-dimensional
space.

B. REPRESENTATIVENESS-BASED INSTANCE SELECTION
STRATEGY
Another school of active learning is to select the instances
that are most representative of the unlabeled data. These
approaches aim to exploit the clustering structure of unla-
beled data [16], [23], generally using some clustering
method. Zhao et al. [8] considered the clustering struc-
ture and selected the clustering centers for labeling, while
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FIGURE 1. MSAL framework.

Nguyen and Smeulders [23] incorporated clustering into
active learning and sampled a few randomly chosen instances
in each cluster. Tuia et al. [24] searched the tree for pruning
and sampled the most uncertain clusters.

Wang et al. [11] presented a typical clustering-based active
learning algorithm (ALEC) for selecting instances with the
largest density and distance product. ALEC includes three
main stages. First, the dataset is clustered using CFDP [14].
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No class labels are required at this time. Second, a deter-
ministic strategy is employed for instance selection. In each
cluster, the instances are sorted according to the multiplex of
density and distance. The top

√
N representative instances

are selected for labeling, where N is the maximal number
of labels provided by the oracle. Third, tri-partitioning [25],
[26] is employed to determine the action to be taken on each
instance during a specific iteration. If an instance is critical,
it will be labeled by the oracle. If an instance is in a pure
cluster, it will be classified directly. Otherwise, the algorithm
waits for the next clustering operation.

C. HYBRID INSTANCE SELECTION STRATEGY
Several active learning algorithms [8], [12], [27], [28] have
been proposed to find both informative and representative
unlabeled instances. Huang et al. [13] proposed the query
informative and representative instances (QUIRE) method.
This selects an instance xs from the pool of unlabeled data
to query its class label. This criterion can be approximated
by

s∗ = argmin
nl<s≤n

L(Dl,Du, yu, xs), (4)

where

L(Dl,Du, yu, xs) = max
ys=±1

min
f ∈H

λ

2
|f |2H +

nl∑
i=1

l(yi, f (xi)). (5)

Here, Dl denotes the labeled data and Du denotes the
unlabeled data, and yl , ys, yu are the class labels assigned to
Dl , xs, Du, respectively. The class assignment yu is unknown.
According to the manifold assumption, Huang et al. [13]
expected a good solution for yu to result in a small value
of L(Dl,Du, yu, xs). Therefore, the solution for yu can be
obtained by minimizing L(Dl,Du, yu, xs).

III. PROBLEM STATEMENT AND ANALYSIS
In this section, we present a new constraint optimization prob-
lem that considers the informativeness, representativeness,
and diversity of the instances.

Table 1 lists the notation used throughout this paper.

A. PROBLEM STATEMENT
We consider the case relevant to some active learning appli-
cations in which an oracle provides a fixed number of labels.
Let N be the number of labels that the oracle can provide.
For example, for an actual label task, the total label budget
may be $100k and each label costs $1k, so N = 100. The
key to the question is: How can we select the most critical N
instances so as to obtain the highest classification accuracy?

The dataset is denoted by D = {(x1, y1), (x2, y2), · · · ,
(xnl, ynl), xnl+1, · · · , xn}, where each instance xi =

[xi1, xi2, · · · , xid ]T is a d-dimensional vector and yi ∈
{1, 2, · · · , k} is the class label of xi. D includes the training
set Dl = {(x1, y1), (x2, y2), · · · , (xnl, ynl)} and the unlabeled
set Du = {xnl+1, · · · , xn}. On each iteration, the active
learner selects one instance xs from the unlabeled set Du and

TABLE 1. Notation.

queries its label. When the number of queries reaches N ,
the process terminates.

We define the following constraint optimization problem:max
x∈Du

f (x)p(x),

s.t. g(x)− β ≥ 0,
(6)

where f (x) denotes the informativeness, p(x) denotes the
representativeness, g(x) denotes the difference, and β is the
difference threshold.

This problem provides a systematic way for combining
the informativeness, representativeness, and diversity of an
instance. We will present specific functions for this problem
in the following subsections.

B. INFORMATIVENESS
Informativeness can be used to reduce the uncertainty of the
model. We use the information entropy [29] to measure the
informativeness of x ∈ Du. This is defined as

f (x) = −
∑
j

P(yj|x; θ ) logP(yj|x; θ ), (7)

where P(yj|x; θ ) indicates the probability that instance
x belongs to class j. Considering themulti-classification prob-
lem, we use soft-max regression to obtain P(yj |x ; θ ). Given
any instance x, the conditional probability of x belonging
to yj is

P(yj|x; θ ) =
eθ

T
j x∑k

l=1 e
θTl x

. (8)

The key to calculating P(yj|x; θ ) is to determine the
parameter θ . The solution process mainly includes the fol-
lowing three steps.
Step 1: Determine the cost function J (θ ).
The cost function J (θ ) represents the deviation between the

predicted value and the true value. The cost function is

J (θ ) = −
1
nl

 nl∑
i=1

k∑
j=1

1{yi = j} log
eθ

T
j xi∑k

l=1 e
θTl xi

 , (9)
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where i ∈ {1, 2, · · · , nl}, j ∈ {1, 2, · · · , k}, i represents the
ith instance, and j represents the category. 1{·} is an indicative
function, that is, when the argument is true, the result is 1;
otherwise, the result is 0.
Step 2: Solving the cost function J (θ ) to obtain the optimal

parameter θ . Minimizing the cost function, we obtain the
optimal model parameter θ . We use an iterative optimization
algorithm such as gradient descent [30] or Quasi-Newton [31]
to solve J (θ ). After some derivation, we obtain the gradient

∇θjJ (θ ) = −
1
nl

nl∑
i=1

[xi(1{yi = j} − P(yi = j |xi; θ ))], (10)

which represents the partial derivative of the loss function.
By iteratively solving for the parameters θj, we obtain the
model parameters

θj := θj − α
′
∇θjJ (θ ), j = 1, 2, . . . , k, (11)

which converges to J (θ ), where α′ is the step size.
Step 3: Compute the hypothesis function hθ (x). For each

input x, the hypothesis function gives the probability value for
each class j, i.e., P(yj|x; θ ), j ∈ {1, 2, . . . , k}. The hypothesis
function is

hθ (x) =


p(y) = 1|x; θ
p(y) = 2|x; θ

...

p(y) = k|x; θ

 = 1∑k
j=1 e

θTj x


eθ

T
1 x

eθ
T
2 x

...

eθ
T
k x

 , (12)

where θ1, θ2, . . . , θk ∈ Rd+1 are the model parameters, and
1∑k

j=1 e
θTj x

is used to normalize the probability distribution.

C. REPRESENTATIVENESS
Representativeness can be used to represent the overall fea-
ture of all unlabeled data.We use the probability density func-
tion to estimate representativeness. Traditional parameter
estimation methods assume the parameters of the probability
density function [32]. However, we cannot make accurate
assumptions because this function may have various forms.
In particular, the parameter of all classical density func-
tions has a single-mode form [33], whereas the real situation
is usually multimodal. Therefore, we use a non-parametric
approach to obtain the probability density function p(x). This
can handle arbitrary probability distributions regardless of the
form of the parameters.
Proposition 1: Give the dataset D = {x1, x2, . . . , xn},

window bandwidth dc, and volume Vn = 1
√
n , the probability

density of any instance x is

p(x) =
1
√
2πn

n∑
i=1

e
−

(x−xi)
2

2d2c . (13)

Proof: The probability that instance x will fall into a
region R is given by

P =
∫
R
p(x)dx, (14)

FIGURE 2. Probability density function p(x).

which is a smoothed or averaged version of the density func-
tion p(x). We can obtain the probability density function p(x)
by estimating the probability P. The detailed process is illus-
trated in Fig. 2 and (15)–(20).

The probability that k of these n fall into R is given by the
binomial law

Pk = Ck
nP

k (1− P)(n−k). (15)

According to the properties of the binomial law, the mean of
the k is

E(k) = k = nP. (16)

When the value of n is sufficiently large,

P =
k
n
. (17)

The ratio k/n will be a very good estimate for the
probability P. Therefore, we have

P =
∫
R
p(x)dx =

k
n
, (18)

where R is an area containing the instance x with a volume
of Vn. If we assume that p(x) is continuous and that the
region R is so small that p(x) does not vary appreciably within
it, then ∫

R
p(x)dx ≈ p(x)Vn. (19)

According to (17)–(19), we can estimate the probability den-
sity as

p(x) =
k
nVn

. (20)

Next, we fixVn to determine k from the data. This leads to a
kernel density estimation (KDE), such as the Parzen window
estimation method [34]. The kernel function φ( x−xidc

) is

φ(
x − xi
dc

) =

1,
∣∣∣∣x − xidc

∣∣∣∣ ≤ 1
2
, i = 1, 2, . . . , n;

0, otherwise.
(21)

The quantity φ((x − xi)/dc) is equal to one if xi is inside a
hypercube with side dc centered on x, and zero otherwise.
The total number of instances k inside the hypercube is

k =
n∑
i=1

φ(
x − xi
dc

). (22)
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We adopt the Gaussian kernel function

φ(
x − xi
dc

) =
1
√
2π

e−
1
2 (

x−xi
dc

)2
, (23)

where dc is the window bandwidth, dc = 0.1max(dist(i, j)),
1 ≤ i ≤ n, 1 ≤ j ≤ n.

Let the volume Vn = 1
√
n . The probability density of any

instance x is

p(x) =
1
n

n∑
i=1

1
Vn

1
√
2π

e−
1
2 (

x−xi
dc

)2

=
1
√
2πn

n∑
i=1

e
−

(x−xi)
2

2d2c . (24)

This completes the proof.

D. DIVERSITY
Diversity is used to ensure that selected critical instances
cover all categories, thus improving the classification accu-
racy. It is measured by the difference among the currently
selected critical instances. The diversity evaluation function
has three aspects.

1) THE DISTANCE METRIC
Given the dataset D = {x1, x2, . . . , xn}, the distance between
xi and xj is

dist(i, j) = p

√√√√ d∑
k=1

∣∣xik − xjk ∣∣p. (25)

We use the norm of the vector to calculate the distance
between xi and xj. For differently distributed datasets, p will
take a different value. When p = 1, dist(i, j) is the Manhattan
distance between xi and xj; when p = 2, dist(i, j) is the
Euclidean distance.

2) THE CONSTRAINT FUNCTION G(X )
As active learning is a process, the computation of g(x) relies
on critical instances that have been queried. Let s be the last
critical instance that has been queried. We define

g(x) = dist(x, s), (26)

and so the constraint g(x) − β ≥ 0 in (6) is equivalent to
dist(x, s) ≥ β. Only if g(x) = dist(x, s) > β can the instance
be queried.

Next, we set the difference threshold

β =
∂

n
max
1≤i≤n

n∑
j=1

dist(i, j), (27)

where ∂ is a coefficient, usually taken as 0.5.

3) THE DIVERSITY OF INSTANCES
Each selected critical instance satisfies the difference con-
straint, ensuring some diversity among the entire set of critical
instances. We construct a significant difference set Nβ .
Definition 1: Let UI be the critical instance set. The sig-

nificant difference set with respect to the threshold β is

Nβ = {〈xi, xj〉 ∈ UI × UI |dist(i, j) > β }. (28)

Next, we evaluate the diversity of the entire set of critical
instances. div(UI ) is the fraction of instance pairs on UI that
satisfies the difference constraint.
Definition 2: The diversity of the critical instance set UI

is

div(UI) =

∣∣Nβ ∣∣
C2
|UI|

, (29)

where C2
|UI|
=
|UI||UI−1|

2 is the permutation of UI.

IV. MSAL ALGORITHM
This section presents the MSAL algorithm. First, we describe
the process of the MSAL algorithm, and then we elabo-
rate on two key sub-problems. Finally, we analyze the time
complexity.

A. ALGORITHM DESCRIPTION
Lines 1 and 2 of Algorithm 1 correspond to the initialization
stage. The set of instances labeled by the oracle is UI = ∅,
and the set of instances classified by the classifier isUII = U .
Line 3 performs CFDP clustering and updates UI. We select
the k centers as the initial training set. Line 4 updates UI to
be the set of k cluster centers. Line 5 updates the set UII,
UII← U − UI. Line 6 records the last instance of UI.

Lines 7–19 select critical instances. For each instance,
we consider informativeness, representativeness, and diver-
sity. The loop terminates when no more labels are available
(|UI| ≥ N ). Line 8 trains the model parameters θ based on
the initial training set UI. Line 11 calculates the information
entropy according to (7). Line 12 calculates the probability
density function according to (13). Line 14 calculates the
product of f (x), p(x) and sorts the results. Line 15 considers
the difference constraint using constraint(o, s, β), a function
that computes the constraint condition. The input includes the
sorted objective vector [o]1×|UII|, the last instance s inUI, and
the difference threshold β. The output is an instance g that
satisfies the constraint. g is the critical instance to be queried,
g ∈ o. Lines 17–18 update s, UI, and UII.
Finally, Lines 20–21 classify the instances in UII

using kNN.

B. TWO SUB-PROBLEMS IN ALGORITHM DESIGN
The MSAL algorithm selects critical instances based on
informativeness, representativeness, and diversity. We now
address the following two sub-problems: 1) How can non-
unique solutions be avoided? 2) How should overflow and
underflow situations be handled?
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Algorithm 1 Multi-Standard Optimization Active Learning
(MSAL)
Input: The dataset D, the cutoff distance dc, the maximal
number of labels provided by the oracle N , and the diversity
threshold β.
Output: Predicted label L ← [li]n×1.

1: UI = ∅; UII = U ;
2: [li]n×1←−1;

//Step 1. Select the initial training set UI .
3: [c1, c2, . . . , ck ]← densityClustering(D, dc);
4: UI← [c1, c2, . . . , ck ];
5: UII← U − UI;
6: s← ck ; //s is the last critical instance, s ∈ UI

//Step 2. Select critical instances.
7: while (|UI| < N ) do
8: [θ ]k×(d+1)← softmaxTrain(UI);
9: for (i← 1 to |UII|) do
10: //Step 2.1. Compute informativeness
11: fi←−

∑
j P(yj|xi; θ ) logP(yj|xi; θ );

//Step 2.2. Compute representativeness

12: pi = 1
√
2π |UII|

∑|UII|
j=1 e

−
(xi−xj)

2

2d2c ;
13: end for
14: [o]1×|UII|← sort(f · p); //o1 ≥ o2 ≥ · · · ≥ o|UII|

//Step 2.3. Compute the difference constraint
15: g← constraint(o, s, β); // g is the instance that satis-

fies the constraint.
16: query lg;
17: UI← UI ∪ g, UII← UII − g; // Update UI and UII
18: s← g; // Update s
19: end while

//Step 3. Classify the remaining instances.
20: [li]n×1← kNNClassify(UI,UII);
21: return L ← [li]n×1;

1) NON-UNIQUE SOLUTIONS
Proposition 2: The optimization parameter θ is not the

only solution.
Proof: Let θj be an optimal solution. We have

P(yj|x; θ ) =
eθ

T
j x∑k

l=1 e
θTl x

. (30)

According to the operational rules of exponential
functions,

e(θj−ϕ)
T x∑k

l=1 e
(θl−ϕ)T x

=
eθ

T
j xe−ϕ

T x∑k
l=1 e

θTl xe−ϕT x
=

eθ
T
j x∑k

l=1 e
θTl x

. (31)

Hence, θj−ϕ is also an optimal solution. Thus, the solution
θj is not unique.
This completes the proof.
The loss function at this time is not strictly non-convex,

as there is a ‘‘flat’’ area near the local minimum point.

TABLE 2. Computational complexity of Algorithm 1.

In practice, the usual approach is to add theweight attenuation
term λ

2

∑k
i=1

∑d
j=0 θ

2
ij [35]. The improved cost function

J (θ )

= −
1
nl

 nl∑
i=1

k∑
j=1

l{yi = j} log
eθ

T
j xi∑k

l=1 e
θTl xi

+ λ
2

k∑
i=1

d∑
j=0

θ2ij

(32)

is a strictly convex function. We can then guarantee a unique
solution. The gradient descent method [36] guarantees con-
vergence to the global optimal solution.

2) OVERFLOW AND UNDERFLOW
When we calculate P(yj|x; θ ) in Algorithm 1, overflow
and underflow may occur. Underflow occurs when num-
bers close to zero are rounded to zero [37], and overflow
occurs when numbers with large magnitudes are approx-
imated as ∞ or −∞ [37]. Both overflow and under-
flow can be resolved by instead evaluating eθ

T
j x−M , M =

max(θTj x), j ∈ 1, 2, . . . , k [38]. That is, M is the largest of
all θTj x.

eθ
T
j x−M∑k

l=1 e
θTl x−M

=

e
θTj x

eM∑k
l=1 e

θTl x∑k
l=1 e

M

= P(yj |x; θ ). (33)

For any x, if we subtract M , the maximum value of the
exponential function is zero. Therefore, no overflow will
occur. Additionally, the denominator contains at least one
item with a value of 1. Therefore, the denominator will not
suffer from underflow.

C. COMPLEXITY ANALYSIS
The time complexity of the MSAL algorithm is analyzed
in Table 2.

V. EXPERIMENTS
We conducted experiments to analyze the effectiveness of the
MSAL algorithm and answer the following questions:

1) Is the MSAL algorithm more accurate than supervised
classification algorithms such as kNN, J48 (C4.5), Ran-
dom Forest, and Bagging?

2) Is the MSAL algorithm more accurate than
state-of-the-art active learning algorithms, including
informativeness-based KQBC, representativeness-
based ALEC, and the hybrid QUIRE?

3) Is the MSAL algorithm efficient?

56778 VOLUME 7, 2019



M. Wang et al.: Active Learning Through Multi-Standard Optimization

TABLE 3. Dataset information.

The computations were performed on a Windows 10
64-bit operating system with 8 GB RAM and Intel
(R) Core 2Quad CPU Q9500@2.83 GHz processors
using Matlab software. The source code is available at
www.fansmale.com/software.html.

A. DATASETS
Table 3 summarizes the 12 datasets used in our experiments.
These include four artificial datasets obtained from [14],
six from the University of California at Irvine (UCI)
ML repository [39], and two obtained from [40]. The num-
ber of instances ranged from 106–7400, the number of
attributes ranged from 2–60, and the number of classes ranged
from 2–31. The domains of the data are listed in the table.

The performance of an active learner is evaluated by the
accuracy:

accuracy =
n− N − e
n− N

× 100%, (34)

where e is the number of misclassified instances.

B. TWO-DIMENSIONAL VISUALIZATION OF THE
SELECTED CRITICAL INSTANCES
Fig. 3 shows a two-dimensional visualization of the selected
critical instances.We compare this against the following three
active learning algorithms. Detailed descriptions of these
methods can be found in Section II.

1) Informativeness-based algorithm: Kernel query by
committee (KQBC) [17];

2) Representativeness-based algorithm: Active learning
through density clustering (ALEC) [11]; 1

3) Hybrid algorithm: Active learning by querying infor-
mative and representative examples (QUIRE) [13] 2.

We consider four typical datasets: Iris, Seeds, Compound,
and R15. Iris and Seeds are probably the most well-known
datasets in the pattern recognition and classification commu-
nity [41]. Iris contains three classes. One of these classes is
linearly separable from the other two, whereas the latter two
are not linearly separable from each other. The Seeds dataset
includes kernels belonging to three different wheat varieties:

1http://www.fansmale.com/software.html
2http://parnec.nuaa.edu.cn/huangsj

Kama, Rosa and Canada, each with 70 elements. Compound
and R15 are synthetic datasets with typical shape distribu-
tions [14]. Compound contains petals and scatter patterns,
whereas R15 consists of three rings formed by 15 evenly
distributed clusters.

KQBC tends to select the most informative instances.
Figs. 3(e) and 3(i) show some selected instances near the
edge of the classification. This suggest that outliers are easily
selected. ALEC selects representative instances based on
clusters. The performance is heavily dependent on the quality
of the clustering results. For the Iris and Seeds datasets,
the representative instances selected by ALEC do not cover
all categories. The QUIRE approach favors both represen-
tative and informative instances. This approach may select
too many similar instances in the same cluster, ignoring
small clusters of lower density. For Iris, Compound, and R15,
QUIRE cannot avoid selecting instances that are too similar.
For example, the distance between the two closest instances
in the Iris and R15 datasets is only 0.2 and 0.3, respectively.
To effectively reduce the number of queries, such similar
instances should not be selected. MSAL considers the infor-
mativeness, representativeness, and diversity of instances.
The selected critical instances are evenly distributed across
different categories, exhibiting good representativeness and
diversity.

For N = 0.03|U |, we compare the diversity of the selected
critical instances as calculated using (2). For Iris, the diver-
sity values of KQBC, ALEC, QUIRE, and MSAL are 0.05,
0.12, 0.30, and 0.40, respectively. For Seeds, the diversity
values of KQBC, ALEC, QUIRE, and MSAL are 0.00,
0.48, 0.27, and 0.57, respectively. The MSAL algorithm
guarantees the diversity of selected critical instances. Thus,
the proposed method can effectively reduce the number of
queries.

C. COMPARISON WITH SUPERVISED CLASSIFICATION
ALGORITHMS
We compared the MSAL algorithm with nine well-known
supervised classification algorithms: kNN [42], J48 [43],
ClassificationViaClustering (CVC) [44], Random Forest
(RF) [45], AdaBoostM1 (ABM) [46], Classification Via
Regression (CVR) [47], Logit Boost (LB) [48], Bagging [49],
and Multiclass Classifier (MCC) [50]. These algorithms are
tested using Weka’s built-in codes.

Table 4 compares the accuracy of MSAL and these nine
supervised classification algorithms when N = 0.1|U |. The
average ranks were obtained by applying the Friedman pro-
cedure. The Friedman test [51] is the most well-known non-
parametric test when there are more than two related samples.
The p value calculated by the Friedman test is 1.70E-5. The
best results are highlighted in boldface. MSAL is generally
superior to the existing supervised classification algorithms.
Through significance analysis, the average rank of MSAL
was found to be 2.5417. The proposed algorithm ranked first
for six of the datasets. MSAL generally outperformed the
existing supervised classification algorithms. In some cases,
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FIGURE 3. Comparison of four typical critical instance selections. Black stars represent the selected critical instances. The Iris, Seeds, Compound,
and R15 datasets contain 5, 6, 12, and 30 critical instances, respectively. (a) Iris-KQBC. (b) Iris-ALEC. (c) Iris-QUIRE. (d) Iris-MSAL. (e) Seeds-KQBC.
(f) Seeds-ALEC. (g) Seeds-QUIRE. (h) Seeds-MSAL. (i) Compound-KQBC. (j) Compound-ALEC. (k) Compound-QUIRE. (l) Compound-MSAL.
(m) R15-KQBC. (n) R15-ALEC. (o) R15-QUIRE. (p) R15-MSAL.

the performance of MSAL is worse than that of the other
algorithms. For example, the kNN algorithm is ranked first
with the Seeds and Ionosphere datasets, and the J48 algorithm
is ranked first with the Haberman dataset.

According to the Friedman statistics, the assumption that
‘‘all algorithms have the same performance’’ can be rejected.
Statistical results show that the performance of these algo-
rithms is significantly different. We used a post-hoc Nemenyi
test to further compare the algorithms at a significance level

of α = 0.05. Table 5 presents the results. The MSAL
algorithm is significantly better than the CVC, ABM,
J48, CVR, MCC, and LB algorithms. There is no signifi-
cant difference between MSAL and the Bagging, RF, and
kNN algorithms.

D. COMPARISON WITH ACTIVE LEARNING ALGORITHMS
In this section, we compare the MSAL algorithm with
three state-of-the-art active learning algorithms, namely
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TABLE 4. Accuracy of MSAL and nine supervised classification algorithms. The average ranks were obtained using Friedman’s test.

TABLE 5. Adjusted p-values computed by the post-hoc tests.

KQBC [17], ALEC [11],3 and QUIRE [13].4 KQBC selects
the most informative instances, ALEC selects the most rep-
resentative instances, and QUIRE selects informative and
representative instances.

Fig. 4 illustrates the accuracy ofMSAL and the three active
learning algorithms. The number of labels N provided by the
oracle ranges from 0.03|U | to 0.12|U |. The MSAL algorithm
is significantly better than the other three active learning algo-
rithms in the following two aspects. First, the MSAL algo-
rithm is more accurate than the others. For the Appendicitis,
Haberman, Ionosphere, Compound, R15, D31, and Texture
datasets, the classification accuracy of MSAL is significantly
higher than that of the other algorithms for the entire range
of N . For Iris and R15, the classification accuracy of MSAL
reaches 0.9448 and 0.9038 with just 3% labeled instances.
The MSAL algorithm also achieves the highest accuracy
faster than the KQBC, ALEC, and QUIRE algorithms.
In some cases, the performance of MSAL is worse than that
of the other algorithms. For example, with the Seeds dataset,
the ALEC algorithm is the most accurate when N > 0.05|U |,
and with the Twonorm dataset, ALEC is more accurate
than MSAL.

Second, the MSAL algorithm is more stable than the
other three active learning algorithms. For 10 datasets,
the MSAL accuracy increases steadily as the value of
N increases. The QUIRE algorithm exhibits significant
fluctuations with six datasets, including Appendicitis, R15,

3http://www.fansmale.com/software.html
4http://parnec.nuaa.edu.cn/huangsj

TABLE 6. Accuracy of MSAL and three active learning algorithms. The
average ranks were obtained using Friedman’s test.

and D31. The KQBC algorithm also fluctuates on the Appen-
dicitis, Iris, Sonar, Seeds, and Haberman datasets.

Table 6 presents the accuracy of the MSAL algorithm and
the three active learning algorithms when N = 0.1|U |. For
QUIRE,memory overflows occur when testing large datasets.
Therefore, for the D31, Banana, Texture, and Twonorm
datasets, we sampled 10% of the instances for each class
and formed new datasets. The average ranks were obtained
by applying Friedman’s procedure. The p value calculated
by the Friedman test is 0.005651. The best results are high-
lighted in boldface. According to our significance analysis,
MSAL generally outperforms the other algorithms, with an
average rank of 1.6667. Of the 12 datasets, the MSAL
algorithm achieves the highest accuracy on six. The mean
classification accuracy of MSAL is 0.8734. In some cases,
the performance of MSAL is worse than that of other algo-
rithms. For example, the ALEC algorithm is ranked first with
the Iris, Seeds, and Texture datasets.

According to the Friedman statistics, the assumption
that ‘‘all algorithms have the same performance’’ can be
rejected. The statistical results show that the performance
of these algorithms is significantly different. We used a
post-hoc Nemenyi test to further compare the algorithms
at a significance level of α = 0.05. Table 7 presents the
results. The MSAL algorithm is significantly better than the
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FIGURE 4. Comparison with three active learning algorithms. N is the number of labels provided by the oracle; N ranges from 0.03|U | to 0.12|U |.
(a) Appendicitis. (b) Iris. (c) Sonar. (d) Seeds. (e) Haberman. (f) Ionosphere. (g) Compound. (h) R15. (i) D31. (j) Banana. (k) Texture. (l) Twonorm.

QUIRE and KQBC algorithms. The second-ranked ALEC
algorithm is also significantly better than the QUIRE and
KQBC algorithms. There is no significant difference between
the MSAL and ALEC algorithms. In addition, there is

no significant difference between the QUIRE and KQBC
algorithms.

We used the Twonorm dataset to quantify the efficiency
of MSAL. Fig. 5 shows the relationship between the training
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TABLE 7. Adjusted p-values computed by the post-hoc tests.

FIGURE 5. Runtime as a function of the training set size n.

set size n and the runtime. We observe that the runtime is pro-
portional to n2. Therefore, the MSAL algorithm is efficient
and scalable.

E. DISCUSSION
We are now able to answer the questions proposed at the
beginning of this paper.

1) MSAL is more accurate than several popular super-
vised learning algorithms. It is effective for most
datasets that have different distributions, shapes, and
cluster classes. The validity and advantages of active
learning are confirmed.

2) MSAL is more accurate than several state-of-the-art
active learning algorithms. It achieves high accuracy
using only a small number of labeled instances.

3) MSAL is efficient and scalable.
Note that the values of dc and β are essential to the perfor-

mance of our algorithm. For the same dataset, different values
of dc and β will lead to different classification accuracies.
We first set dc and β according to the Rodriguez’s [14]
recommendation. We then considered the distribution of the
actual data to adjust the values of dc and β.

VI. CONCLUSION AND FURTHER WORK
In this paper, we have considered active learning from a
constrained optimization perspective to address the issue of
which instances are critical. First, we used the soft-max
model to calculate the information entropy and obtain infor-
mation for each instance. Second, considering the arbitrary

distribution, we used a non-parametric estimation method
to obtain a probability density function. Third, we designed
diversity constraints to avoid selecting instances that are too
similar. Finally, we designed a multi-standard optimization
active learning (MSAL) algorithm. The results of significance
tests verify the superiority ofMSAL over several state-of-the-
art active learning algorithms.

The following research topics deserve further
investigation:

1) Simplifying the parameter settings. The accuracy of
MSAL depends on the cutoff distance dc and the dif-
ference threshold β, which are difficult to determine.
One solution is to establish certain rules for different
situations. A better solution is to avoid the parameter
setting altogether without sacrificing the predication
accuracy.

2) Reducing the time complexity. The runtime of the
MSAL algorithm becomes rather long as the dataset
size increases. The bottleneck in the algorithm is the
computation of the distance between instance pairs.
The time complexity may be reduced by using divide-
and-conquer approaches such as that described in [52].

3) RevisingMSAL for cost-sensitive active learning. Cur-
rently, MSAL can be applied to problems with a fixed
number of labels provided by the oracle. As active
learning is cost-sensitive, it would be natural to modify
MSAL for problems in which the labeling and misclas-
sification costs are known.
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