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ABSTRACT Knowledge acquisition is the process of extracting useful knowledge from data sets to
analyze data in areas of data mining and knowledge discovery. Most current knowledge acquisition work
mainly focuses on static data. However, due to the dynamic characteristics of data, the objects grow at an
unprecedented rate in real-world data sets. The incremental objects with a dynamic environment significantly
affect knowledge updating. Tomaintain the effectiveness of knowledge from the dynamic data, it is necessary
to update the knowledge timely. So far, there are relatively few studies on knowledge acquisition for the
data with missing feature values, i.e., incomplete data. To handle with this issue, an incremental updating
manner of the accuracy matrix and coverage matrix are first proposed on the basis of the computations of the
tolerance classes in incomplete data, which plays an important role in the knowledge acquisition process.
Then, an incremental knowledge acquisition algorithm is proposed when some new objects added to the
data with missing values. Finally, some numerical experiments are conducted to evaluate the efficiency of
the proposed algorithm.

INDEX TERMS Knowledge acquisition, incremental objects, incomplete decision system, granular com-
puting, tolerance relation.

I. INTRODUCTION
As one of data analysis techniques, rough sets-based methods
have been successfully applied in data mining and knowledge
discovery during last decades [1]–[3], and particularly useful
for rule acquisition [4] and feature selection [5] . Rough set
theory introduced by Pawlak [6], [7] is a knowledge acqui-
sition tool that can be used to help induce logical patterns
hidden in big data. This knowledge can then be presented to
the decision-maker as convenient decision rules. Its strength
lies in its ability to deal with imperfect data and to classify.
Knowledge hidden in information systems may be unraveled
and expressed in the form of decision rules [8], [29]–[34].
The extracted rules can be used for making predictions in dif-
ferent domains. Often, the knowledge acquisition algorithms
established on Pawlak’s rough set model assumed that all
feature values are complete.

The associate editor coordinating the review of this manuscript and
approving it for publication was Eunil Park.

However, missing data in real-world applications often
appears [10]–[16], [21], [22]. For example, in the warning
management system of citys traffic, it may arise out of the
problem of information transmission and congestion, the fault
of sensor, or errors made by the human. The classical rough
set theory based on the equivalence relation cannot handle
effectively such situation. The main reason is that the equiv-
alence relation is limited in dealing with the missing feature
values. One possible way to solve this problem is to fill up
the feature values, but it may cause information loss [9].
Another feasible way to overcome this shortcoming is to
extend the classical rough set theory [10]–[12]. A pioneer-
ing work on dealing with incomplete data was proposed by
Kryszkiewicz [11] by defining a tolerance relation. In the
tolerance-rough set, a tolerance relation characterizes the
relationship between two objects instead of the equivalence
relation used in the classical rough set. To date, many research
results have been obtained in the field of tolerance-rough
set [13], [14]. Note that the extended rough set is beneficial
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to the implementation of knowledge acquisition for incom-
plete data [15], [30]. For example, Leung et al. [15] used
the lower and upper approximations to form the mining of
certain and association rules in static incomplete data sets.
Wu et al. [30] proposed a rough set approach to knowledge
discovery in incomplete multi-scale decision tables from the
perspective of granular computing. Knowledge acquisition
in incomplete data is of interest because such datasets are
frequently encountered in the real world. However, with the
rapid growth of data sets in real-world applications, an object
set in the incomplete data may change with time when new
information arrives. The fast increase of objects in the data
with missing values brings a new challenge to quickly extract
useful information with data mining techniques. Therefore,
this paper mainly focuses on this issue of knowledge acqui-
sition in dynamic incomplete data with the arrival of new
objects.

At present, the knowledge acquisition approaches based on
rough set theory have received much attention. Li et al. [16]
proposed an approach for extracting non-redundant approx-
imate decision rules from an incomplete decision context.
In addition, Shao et al. [17] formulated an approach to
extract ‘‘if-then’’ rule from formal decision contexts by
using formal concept analysis. Shi et al. [18] employed
rough sets and association rule mining to generate knowl-
edge which describes the relationship between the criti-
cal form features and the corresponding KANSEI adjec-
tives. Feng et al. [2] proposed a vague-rough set approach
for extracting knowledge in a vague decision information
system. Du et al. [19] proposed a neighborhood covering
reduction based approach to extract rules from numerical
data. Tan et al. [20] proposed a fast approach to knowledge
acquisition in covering information systems using matrix
operations. Prado et al. [22] proposed a knowledge acquisi-
tion method in fuzzy-rule-based systems with particle-swarm
optimization. Dai et al. [23] proposed a rough set approach
for rule induction based on classification consistency rate in
inconsistent data. Li et al. [24] investigated the relationship
between multi-granulation rough sets and concept lattices via
rule acquisition. Zhang et al. [25] presented parallel large-
scale rough set based methods for knowledge acquisition
using MapReduce. Zhang et al. [28] proposed a confidence-
preserved attribute reduction approach to extract compact
decision rules from an interval-valued decision system.

To mine knowledge from very large data sets based on
rough sets, incremental techniques are employed to improve
the computational efficiency. Liu et al. [26] gave an incre-
mental model and approach as well as its algorithm for
inducing interesting knowledge when the object set varies
over time in the complete information system. Fan et al. [27]
proposed an incremental rule-extraction algorithm based on
the previous rule-extraction algorithm when a new object is
added to an information system. As an efficient data analy-
sis’s technique, the incremental approaches have become one
of the hot topics on knowledge acquisition from the dynamic
data sets. Applying the incremental method, it is unnecessary

to recompute the new knowledge from the beginning, which
only update the new knowledge by partially modifying the
original knowledge, such that the computational efficiency
is improved. Therefore, this paper utilizes the incremental
strategy to extract useful knowledge from data with missing
values based on incremental objects.

Themain contributions of this paper are summarized as fol-
lows: (1) Upon the arrival of new objects, the accuracy matrix
and coverage matrix are incrementally computed without
re-scanning the dynamic system. (2) An incremental knowl-
edge acquisition algorithm is proposed to update the inter-
esting knowledge when some new objects add into the data
with missing values, rather than to compute the whole new
system from scratch. (3) The time efficiency of the proposed
algorithms against the non-incremental algorithm is validated
on different UCI data sets.

This paper is organized as follows. In Section 2, we review
some basic concepts referred in this paper. In Section 3,
the computation of tolerance classes in incomplete data is pre-
sented, which will be used in a later subsection. In Section 4,
the incremental computations of the accuracymatrix and cov-
erage matrix for data with missing values at the arrival of new
objects are analyzed. On this basis, an incremental knowledge
acquisition algorithm is developed to update the interesting
knowledge. Experimental analysis is given in Section 5. The
paper ends with conclusions in Section 6.

II. PRELIMINARIES
In this section, we firstly review some basic concepts
such as incomplete decision system and tolerance relation
[11], [15]. Then we introduce some necessary concepts of
knowledge acquisition, such as accuracy and coverage of
rules [26], [27].

Data sets are usually given as the form of tables, we call
a data table as an information system, formulated as IS =
< U ,A,V , f >, where,
(1) U is a set of nonempty and finite objects, called the

universe;
(2) A is a set of features characterizing the objects;
(3) V is the union of feature domains, i.e., V = ∪a∈AVa,

where Va is the value set of feature a, called the domain of a;
(4) f : U × A → V is an information function, which

assigns feature values to objects such as ∀a ∈ A, x ∈ U , and
f (x, a) ∈ Va, where f (x, a) denotes the value of feature a for
object x.
Each subset of features B ⊆ A determines a binary

indiscernibility relation IND(B) on U as follows: IND(B) =
{(x, y) ∈ U × U |∀a ∈ B, f (x, a) = f (y, a)}. It can be easily
shown that IND(B) is an equivalence relation and it constructs
a partition of U , denoted by U/IND(B) = {[x]B|x ∈ U},
where [x]B denotes the equivalence class containing x. The
elements in [x]B are indiscernible or equivalent with respect
to B, i.e., [x]B = {y ∈ U |(x, y) ∈ IND(B)}.
If the feature set is divided into condition feature set C

and decision feature set D, the information system is called
a decision system. If there exist x ∈ U and a ∈ A such
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that f (x, a) is equal to a missing value (a null or unknown
value, denoted as ‘‘*’’), i.e., ∗ ∈ Va, then the information
system is an incomplete information system (IIS). Otherwise,
it is a complete information system (CIS). If ∗ /∈ VD but
∗ ∈ VC , then the decision system is an incomplete decision
system (IDS).

Generally speaking, the data with missing values is repre-
sented as an incomplete decision system. Given an incom-
plete information system IIS =< U ,C ∪ D,V , f >, for
∀B ⊆ C , a tolerance relation between objects that are pos-
sibly indiscernible in terms of B is defined by TR(B) =
{(x, y)|∀a ∈ B, f (x, a) = f (y, a)∨ f (x, a) = ∗∨ f (y, a) = ∗}.
Obviously, TR(B) is reflexive and symmetric but not transi-
tive. It can be easily shown that TR(B) = ∩a∈BTR({a}). The
tolerance class of object x with reference to a feature set B is
denoted as T B(x) = {y|(x, y) ∈ TR(B)}. Let U/TR(B) denote
the family set {TB(x)|x ∈ U}, which is the classification
induced byB. ForX ⊆ U , the lower and upper approximation
of X with respect to B can be defined as B(X ) = {x ∈
U |T B(x) ⊆ X} and B(X ) = {x ∈ U |T B(x) ∩ X 6= ∅}.
X is called B−definable if and only if B(X ) = B(X ).
Otherwise, B(X ) 6= B(X ) and X is rough.
Definition 1: Let IDS =< U ,C ∪ D,V , f > be an

incomplete decision system, U = {x1, x2, . . . , xm}, for ∀xi ∈
U (1 ≤ i ≤ m), U/D = {D1,D2, . . . ,Dn}, where Dj(1 ≤
j ≤ n) is a decision class. The decision rule γxi of object xi is
defined by: des([xi]C )→ des(Dj).
For the decision rule γxi , des([xi]C ) =∧c∈C (c, f (xi, c)) is

the descriptions of object xi under the condition feature set
C , des(Dj) =∧d∈D (d, f (xi, d)) is the descriptions of object
xi under the decision feature set D.
The remarkable rules extracted from the incomplete deci-

sion system are the interesting knowledge. Because accuracy
and coverage are the two statistical measures for rule induc-
tion [26], [27], we focus on the accuracy and coverage as two
important factors to describe the interesting knowledge in this
paper.
Definition 2: Let IDS =< U ,C ∪D,V , f > be an incom-

plete decision system, U = {x1, x2, ..., xm}, U/TR(C) =
{TC (x1),TC (x2), ..., TC (xm)} is the classification induced
by C , where TC (xi)(1 ≤ i ≤ m) is a tolerance class,
U/IND(D) = {D1,D2, . . . ,Dn}, where Dj(1 ≤ j ≤ n) is a
decision class. The accuracy, and coverage of γxi are defined
respectively by:

Accuracy of des([xi]C )→ des(Dj) :

Acc(Dj|TC (xi)) =
|TC (xi) ∩ Dj|
|TC (xi)|

;

Coverage of des([xi]C )→ des(Dj) :

Cov(Dj|TC (xi)) =
|TC (xi) ∩ Dj|
|Dj|

.

Then the accuracy matrix of the incomplete decision sys-
tem is constructed by, Acc(D|U ), as shown at the bottom of
this page, and the coverage matrix of the incomplete decision
system is constructed by, Cov(D|U ), as shown at the bottom
of this page.

By this definition, we can easily obtain the value range of
the accuracy and the coverage of γxi , respectively.
Proposition 1: 0 ≤ Acc(Dj|TC (xi)) ≤ 1, 0 ≤

Cov(Dj|TC (xi)) ≤ 1, ∀xi ∈ U (1 ≤ i ≤ m), Dj ∈
U/IND(D)(1 ≤ j ≤ n).
According to two measures of rule quality, the interesting

knowledge can be considered as follows if the association rule
satisfies both a minimum threshold. Such threshold can be set
by users or domain experts.
Definition 3: If Acc(Dj|TC (xi)) ≥ α and Cov(Dj|TC (xi)) ≥

γ , ∀xi ∈ U (1 ≤ i ≤ m), Dj ∈ U/IND(D) (1 ≤ j ≤ n), then
the rule des([xi]C ) → des(Dj) of object xi is an interesting
knowledge where α ∈ [0, 1] and γ ∈ [0, 1].

Since the accuracy and coverage factors of rule induction
are two statistical measures, a classification error parameter
β = 1 − |TC (xi) ∩ [xi]D|/|TC (xi)|(|TC (xi)| > 0) proposed
in [26], [27] is used to obtain the accuracy value, we get
α = 1 − β. From Definition 3, the interesting knowledge
can be generated with high accuracy and high coverage from
the incomplete decision system.

III. COMPUTATION OF TOLERANCE CLASSES
FOR DATA WITH MISSING VALUES
In this section, we introduce the computation of tolerance
classes [33] for the incomplete decision system to classify
objects in the knowledge acquisition process.

The classical method of computing tolerance classes has
to compare the feature values of objects by pairwise under
the whole condition feature set. The time complexity is
O(|U |2|C|), where U is the number of objects from a given
universe and C is the number of conditional features in the

Acc(D|U ) =


Acc(D1|TC (x1)) Acc(D2|TC (x1)) . . . Acc(Dn|TC (x1))
Acc(D1|TC (x2)) Acc(D2|TC (x2)) . . . Acc(Dn|TC (x2))

. . . . . . . . . . . .

Acc(D1|TC (xm)) Acc(D2|TC (xm)) . . . Acc(Dn|TC (xm))



Cov(D|U ) =


Cov(D1|TC (x1)) Cov(D2|TC (x1)) . . . Cov(Dn|TC (x1))
Cov(D1|TC (x2)) Cov(D2|TC (x2)) . . . Cov(Dn|TC (x2))

. . . . . . . . . . . .

Cov(D1|TC (xm)) Cov(D2|TC (xm)) . . . Cov(Dn|TC (xm))
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incomplete decision system. As a result, it is often time-
consuming to use this method to satisfy the requirement for
large volumes of data. In order to enhance the time efficiency,
we just first compute all the blocks (elementary sets) for
the objects containing no missing feature values under each
condition feature, then the tolerance class of each object is the
residual object set through sequentially minus some blocks
that from the whole set of objects.

In what follows, an example is given to illustrate this
computation with a small incomplete decision system shown
in Table 1.

TABLE 1. An incomplete decision system.

An incomplete decision system from [11], [13] is shown
in Table 1, where U = {x1, x2, x3, x4, x5, x6}. For conve-
nience, in the sequel, P,M ,S and X will stand for Price,
Mileage, Size, Max-speed, respectively. C = {P,M , S,X}
and D = {Acceleration}. By the method of [33], the ele-
mentary sets of each condition feature are computed as
[(P,High)] = {x1, x4}, [(P,Low)] = {x2, x6}; [(M ,High)] =
{x1, x6}; [(S,Full)] = {x1, x2, x4, x5, x6}, [(S,Compact)] =
{x3}; [(X ,Low)] = {x1, x2, x3}, [(X ,High)] = {x4, x5}, then,
the tolerance classes of each object are computed as follows:

TC (x1) = U − {x2, x6} − {x3} − {x4, x5} = {x1},

TC (x2) = U − {x1, x4} − {x3} − {x4, x5} = {x2, x6},

TC (x3) = U − {x1, x2, x4, x5, x6} − {x4, x5} = {x3},

TC (x4) = U − {x2, x6} − {x3} − {x1, x2, x3} = {x4, x5},

TC (x5) = U − {x3} − {x1, x2, x3} = {x4, x5, x6},

TC (x6) = U − {x1, x4} − {x3} = {x2, x5, x6}.

IV. THE NON-INCREMENTAL KNOWLEDGE ACQUISITION
APPROACH FOR DATA WITH MISSING VALUES
AT THE ARRIVAL OF NEW OBJECTS
In practice, data processing tools have been developed rapidly
in recent years. Thus the incomplete decision systems may
increase quickly in objects with time in real-life applica-
tions. Suppose that many objects are added to the system,
the general (non-incremental) algorithm needs to compute
the accuracy matrix and coverage matrix repeatedly on the
incomplete decision system, which may be inefficient. Given
a dynamic incomplete decision system, the non-incremental
knowledge acquisition approach updates the knowledge from
the scratch. The detailed process procedure is presented in
Algorithm 1, which is denoted by Algorithm NKAC.

Algorithm 1 The Non-Incremental Knowledge Acquisition
Algorithm for Data With Missing Values at the Arrival of
New Objects (Algorithm NKAC)
Input: An incomplete decision system IDS =< U ,C ∪
D,V , f > at time t , where U = {x1, x2, . . . , xm}, a new
adding object x at time t + 1, two thresholds α and β;
Output: Interesting knowledge at time t + 1.
Begin

1) % Compute the new accuracy matrix and new coverage
matrix at time t + 1 from the scratch, and output the
interesting knowledge

2) Let xm+1 = x and U ′ = U ∪ {x} = {x1, x2, . . . ,
xm, xm+1};

3) Compute the tolerance classes U ′/TR(C) = {T ′C (x1),
T ′C (x2), . . . ,T

′
C (xm),T

′
C (xm+1)} by Theorem 1;

4) Compute decision classes U ′/IND(D) = {D′1,
D′2, . . . ,D

′
n};

5) for i = 1 to m+ 1 do
6) for j = 1 to n do
7) recompute the accuracy matrix Acc(t+1)(D′j|T

′
C (xi)),

and the coverage matrix Cov(t+1)(D′j|T
′
C (xi)) at time

t + 1;
8) for i = 1 to m+ 1 do
9) for j = 1 to n do
10) if Acc(t+1)(D′j|T

′
C (xi)) ≥ α and

Cov(t+1)(D′j|T
′
C (xi)) ≥ β, Output the interesting

knowledge des[xi]C → des(D′j);
End

From Algorithm NKAC, it treats the dynamic data by the
adding objects as absolutely new data without using any
incremental strategy and directly compute the interesting
knowledge, which does not take into consideration the previ-
ous results thus may be time-consuming. When confronting
a new adding object, Steps 3-4 are to compute the tolerance
classes and decision classes respectively, the results will be
prerequisite for computing the accuracy and coverage of each
object. Steps 5-7 are to compute the accuracy matrix and
coverage matrix from the scratch. Steps 8-10 are to update
the interesting knowledge by Definition 3.

In what follows, an illustrative example is employed to
analyze the knowledge acquisition process by the algorithm
NKAC.

We illustrate the proposed algorithm NKAC using the
incomplete decision system shown in Table 1, Table 1 is taken
as the original incomplete decision system. Now, a new object
x7 is added into the system, where x7 = {High, High, Full,
High, Excellent} is added into the system. Suppose α = 0.6,
β = 0.4, the new knowledge acquisition process is shown as
follows.

As that in Example 1 for Table 1, let x7 = x, U ′ = {x1,
x2, x3, x4, x5, x6, x7}. Compute the tolerance classes by
Theorem 1 as follows: T ′C (x1) = {x1}, T

′
C (x2) = {x2, x6},

T ′C (x3) = {x3}, T
′
C (x4) = {x4, x5, x7}, T

′
C (x5) = {x4, x5,

x6, x7}, T ′C (x6) = {x2, x5, x6} and T ′C (x7) = {x4, x5, x7}.
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Compute the decision classes U ′/IND(D) = {D′1,D
′

2, . . . ,

D′n}, where D
′

1 = {x1, x2, x4, x6}, D
′

2 = {x3}, D
′

3 = {x5, x7}.
Then, the new accuracy matrix and new coverage matrix are
recomputed as follows:

Acc(t+1)(D′j|T
′
C (xi)) =



1 0 0
1 0 0
0 1 0
1
3

0
2
3

1
2

0
1
2

2
3

0
1
3

1
3

0
2
3



Cov(t+1)(D′j|T
′
C (xi)) =



1
4

0 0

1
2

0 0

0 1 0
1
4

0 1

1
2

0 1

1
2

0
1
2

1
4

0 1


By the new accuracy matrix and new coverage matrix, one

can obtain:

Acc(t+1)(D′1|T
′
C (x2)) = 1 ≥ 0.6,

Cov(t+1)(D′1|T
′
C (x2)) =

1
2
≥ 0.4;

Acc(t+1)(D′2|T
′
C (x3)) = 1 ≥ 0.6,

Cov(t+1)(D′2|T
′
C (x3)) = 1 ≥ 0.4;

Acc(t+1)(D′3|T
′
C (x4)) =

2
3
≥ 0.6,

Cov(t+1)(D′3|T
′
C (x4)) = 1 ≥ 0.4;

Acc(t+1)(D′1|T
′
C (x6)) =

2
3
≥ 0.6,

Cov(t+1)(D′1|T
′
C (x6)) =

1
2
≥ 0.4;

Acc(t+1)(D′3|T
′
C (x7)) =

2
3
≥ 0.6,

Cov(t+1)(D′3|T
′
C (x7)) = 1 ≥ 0.4.

we can find out the interesting knowledge as follows:

des[x2]C → des(D′1) : (P,Low) ∧ (M , ∗) ∧ (S,Full)

∧(X ,Low)→ (Acceleration,Good);

des[x3]C → des(D′2) : (P, ∗) ∧ (M , ∗) ∧ (S,Compact)

∧(X ,Low)→ (Acceleration,Poor);

des[x4]C → des(D′3) : (P,High) ∧ (M , ∗) ∧ (S,Full)

∧(X ,High)→ (Acceleration,Excellent);

des[x6]C → des(D′1) : (P,Low) ∧ (M ,High) ∧ (S,Full)

∧(X , ∗)→ (Acceleration,Good);

des[x7]C → des(D′3) : (P,High) ∧ (M ,High) ∧ (S,Full)

∧(X ,High)→ (Acceleration,Excellent).

V. INCREMENTAL KNOWLEDGE ACQUISITION
ALGORITHM FOR DATA WITH MISSING VALUES
AT THE ARRIVAL OF NEW OBJECTS
The above analysis shows that recalculating the interest-
ing knowledge is not a wise method when confronting the
dynamic incomplete data with new adding objects, since it
needs to compute repeatedly and consume a large amount of
computational time, while incremental methods attracted by
many scholars are efficient to deal with such data because
they can directly run the computation by using the previous
results [5], [26]. In this section, we first analyze the incre-
mental computation of accuracy and coverage of each object
to acquire new knowledge when new objects are added into
the incomplete data. Then we give an illustrative example
to explain this incremental manner. Finally, we design an
incremental knowledge acquisition algorithm for inducing
interesting knowledge.

To describe a dynamic incomplete data, we denote an
incomplete decision system at time t as IDS = <U ,C ∪
D, V , f>, U = {x1, x2, . . . , xm}, with the classifica-
tion U/TR(C) = {TC (x1),TC (x2), . . . ,TC (xm)}, where
TC (xi)(1 ≤ i ≤ m) is a tolerance class; U/IND(D) =
{D1,D2, · · · ,Dn}, where Dj(1 ≤ j ≤ n) is a decision
class. At time t + 1, some objects are added into the system,
the original incomplete decision system IDS will become
IDS ′ =< U ′,C ∪ D,V ′, f ′ >. At time t , we denote the
accuracy and coverage of each object as Acc(t)(Dj|TC (xi))
and Cov(t)(Dj|TC (xi)) at time t , the decision rule γxi :
des([xi]C ) → des(Dj) is interesting if Acc(t)(Dj|TC (xi)) ≥
α and Cov(t)(Dj|TC (xi)) ≥ γ . In a similar way, the accu-
racy and coverage will become Acc(t+1)(D′j|T

′
C (xi)) and

Cov(t+1)(D′j|T
′
C (xi)) at time t + 1, the decision rule γ ′xi :

des([xi]′C ) → des(D′j) is interesting if Acc(t+1)(D′j|T
′
C (xi)) ≥

α and Cov(t+1)(D′j|T
′
C (xi)) ≥ γ at time t + 1.

A. INCREMENTAL COMPUTATIONS OF THE NEW
ACCURACY MATRIX AND COVERAGE MATRIX
Since the adding of multiple objects can be regarded as the
composition of a single object, we only consider the case
of a single adding object. In the following, the calculation
process for the new accuracy and coverage of each object is
introduced when adding a new object x into the incomplete
decision system at time t + 1. On the basis of the updated
accuracy matrix and coverage matrix, the interesting knowl-
edge can be easily induced. There are four cases with regard
to the classification of x onC andD as follows. The flowchart
of the incremental updating of accuracy matrix and coverage
matrix is shown in Fig.1.

If a new object x satisfying Case 1 is added into the system,
i.e., TC (xm+1) = {x} and Dn+1 = {x}, modify the last
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FIGURE 1. Incremental update of the new accuracy matrix and coverage
matrix.

row of accuracy matrix, and the last column of coverage
matrix needs to be updated; if a new object is in Case 2, i.e.,
TC (xm+1) = {x} and D′q = Dq ∪ {x}, update the last row of
accuracymatrix, andmodify the changed column and last row
of coverage matrix; if a new object satisfying Case 3 is added,
i.e., T ′C (xp) = TC (xp) ∪ {x} and Dn+1 = {x}, the last row,
changed row and last column of accuracy matrix, the last row
and column of coverage matrix all need to be updated; when
the new object is in Case 4, i.e., T ′C (xp) = TC (xp) ∪ {x} and
D′q = Dq ∪ {x}, the changed column and last row of accuracy
matrix, and the changed column and last row of coverage
matrix all need to be modified.
Case 1: Forming a new tolerance class and a new decision

class.
In this case, U ′/TR(C) = {TC (x1),TC (x2), . . . ,TC (xm),

TC (xm+1)}, where TC (xm+1) = {x}. In addition, U ′/
IND(D) = {D1, D2, · · · ,Dn}, where Dn+1 = {x}.
At this time t + 1, Acc(t+1)(Dn+1|TC (xm+1)) = 1 and

Acc(t+1)(Dj|TC (xm+1)) = 0, Cov(t+1)(Dn+1|TC (xm+1)) = 1
and Cov(t+1)(Dj|TC (xm+1)) = 0 for 1 ≤ j ≤ n.
Acc(t+1)(D′j|T

′
C (xi)) = Acc(t)(Dj|TC (xi)) and Cov(t+1)

(D′j|T
′
C (xi)) = Cov(t) (Dj|TC (xi)) for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The new accuracy matrix is updated by, Acc(t+1)(D|U ),
as shown at the bottom of this page, and the new coverage
matrix is updated by, Cov(t+1)(D|U ), as shown at the bottom
of this page.

Let Table 1 be the original incomplete decision system,
a new object x = {High, Low, Compact, High, VeryGood} is
added into the system. The updating computations of the new
accuracy matrix and coverage matrix are shown as follows.

As Table 1 shown, the classification induced by C is
U/TR(C) = {TC (x1),TC (x2), . . . ,TC (x6), where TC (x1) =
{x1},TC (x2) = {x2, x6}, TC (x3) = {x3}, TC (x4) = {x4, x5},
TC (x5) = {x4, x5, x6}, TC (x6) = {x2, x5, x6}; the classifi-
cation induced by D is U/IND(D) = {D1,D2,D3}, where
D1 = {x1, x2, x4, x6},D2 = {x3},D3 = {x5}. By Definition 2,
the accuracy matrix and the coverage matrix at time t are
computed, respectively, as follows.

Acc(t)(Dj|TC (xi)) =



1 0 0
1 0 0
0 1 0
1
2

0
1
2

2
3

0
1
3

2
3

0
1
3



Cov(t)(Dj|TC (xi)) =



1
4

0 0

1
2

0 0

0 1 0
1
4

0 1

1
2

0 1

1
2

0 1



When the new object x is added into the system, it forms a
new tolerance class TC (x7) = {x} and a new decision class
D4 = {x}. As analyzed above, we only need to compute
the last row and the last column of two matrices Acc(t+1)

(D4|TC (x7)) = 1, Acc(t+1)(Dj|TC (x7)) = 0(1 ≤ j ≤ 3),
Cov(t+1)(D4|TC (x7)) = 1, Cov(t+1)(Dj|TC (x7)) = 0(1 ≤
j ≤ 3). The computations of accuracy and coverage for other
objects are unchanged. Therefore, the new accuracy matrix
and the coverage matrix at time t+1 are shown, respectively,

Acc(t+1)(D|U ) =


Acc(D1|TC (x1)) Acc(D2|TC (x1)) . . . Acc(Dn|TC (x1)) 0
Acc(D1|TC (x2)) Acc(D2|TC (x2)) . . . Acc(Dn|TC (x2)) 0

. . . . . . . . . . . . . . .

Acc(D1|TC (xm)) Acc(D2|TC (xm)) . . . Acc(Dn|TC (xm)) 0
0 0 . . . 0 1



Cov(t+1)(D|U ) =


Cov(D1|TC (x1)) Cov(D2|TC (x1)) . . . Cov(Dn|TC (x1)) 0
Cov(D1|TC (x2)) Cov(D2|TC (x2)) . . . Cov(Dn|TC (x2)) 0

. . . . . . . . . . . . . . .

Cov(D1|TC (xm)) Cov(D2|TC (xm)) . . . Cov(Dn|TC (xm)) 0
0 0 . . . 0 1
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as follows.

Acc(t+1)(Dj|TC (xi)) =



1 0 0 0
1 0 0 0
0 1 0 0
1
2

0
1
2

0

2
3

0
1
3

0

2
3

0
1
3

0

0 0 0 1



Cov(t+1)(Dj|TC (xi)) =



1
4

0 0 0

1
2

0 0 0

0 1 0 0
1
4

0 1 0

1
2

0 1 0

1
2

0 1 0

0 0 0 1


By the new accuracy matrix and new coverage matrix, one

can obtain:

Acc(t+1)(D′1|T
′
C (x2)) = 1 ≥ 0.6,

Cov(t+1)(D′1|T
′
C (x2)) =

1
2
≥ 0.4;

Acc(t+1)(D′2|T
′
C (x3)) = 1 ≥ 0.6,

Cov(t+1)(D′2|T
′
C (x3)) = 1 ≥ 0.4;

Acc(t+1)(D′1|T
′
C (x5)) =

2
3
≥ 0.6,

Cov(t+1)(D′1|T
′
C (x5)) =

1
2
≥ 0.4;

Acc(t+1)(D′1|T
′
C (x6)) =

2
3
≥ 0.6,

Cov(t+1)(D′1|T
′
C (x6)) =

1
2
≥ 0.4;

Acc(t+1)(D4|TC (x7)) = 1 ≥ 0.6,

Cov(t+1)(D4|TC (x7)) = 1 ≥ 0.4.

we can find out the interesting knowledge as follows:

des[x2]C → des(D1) : (P,Low) ∧ (M , ∗) ∧ (S,Full)

∧(X ,Low)→ (Acceleration,Good);

des[x3]C → des(D2) : (P, ∗) ∧ (M , ∗) ∧ (S,Compact)

∧(X ,Low)→ (Acceleration,Poor);

des[x5]C → des(D1) : (P, ∗) ∧ (M , ∗) ∧ (S,Full)

∧(X ,High)→ (Acceleration,Good);

des[x6]C → des(D1) : (P,Low) ∧ (M ,High) ∧ (S,Full)

∧(X , ∗)→ (Acceleration,Good);

des[x7]C → des(D4) : (P,High) ∧ (M ,Low) ∧ (S,Compact)

∧(X ,High)→ (Acceleration,VeryGood).

Case 2: Only forming a new tolerance class.
In this case, U ′/TR(C) = {TC (x1),TC (x2), . . . ,TC (xm),

TC (xm+1)}, where TC (xm+1) = {x}. In addition,
U ′/IND(D) = {D1,D2, . . . ,D′q, . . . ,Dn}, where D

′
q = Dq ∪

{x} (1 ≤ q ≤ n).
At this time t + 1, Acc(t+1)(D′q|TC (xm+1)) = 1,

Cov(t+1)(D′q| TC (xm+1)) =
1

|Dq|+1
;

Acc(t+1)(D′k |TC (xm+1)) = 0, Cov(t+1)(D′k |TC (xm+1)) = 0
since [x]C ∩ Dk = ∅(1 ≤ k 6= q ≤ n);
Acc(t+1)(D′j|T

′
C (xi)) = Acc(t)(Dj|TC (xi)) and Cov(t+1)

(D′j|T
′
C (xi)) = Cov(t)(Dj |TC (xi)) (1 ≤ i ≤ m, 1 ≤ j ≤ n,

j 6= q);
Acc(t+1)(D′j|T

′
C (xi)) = Acc(t)(Dj|TC (xi)) and Cov(t+1)

(D′j|T
′
C (xi)) =

|TC (xi)∩Dq|
|Dq|+1

(1 ≤ i ≤ m, j = q).

The new accuracy matrix is updated by, Acc(t+1)(D|U ), as
shown at the bottom of this page, and the new coveragematrix
is updated by, Cov(t+1)(D|U ), as shown at the bottom of this
page.

Acc(t+1)(D|U ) =


Acc(D1|TC (x1)) . . . Acc(Dq|TC (x1)) . . . Acc(Dn|TC (x1))
Acc(D1|TC (x2)) . . . Acc(Dq|TC (x2)) . . . Acc(Dn|TC (x2))

. . . . . . . . . . . .

Acc(D1|TC (xm)) . . . Acc(Dq|TC (xm)) . . . Acc(Dn|TC (xm))
0 . . . 1 0



Cov(t+1)(D|U ) =



Cov(D1|TC (x1)) . . .
|TC (x1)) ∩ Dq|
|Dq| + 1

. . . Cov(Dn|TC (x1))

Cov(D1|TC (x2)) . . .
|TC (x2)) ∩ Dq|
|Dq| + 1

. . . Cov(Dn|TC (x2))

. . . . . . . . . . . . . . .

Cov(D1|TC (xm)) . . .
|TC (xm) ∩ Dq|
|Dq| + 1

. . . Cov(Dn|TC (xm))

0 . . .
1

|Dq| + 1
. . . 0
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Let Table 1 be the original incomplete decision system,
a new object x = {High, Low, Compact, High, Excellent}
is added into the system. The updating computations of the
new accuracy and coverage for each object are shown as
follows.

When the new object x is added into the system,
it only forms a new tolerance class TC (x7) = {x}, and
the changed decision class D′3 = {x, x5}. As analyzed
above, we need to compute the accuracy of the new object
Acc(t+1)(D′3|TC (x7)) = 1, Acc(t+1)(D′k |TC (x7)) = 0 (k =
1, 2). The computations of accuracy for other objects are
unchanged. In addition, the coverage of the new object
Cov(t+1)(D′3|TC (x7)) =

1
|D3|+1

=
1
2 , Cov

(t+1)(Dk |TC (x7)) =

0(k = 1, 2), and Cov(t+1)(D′3|TC (x1)) =
|TC (x1)∩D3|
|D3|+1

=

0, Cov(t+1)(D′3|TC (x2)) =
|TC (x2)∩D3|
|D3|+1

= 0, Cov(t+1)(D′3|

TC (x3)) =
|TC (x3)∩D3|
|D3|+1

= 0, Cov(t+1)(D′3|TC (x4)) =
|TC (x4)∩D3|
|D3|+1

=
1
2 , Cov

(t+1)(D′3|TC (x5)) =
|TC (x5)∩D3|
|D3|+1

=
1
2 ,

Cov(t+1)(D′3|TC (x6)) =
|TC (x6)∩D3|
|D3|+1

=
1
2 . The computations

of coverage for other objects are unchanged.
The new accuracy matrix and the coverage matrix at time

t + 1 are shown, respectively, as follows.

Acc(t+1)(Dj|TC (xi)) =



1 0 0
1 0 0
0 1 0
1
2

0
1
2

2
3

0
1
3

2
3

0
1
3

0 0 1



Cov(t+1)(Dj|TC (xi)) =



1
4

0 0

1
2

0 0

0 1 0
1
4

0
1
2

1
2

0
1
2

1
2

0
1
2

0 0
1
2


By the new accuracy matrix and new coverage matrix, one

can obtain:

Acc(t+1)(D′1|T
′
C (x2)) = 1 ≥ 0.6,

Cov(t+1)(D′1|T
′
C (x2)) =

1
2
≥ 0.4;

Acc(t+1)(D′2|T
′
C (x3)) = 1 ≥ 0.6,

Cov(t+1)(D′2|T
′
C (x3)) = 1 ≥ 0.4;

Acc(t+1)(D′1|T
′
C (x5)) =

2
3
≥ 0.6,

Cov(t+1)(D′1|T
′
C (x5)) =

1
2
≥ 0.4;

Acc(t+1)(D′1|T
′
C (x6)) =

2
3
≥ 0.6,

Cov(t+1)(D′1|T
′
C (x6)) =

1
2
≥ 0.4;

Acc(t+1)(D′3|T
′
C (x7)) = 1 ≥ 0.6,

Cov(t+1)(D′3|T
′
C (x7)) =

1
2
≥ 0.4.

we can find out the interesting knowledge as follows:

des[x2]C → des(D1) : (P,Low) ∧ (M , ∗) ∧ (S,Full)

∧(X ,Low)→ (Acceleration,Good);

des[x3]C → des(D2) : (P, ∗) ∧ (M , ∗) ∧ (S,Compact)

∧(X ,Low)→ (Acceleration,Poor);

des[x5]C → des(D1) : (P, ∗) ∧ (M , ∗) ∧ (S,Full)

∧(X ,High)→ (Acceleration,Good);

des[x6]C → des(D1) : (P,Low) ∧ (M ,High) ∧ (S,Full)

∧(X , ∗)→ (Acceleration,Good);

des[x]C → des(D3) : (P,High)∧(M ,Low)∧(S,Compact)

∧(X ,High)→ (Acceleration,Excellent).

Case 3: Only forming a new decision class.
In this case,U ′/TR(B)={TC (x1),TC (x2), . . . ,T ′C (xp), . . . ,

TC (xm), TC (xm+1)}, where T ′C (xp) = TC (xp) ∪ {x} and
TC (xm+1) = {x} ∪ {xp}(1 ≤ p ≤ m). In addition,
U ′/IND(D) = {D1,D2, · · · ,Dn,Dn+1 = [x]D}, where
Dn+1 = {x}.

At this time t + 1, Acc(t+1)(Dn+1|TC (xm+1)) = 1
|TC (xm+1)|

,
Cov(t+1)(Dn+1| TC (xm+1)) = 1;

Acc(t+1)(D′j|TC (xm+1)) =
|TC (xm+1) ∩ Dj|
|TC (xm+1)|

,

Cov(t+1)(D′j|TC (xm+1)) = 0(1 ≤ j ≤ n);

Acc(t+1)(Dn+1|T ′C (xp)) =
1

|TC (xp)| + 1
,

Cov(t+1)(Dn+1|T ′C (xp)) = 1;

Acc(t+1)(D′j|T
′
C (xp)) =

|TC (xp) ∩ Dj|
|TC (xp)| + 1

,

Cov(t+1)(D′j|T
′
C (xp)) = Cov(t+1)(Dj|TC (xp))(1 ≤ j ≤ n);

Acc(t+1)(D′j|T
′
C (xi)) = Acc(t)(Dj|TC (xi)),

Cov(t+1)(D′j|T
′
C (xi)) = Cov(t)(Dj|TC (xi)),

(1 ≤ i ≤ m, i 6= p, 1 ≤ j ≤ n);

Acc(t+1)(Dn+1|T ′C (xi)) = Cov(t+1)(Dn+1|T ′C (xi))

= 0(1 ≤ i ≤ m, i 6= p).
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The new accuracy matrix is updated by

Acc(t+1)(D|U )

=



Acc(D1|TC (x1)) . . . Acc(Dn|TC (x1)) 0
Acc(D1|TC (x2)) . . . Acc(Dn|TC (x2)) 0

. . . . . . . . . . . .
|TC (xp) ∩ D1|

|TC (xp)|+1
. . .

|TC (xp) ∩ Dn|
|TC (xp)|+1

1
|TC (xp)|+1

. . . . . . . . . . . .

Acc(D1|TC (xm)) . . . Acc(Dn|TC (xm)) 0
|TC (xm+1) ∩ D1|

|TC (xm+1)|
. . .
|TC (xm+1) ∩ Dn|
|TC (xm+1)

1
|TC (xm+1)|


and the new coverage matrix is updated by

Cov(t+1)(D|U )

=



Cov(D1|TC (x1)) . . . Cov(Dn|TC (x1)) 0
Cov(D1|TC (x2)) . . . Cov(Dn|TC (x2)) 0

. . . . . . . . . . . .

Cov(D1|TC (xp)) . . . Cov(Dn|TC (xp)) 1
. . . . . . . . . . . .

Cov(D1|TC (xm)) . . . Cov(Dn|TC (xm)) 0
0 . . . 0 1


Let Table 1 be the original incomplete decision system,

a new object x = {High, High, Full, High, VeryGood} is
added into the system. The updating computations of the new
accuracy and coverage for each object are shown as follows.

When the new object x is added into the system, it only
forms a new tolerance class D4 = [x]D = {x}, the changed
tolerance class T ′C (x4) = {x, x4, x5}, T

′
C (x5) = {x, x4, x5, x6}

and TC (x7) = {x, x4, x5}. As analyzed above, we need to
compute the accuracy of the new object

Acc(t+1)(D4|TC (x7)) =
1

|TC (x7)|
=

1
3
,

Acc(t+1)(D1|TC (x7)) =
1

|TC (x7)|
=

1
3
,

Acc(t+1)(D2|TC (x7)) = 0, Acc(t+1)(D3|TC (x7)) =
1
3
,

Acc(t+1)(D1|T ′C (x4)) =
1

|TC (x4)| + 1
=

1
3
,

Acc(t+1)(D2|T ′C (x4)) = 0,

Acc(t+1)(D3|T ′C (x4)) =
1

|TC (x4)| + 1
=

1
3
,

Acc(t+1)(D1|T ′C (x5)) =
2

|TC (x5)| + 1
=

1
2
,

Acc(t+1)(D2|T ′C (x5)) = 0,

Acc(t+1)(D3|T ′C (x5)) =
1

|TC (x5)| + 1
=

1
4
,

Acc(t+1)(D4|TC (xi)) = 0(i = 1, 2, 3, 6).

The computations of accuracy for other objects are
unchanged. In addition, the coverage of the new object
Cov(t+1)(D4|TC (x7)) = 1, Cov(t+1)(Dj|TC (x7)) = 0(1 ≤ j ≤
3), Covt+1(D4|T ′C (x4)) = 1, and Cov(t+1)(D′4|T

′
C (x5)) = 1,

Cov(t+1)(D′4|T
′
C (xi)) = 0(i = 1, 2, 3, 6). The computations

of accuracy and coverage for other objects are unchanged.
The new accuracy matrix and the coverage matrix at time

t + 1 are shown, respectively, as follows.

Acc(t+1)(D|U ) =



1 0 0 0
1 0 0 0
0 1 0 0
1
3

0
1
3

1
3

1
2

0
1
4

1
4

2
3

0
1
3

0

1
3

0
1
3

1
3



Cov(t+1)(D|U ) =



1
4

0 0 0

1
2

0 0 0

0 1 0 0
1
4

0 1 1

1
2

0 1 1

1
2

0 1 0

0 0 0 1


By the new accuracy matrix and new coverage matrix, one

can obtain:

Acc(t+1)(D′1|T
′
C (x2)) = 1 ≥ 0.6,

Cov(t+1)(D′1|T
′
C (x2)) =

1
2
≥ 0.4;

Acc(t+1)(D′2|T
′
C (x3)) = 1 ≥ 0.6,

Cov(t+1)(D′2|T
′
C (x3)) = 1 ≥ 0.4;

Acc(t+1)(D′1|T
′
C (x6)) =

2
3
≥ 0.6,

Cov(t+1)(D′1|T
′
C (x6)) =

1
2
≥ 0.4;

we can find out the interesting knowledge as follows:

des[x2]C → des(D1) : (P,Low) ∧ (M , ∗) ∧ (S,Full)

∧(X ,Low)→ (Acceleration,Good);

des[x3]C → des(D2) : (P, ∗) ∧ (M , ∗) ∧ (S,Compact)

∧(X ,Low)→ (Acceleration,Poor);

des[x6]C → des(D1) : (P,Low) ∧ (M ,High) ∧ (S,Full)

∧(X , ∗)→ (Acceleration,Good).

Case 4:Neither generating a new tolerance class nor a new
decision class.

In this case, U ′/TR(C) = {TC (x1),TC (x2), . . . ,
T ′C (xp), . . . , TC (xm),TC (xm+1)}, where T

′
C (xp) = TC (xp) ∪

{x} and TC (xm+1) = {x} ∪ {xp}(1 ≤ p ≤ m), In addition,
U ′/IND(D) = {D1,D2, . . . ,D′q, . . . ,Dn}, where D

′
q = Dq ∪

{x} (1 ≤ q ≤ n).
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Acc(t+1)(D|U ) =



Acc(D1|TC (x1)) . . . Acc(Dq|TC (x1)) . . . Acc(Dn|TC (x1))
Acc(D1|TC (x2)) . . . Acc(Dq|TC (x2)) . . . Acc(Dn|TC (x2))

. . . . . . . . . . . . . . .
|TC (xp) ∩ D1|

|TC (xp)| + 1
. . .

|TC (xp) ∩ Dq|
|TC (xp)| + 1

. . .
|TC (xp) ∩ Dn|
|TC (xp)| + 1

. . . . . . . . . . . . . . .

Acc(D1|TC (xm)) . . . Acc(Dq|TC (xm)) . . . Acc(Dn|TC (xm))
|TC (xm+1) ∩ D1|

|TC (xm+1)|
. . .

|TC (xm+1) ∩ Dq|
|C (xm+1)|

. . .
|TC (xm+1) ∩ Dn|
|TC (xm+1)|



Cov(t+1)(D|U ) =



Cov(D1|TC (x1)) . . .
|TC (x1) ∩ Dq|
|Dq| + 1

. . . Cov(Dn|TC (x1))

Cov(D1|TC (x2)) . . .
|TC (x2) ∩ Dq|
|Dq| + 1

. . . Cov(Dn|TC (x2))

. . . . . . . . .

Cov(D1|TC (xp)) . . .
|TC (xp) ∩ Dq|
|Dq| + 1

. . . Cov(Dn|TC (xp))

. . . . . . . . . . . .

Cov(D1|TC (xm)) . . . Cov(Dq|TC (xm)) . . . Cov(Dn|TC (xm))
|TC (xm+1) ∩ D1|

|D1|
. . .
|TC (xm+1) ∩ Dq|
|Dq| + 1

. . .
|TC (xm+1) ∩ Dn|

|Dn|



At this time t + 1,Acc(t+1)(D′q|T
′
C (xp)) =

|TC (xp)∩Dq|
|TC (xp)|+1

,

Cov(t+1)(D′q|T
′
C (xp)) =

|TC (xp)∩Dq|
|Dq|+1

;

Acc(t+1)(D′j|T
′
C (xp)) =

|TC (xp) ∩ Dj|
|TC (xp)| + 1

,

Cov(t+1)(D′j|T
′
C (xp)) = Cov(t)(Dj|TC (xp)), (1≤ j≤n).

Acc(t+1)(D′j|T
′
C (xi)) = Acc(t)(Dj|TC (xi)) and

Cov(t+1)(D′j|T
′
C (xi)) = Cov(t)(Dj|TC (xi)),

1 ≤ i ≤ m, i 6= p, 1 ≤ j ≤ n.

Acc(t+1)(D′q|T
′
C (xi)) = Acc(t)(Dq|TC (xi))

and Cov(t+1)(D′q|T
′
C (xi)) =

|TC (xi) ∩ Dq|
|Dq| + 1

,

(1 ≤ i ≤ m), i 6= p.

Acc(t+1)(D′j|TC (xm+1)) =
|TC (xm+1) ∩ Dj|
|TC (xm+1)|

,

Cov(t+1)(D′j|TC (xm+1)) =
|TC (xm+1) ∩ Dj|

|Dj|
, (1 ≤ j ≤ n).

The new accuracy matrix is updated by, Acc(t+1)(D|U ), as
shown at the top of this page, and the new coverage matrix
is updated by, Cov(t+1)(D|U ), as shown at the top of this
page.

Let Table 1 be the original incomplete decision system,
a new object x = {High, High, Full, High, Excellent} is
added into the system. The updating computations of the new
accuracy and coverage for each object are shown as follows.

When the new object x is added into the system,
the changed tolerance class T ′C (x4) = {x, x4, x5},

T ′C (x5) = {x, x4, x5, x6} and TC (x7) = {x, x4, x5}, and the
changed decision class D′3 = {x, x5}. As analyzed above,
we need to compute the accuracy of the new object Acc(t+1)

(D′3|TC (x7)) =
|{x,x5}|
|{x,x4,x5}|

=
2
3 , Acc

(t+1)(D′1|TC (x7)) =
|{x4}|
|{x,x4,x5}|

=
1
3 , Acc

(t+1)(D′2|TC (x7)) = 0, Acc(t+1)(D′1|
T ′C (x4)) =

1
3 , Acc

(t+1)(D′2|T
′
C (x4)) = 0, Acc(t+1)(D′3|

T ′C (x4)) =
2
3 , Acc

(t+1)(D′1|T
′
C (x5)) =

|{x4,x6}|
3+1 =

1
2 ,

Acc(t+1)(D′2|T
′
C (x5)) = 0, Acc(t+1)(D′3|T

′
C (x5)) =

|{x,x5}|
3+1 =

1
2 . The computations of accuracy for other objects are
unchanged. In addition, the coverage of the new object
Cov(t+1)(D′3|TC (x7)) =

2
|D3|+1

= 1, Cov(t+1)(D′3|TC (x1)) =
|TC (x1)∩D3|
|D3|+1

= 0, Cov(t+1)(D′3|TC (x2)) =
|TC (x2)∩D3|
|D3|+1

= 0,

Cov(t+1)(D′3|TC (x3)) =
|TC (x3)∩D3|
|D3|+1

= 0, Cov(t+1)(D′3|

TC (x4)) =
|TC (x4)∩D3|
|D3|+1

= 1, Cov(t+1)(D′3|TC (x5)) =
|TC (x5)∩D3|
|D3|+1

= 1, Cov(t+1)(D′3|TC (x6)) =
|TC (x6)∩D3|
|D3|+1

=
1
2 and

Cov(t+1)(D′1|TC (x7)) =
1
4 , Cov

(t+1)(D′2|TC (x7)) = 0. The
computations of accuracy and coverage for other objects are
unchanged. The new accuracymatrix and the coveragematrix
at time t + 1 are shown, respectively, as follows.

Acc(t+1)(Dj|TC (xi)) =



1 0 0
1 0 0
0 1 0
1
3

0
2
3

1
2

0
1
2

2
3

0
1
3

1
3

0
2
3
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Cov(t+1)(Dj|TC (xi)) =



1
4

0 0

1
2

0 0

0 1 0
1
4

0 1

1
2

0 1

1
2

0
1
2

1
4

0 1


By the new accuracy matrix and new coverage matrix, one

can obtain:

Acc(t+1)(D′1|T
′
C (x2)) = 1 ≥ 0.6,

Cov(t+1)(D′1|T
′
C (x2)) =

1
2
≥ 0.4;

Acc(t+1)(D′2|T
′
C (x3)) = 1 ≥ 0.6,

Cov(t+1)(D′2|T
′
C (x3)) = 1 ≥ 0.4;

Acc(t+1)(D′3|T
′
C (x4)) =

2
3
≥ 0.6,

Cov(t+1)(D′3|T
′
C (x4)) = 1 ≥ 0.4;

Acc(t+1)(D′1|T
′
C (x6)) =

2
3
≥ 0.6,

Cov(t+1)(D′1|T
′
C (x6)) =

1
2
≥ 0.4;

Acc(t+1)(D′3|TC (x7)) =
2
3
≥ 0.6,

Cov(t+1)(D′3|TC (x7)) = 1 ≥ 0.4;

we can find out the interesting knowledge as follows:

des[x2]C → des(D1) : (P,Low) ∧ (M , ∗) ∧ (S,Full)

∧(X ,Low)→ (Acceleration,Good);

des[x3]C → des(D2) : (P, ∗) ∧ (M , ∗) ∧ (S,Compact)

∧(X ,Low)→ (Acceleration,Poor);

des[x4]C → des(D′3) : (P,High) ∧ (M , ∗) ∧ (S,Full)

∧(X ,High)→ (Acceleration,Excellent);

des[x6]C → des(D1) : (P,Low) ∧ (M ,High) ∧ (S,Full)

∧(X , ∗)→ (Acceleration,Good);

des[x]C → des(D3) : (P,High) ∧ (M ,High) ∧ (S,Full)

∧(X ,High)→ (Acceleration,Excellent).

Based on the aforementioned results, the new accuracy
matrix and coverage matrix can be obtained by computing
the changed tolerance class. If adding a new object, the key
problem of computing the new accuracy matrix and coverage
matrix is to update the tolerance class according to four kinds
of cases. Cases (1)-(4) presents four updating formulas of
the accuracy matrix and coverage matrix, which plays in
important role in the knowledge acquisition process.

FIGURE 2. The process of incremental knowledge acquisition algorithm
for data with missing values at the arrival of new objects.

B. INCREMENTAL KNOWLEDGE ACQUISITION
ALGORITHM FOR DATA WITH MISSING VALUES
AT THE ARRIVAL OF NEW OBJECTS
In the following, based on the incremental computations
of the new accuracy matrix and coverage matrix for the
incremental objects in incomplete data, we will develop an
incremental knowledge acquisition algorithm to acquire the
new interesting knowledge. The flowchart of the proposed
knowledge acquisition algorithm is shown in Fig.2.

According to Fig.2, the detailed description of the knowl-
edge acquisition algorithm is given as follows. The proposed
algorithm IKAC is mainly made up of three parts: 1) compute
the tolerance classes and decision classes of the original
incomplete decision system; 2) incrementally update the new
accuracy matrix and new coverage matrix according to the
discussed four cases; 3) induce the interesting knowledge
according to two measures. The intelligence of the pro-
posed knowledge acquisition algorithm mainly stems from
the updating computations of the new accuracy matrix and
new coverage matrix. The updating strategy of the accuracy
matrix and coverage matrix directly affect the computational
efficiency of the knowledge acquisition.

As Algorithm IKAC shown, it mainly includes the follow-
ing process: Steps 2-3 are to compute the tolerance classes
and decision classes of the original incomplete decision sys-
tem, respectively; Steps 5-16 are to determine the new object
is in which case, are to update the new accuracy matrix
and new coverage matrix incrementally according to the dis-
cussed four cases in the above subsection 5.1. Steps 17-19
are to induce the interesting knowledge at time t + 1. accord-
ing to two parameters α and β. When a new object adds
into the incomplete decision system, it can be known that
we only need to compute the changed tolerance classes for
updating the local computations of the new accuracy matrix
and coverage matrix which is more efficient than that of
computing two matrices from the scratch. Therefore, this
incremental updating knowledge acquisition algorithm is an
effective way to maintain knowledge dynamically, to avoid
unnecessary computations by utilizing the previous results.
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Algorithm 2 Incremental Knowledge Acquisition Algo-
rithm for Data With Missing Values at the Arrival of New
Objects (Algorithm IKAC)
Input: An incomplete decision system IDS =< U ,C ∪
D,V , f >, whereU = {x1, x2, . . . , xm}, the original accuracy
matrixAcc(t)(D|U ), the original coveragematrixCov(t)(D|U )
at time t , a new object x at time t + 1, two thresholds α
and β;
Output: Interesting knowledge at time t and t + 1,
respectively.
Begin

1) % Compute the new accuracy matrix and new coverage
matrix and induce the interesting knowledge at time
t + 1

2) Compute the tolerance classes U/TR(C) =

{TC (x1),TC (x2), . . . , TC (xm)} by Theorem 1;
3) Compute decision classes U/IND(D) = {D1,

D2, . . . ,Dn};
4) Let xm+1 = x and U ′ = U ∪ {x} = {x1, x2, . . . ,

xm, xm+1};
5) for i = 1 to m do
6) for j = 1 to n do
7) if x ∈ TC (xi) == false
8) if x ∈ Dj == false then
9) obtain a new tolerance class TC (xm+1) =
{x} and a new decision class Dn+1 = [x]D = {x},
do Case 1, update Acc(t+1)(D|U ) and Cov(t+1)(D|U )
incrementally;

10) else
11) obtain a new tolerance class TC (xm+1) =
{x}, and the changed decision class Dj = Dj ∪ [x],
do Case 2, update Acc(t+1)(D|U ) and Cov(t+1)(D|U )
incrementally;

12) else // x ∈ TC (xi) == true
13) if x ∈ Dj == false then
14) obtain the changed tolerance class TC (xi) =

TC (xi) ∪ {x}, TC (xm+1) = {x} ∪ {xi}, and a new
decision class Dn+1 = [x]D = {x}, do Case 3, update
Acc(t+1)(D|U ) and Cov(t+1)(D|U ) incrementally;

15) else
16) obtain the changed tolerance class TC (xi) =

TC (xi) ∪ {x}, TC (xm+1) = {x} ∪ {xi}, and the changed
decision class Dj = Dj ∪ [x], do Case 4, update
Acc(t+1)(D|U ) and Cov(t+1)(D|U ) incrementally;

17) for i = 1 to m+ 1 do
18) for j = 1 to n+ 1 do
19) if Acc(t+1)(Dj|TC (xi)) ≥ α and

Cov(t+1)(Dj|TC (xi)) ≥ β, output the interesting
knowledge des[xi]C → des(Dj) at time t + 1;

End

We illustrate the proposed algorithm IKAC using the
incomplete decision system shown in Table 1, Table 1 is taken
as the original incomplete decision system. Now, a new object

x is added into the system, where x = {High, High, Full,
High, Excellent} is added into the system. Suppose α = 0.6,
β = 0.4, the new knowledge acquisition process is shown
as follows. The original accuracy matrix and coverage matrix
are shown as follows:

Acc(t)(Dj|TC (xi)) =



1 0 0
1 0 0
0 1 0
1
3

0
2
3

1
2

0
1
2

2
3

0
1
3



Cov(t)(Dj|TC (xi)) =



1
4

0 0

1
2

0 0

0 1 0
1
4

0
1
2

1
2

0
1
2

1
2

0
1
2


As that in Example 1 for Table 1, the tolerance classes and

decision classes of the original incomplete decision system
are shown as follows: TC (x1) = {x1}, TC (x2) = {x2, x6},
TC (x3) = {x3}, TC (x4) = {x4, x5}, TC (x5) = {x4, x5, x6},
TC (x6) = {x2, x5, x6}; D1 = {x1, x2, x4, x6}, D2 = {x3},
D3 = {x5}. When x7 is added into the system, U ′ =
{x1, x2, x3, x4, x5, x6, x7}, since x ∈ TC (xi) == true (i =
4, 5) and x ∈ Dj == true (j = 3), one can obtain that
the changed tolerance class TC (x4) = {x, x4, x5}, TC (x5) =
{x, x4, x5, x6} and TC (x7) = {x, x4, x5}, and the changed
decision class D3 = {x, x5}. Do Case 4, we only need to
update the last and changed row of the original accuracy
matrix, and the last row and changed column of the original
coverage matrix. Then, the new accuracy matrix and new
coverage matrix are updated as follows:

Acc(t+1)(D|U ) =



1 0 0
1 0 0
0 1 0
1
3

0
2
3

1
2

0
1
2

2
3

0
1
3

1
3

0
2
3
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Cov(t+1)(D|U ) =



1
4

0 0

1
2

0 0

0 1 0
1
4

0 1

1
2

0 1

1
2

0
1
2

1
4

0 1


By the new accuracy matrix and new coverage matrix, one

can obtain:

Acc(t+1)(D1|TC (x2)) = 1 ≥ 0.6,

Cov(t+1)(D1|TC (x2)) =
1
2
≥ 0.4;

Acc(t+1)(D3|TC (x4)) =
2
3
≥ 0.6,

Cov(t+1)(D3|TC (x4)) =
1
2
≥ 0.4;

Acc(t+1)(D1|TC (x6)) =
2
3
≥ 0.6,

Cov(t+1)(D1|TC (x6)) =
1
2
≥ 0.4;

Acc(t+1)(D3|TC (x7)) =
2
3
≥ 0.6,

Cov(t+1)(D3|TC (x7)) = 1 ≥ 0.4;

we can find out the interesting knowledge as follows:

des[x2]C → des(D1) : (P,Low) ∧ (M , ∗) ∧ (S,Full)

∧(X ,Low)→ (Acceleration,Good);

des[x4]C → des(D3) : (P,High) ∧ (M , ∗) ∧ (S,Full)

∧(X ,High)→ (Acceleration,Excellent);

des[x6]C → des(D1) : (P,Low) ∧ (M ,High) ∧ (S,Full)

∧(X , ∗)→ (Acceleration,Good);

des[x]C → des(D3) : (P,High) ∧ (M ,High) ∧ (S,Full)

∧(X ,High)→ (Acceleration,Excellent).

VI. EXPERIMENTAL ANALYSIS
To test the performance of the proposed knowledge acquisi-
tion algorithm, we conduct some experiments on a PC with
Windows 7, Intel (R) Core(TM) Duo CPU 2.93 GHz and
4GBmemory. Algorithms are coded in C++ and the software
being used is Microsoft Visual Studio 2017.

It is obvious that different thresholds of accuracy and cov-
erage lead to different knowledge acquired. Generally speak-
ing, if thresholds vary, the acquired interesting knowledge
also change. Such thresholds can be set by users or domain
experts [26], [27], [30]. As the conclusions obtained in [26],
the accuracy value of interesting knowledge is no less than
0.5, α is in [0.5, 1]. In the following, the parameters used

TABLE 2. A description of eight data sets.

for defining the interesting knowledge are fixed as follows:
α = 0.6, β = 0.4.
We perform the experiments on eight real UCI data sets,

which are downloaded from UCI Repository of machine
learning databases in [35]. The characteristics of eight data
sets are described in Table 2. For the complete data sets,
we randomly change 5% of the known features values from
each original data set into missing values to create incom-
plete data sets. For the numerical features, we use the data
tool Rosetta (http://www.lcb.uu.se/tools/rosetta/index.php) to
discretize them. For each data set shown in Table 2, 60% of
the objects are taken as the original incomplete data sets, and
the remaining 40% of the objects are taken as adding objects.

In what follows, to show the efficiency of the proposed
algorithm, we choose the non-incremental knowledge acqui-
sition algorithm NKAC as the reference algorithm. For the
non-incremental algorithm NKAC, we view the dynamic
incomplete data with the variation of object set as abso-
lutely new data without using the incremental strategy. The
accuracy matrix and the coverage matrix is computed from
the scratch. The main difference between the incremental
algorithm and non-incremental algorithm is the computations
of accuracy matrix and coverage matrix.

TABLE 3. Comparison of the computational time between IKAC and
NKAC.

When new objects are added into the incomplete data set,
the knowledge acquisition algorithms NKAC and IKAC can
induce the interesting knowledge from the dynamic data set.
Table 3 records the computational time of two algorithms
NKAC and IKAC for inducing the interesting knowledge.
The computational time is expressed as seconds.
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FIGURE 3. The computational time of Algorithms IKAC and NKAC versus different data sets with the arrival of incremental
objects.

All the results reported in Table 3 establish the fact that the
computational time of two algorithms increases as the size of
data sets increases. However, the proposed algorithm IKAC

has less time thanNKAC to extract the interesting knowledge.
For example, for the Car data set, NKAC takes 514.0812s
to extract the decision rules. In contrast, IKAC takes about
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73.2940s to find the decision rules. In addition, take the Chess
kr-vs-kp data set as an example, IKAC needs 264.8136s to
find the interesting knowledge, while the algorithm NKAC
use more than ten times than that of IKAC. The similar
behaviors also hold for other data sets. The advantage of
IKAC over NKAC is clear, particularly for large-scale data
sets. This is expected since the proposed algorithm uses the
original data results upon the arrival of new objects. The non-
incremental attribute reduction algorithm NKAC has to be
run from scratch when new objects arrive so that it is often
computationally time consuming and even for data sets with
large objects.

In addition, to validate the computational efficiency of
the proposed algorithm, for each data set shown in Table 6,
60% of the objects are selected as the original incomplete
data sets, and the remaining 40% of the objects are divided
into eight parts of equal size. The first part is regarded as
the first incremental dataset arriving, the combination of the
first incremental object set and the second part is viewed
as the second incremental object set, the combination of
the second incremental object set and the third part is viewed
as the third incremental object set, . . . ., and the combinative of
all eight parts is viewed as the eighth incremental object set.
With the increase of data size, the experimental results of two
knowledge acquisition algorithms are shown in Fig.3. This
figure displays more detailed change trend of two algorithms
in the computational time with the increasing size of the
data set. In Fig.3, the x-coordinate pertains to the ith incre-
mental data set arriving, while the y-coordinate concerns the
computational time. The computational time is expressed in
seconds.

From Fig.3, we can see that the computational time of
two algorithms increases as the increasing size of data sets.
However, Algorithm IKAC is faster than NKAC on knowl-
edge updating in all eight data sets. Take the data set Credit
as an example, the computational time of Algorithm IKAC
is about 14.8s at the fourth data set, while NKAC takes
about 88.5s to extract the rule at the fourth data set. The
main reason attributed to the fact that IKAC can induce the
interesting knowledge at a time. The accuracy matrix and
coverage matrix in the algorithm IKAC avoid recalculating
from the scratch, which only compute the changed tolerance
classes using the previous results. However, NKAC retrains
the dynamic data set as a new one, which needs to be executed
repeatedly to induce the interesting knowledge. The effect is
more obvious for large-scale data sets. For another example,
for the data set Vehicle, NKAC takes about 448s to extract
the rules for finding the knowledge at the third data set, while
IKAC takes about 53.2s to induce the interesting knowledge.
On the whole, the experimental results indicate that in com-
parison with the non-incremental algorithm NKAC, the pro-
posed algorithm IKAC can induce the interesting knowledge
in much shorter time from data with missing values at the
arrival of new objects, especially for massive data sets.

Based on the aforementioned experimental results, we can
conclude that the proposed algorithm gives an efficient way

to knowledge acquisition from data with missing values at the
arrival of new objects.

VII. CONCLUSION
Knowledge acquisition is to extract useful knowledge from
the solicited domain so as to construct a knowledge-based
system. However, knowledge acquisition from the data with
missing values is a challenging problem, especially for
dynamic environment. In this paper, we first give a fast
approach for computing tolerance classes in the incomplete
data, which play an important role in the knowledge acqui-
sition process. Then, we develop an incremental knowledge
acquisition algorithm to update the original knowledge
when a single object adds into the incomplete decision
system. Applying this algorithm, the new knowledge can
be quickly obtained, not recomputing the knowledge from
the very beginning, such that the computational efficiency
is improved. Finally, experimental results demonstrate the
effectiveness of the proposed algorithm. Our future research
work will focus on the proposed algorithm can be extended
to other generalized granular computing models.

REFERENCES
[1] J. B. Zhang, T. R. Li, and H. M. Chen, ‘‘Composite rough sets for dynamic

data mining,’’ Inf. Sci., vol. 257, pp. 81–100, Feb. 2014
[2] L. Feng, T. R. Li, D. Ruan, and S. R. Gou, ‘‘A vague-rough set approach

for uncertain knowledge acquisition,’’ Knowl.-Based Syst., vol. 24, no. 6,
pp. 837–843, Aug. 2011.

[3] S. Trabelsi, Z. Elouedi, and P. Lingras, ‘‘Classification systems based on
rough sets under the belief function framework,’’ Int. J. Approx. Reasoning,
vol. 52, no. 9, pp. 1409–1432, Dec. 2011.

[4] S.-H. Lin, C.-C. Huang, and Z.-X. Che, ‘‘Rule induction for hierarchical
attributes using a rough set for the selection of a green fleet,’’ Appl. Soft
Comput., vol. 37, pp. 456–466, Dec. 2015.

[5] X. J. Xie and X. L. Qin, ‘‘A novel incremental attribute reduction approach
for dynamic incomplete decision systems,’’ Int. J. Approx. Reasoning,
vol. 93, pp. 443–462, Feb. 2018.

[6] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data.
Boston, MA, USA: Kluwer, 1991.

[7] Z. Pawlak and A. Skowron, ‘‘Rough sets and Boolean reasoning,’’ Inf. Sci.,
vol. 177, no. 1, pp. 41–73, Jan. 2007.

[8] M. Slota, J. Leite, and T. Swift, ‘‘On updates of hybrid knowledge bases
composed of ontologies and rules,’’ Artif. Intell., vol. 229, pp. 33–104,
Dec. 2015

[9] L. Y. Zhang, W. Lu, X. D. Liu, W. Pedrycz, and C. Q. Zhong, ‘‘Fuzzy
C-Means clustering of incomplete data based on probabilistic information
granules of missing values,’’ Knowl.-Based Syst., vol. 99, pp. 51–70,
May 2016.

[10] C. Luo, T. R. Li, and Y. Yao, ‘‘Dynamic probabilistic rough sets with
incomplete data,’’ Inf. Sci., vol. 417, pp. 39–54, Nov. 2017

[11] M. Kryszkiewicz, ‘‘Rules in incomplete information systems,’’ Inf. Sci.,
vol. 113, nos. 3–4, pp. 271–292, Feb. 1999

[12] W. H. Shu and H. Shen, ‘‘Multi-criteria feature selection on cost-sensitive
data with missing values,’’ Pattern Recognit., vol. 51, pp. 268–280,
Mar. 2016

[13] W. B. Qian and W. H. Shu, ‘‘Mutual information criterion for feature
selection from incomplete data,’’ Neurocomputing, vol. 168, pp. 210–220,
Nov. 2015

[14] P. G. Clark, J. W. Grzymala-Busse, and W. Rzasa, ‘‘Consistency of incom-
plete data,’’ Inf. Sci., vol. 322, pp. 197–222, Nov. 2015.

[15] Y. Leung, W.-Z. Wu, andW.-X. Zhang, ‘‘Knowledge acquisition in incom-
plete information systems: A rough set approach,’’ Eur. J. Oper. Res.,
vol. 168, no. 1, pp. 164–180, Jan. 2006.

[16] J. Li, C. Mei, and Y. Lv, ‘‘Incomplete decision contexts: Approximate
concept construction, rule acquisition and knowledge reduction,’’ Int.
J. Approx. Reasoning, vol. 54, no. 1, pp. 149–165, Jan. 2013.

VOLUME 7, 2019 54877



W. Shu et al.: Knowledge Acquisition Approach Based on Incremental Objects

[17] M.-W. Shao, Y. Leung, and W.-Z. Wu, ‘‘Rule acquisition and complexity
reduction in formal decision contexts,’’ Int. J. Approx. Reasoning, vol. 55,
no. 1, pp. 259–274, Jan. 2014.

[18] F. Shi, S. Sun, and J. Xu, ‘‘Employing rough sets and association
rule mining in KANSEI knowledge extraction,’’ Inf. Sci., vol. 196,
pp. 118–128, Aug. 2012.

[19] Y. Du, Q. Hu, P. Zhu, and P. Ma, ‘‘Rule learning for classification
based on neighborhood covering reduction,’’ Inf. Sci., vol. 181, no. 24,
pp. 5457–5467, Dec. 2011.

[20] A. Tan, J. J. Li, G. P. Lin, and Y. J. Lin, ‘‘Fast approach to knowledge
acquisition in covering information systems using matrix operations,’’
Knowl.-Based Syst., vol. 79, pp. 90–98, May 2015.

[21] R. Deb, and A. W.-C. Liew, ‘‘Missing value imputation for the analysis
of incomplete traffic accident data,’’ Inf. Sci., vol. 339, pp. 274–289,
Apr. 2016.

[22] R. P. Prado, S. G. Galán, J. E. M. Exposito, and A. J. Yuste, ‘‘Knowl-
edge acquisition in fuzzy-rule-based systems with particle-swarm opti-
mization,’’ IEEE Trans. Fuzzy Syst., vol. 18, no. 6, pp. 1083–1097,
Dec. 2010.

[23] J. H. Dai, H. W. Tian, W. Wang, and L. Liu, ‘‘Decision rule mining using
classification consistency rate,’’ Knowl.-Based Syst., vol. 43, pp. 95–102,
May 2013.

[24] J. H. Li, Y. Ren, C. L. Mei, Y. H. Qian, and X. B. Yang, ‘‘A comparative
study of multigranulation rough sets and concept lattices via rule acquisi-
tion,’’ Knowl.-Based Syst., vol. 91, pp. 152–164, Jan. 2016.

[25] J. B. Zhang, J.-S. Wong, T. R. Li, and Y. Pan, ‘‘A comparison of parallel
large-scale knowledge acquisition using rough set theory on different
MapReduce runtime systems,’’ Int. J. Approx. Reasoning, vol. 55, no. 3,
pp. 896–907, Mar. 2014.

[26] D. Liu, T. Li, D. Ruan, andW. Zou, ‘‘An incremental approach for inducing
knowledge from dynamic information systems,’’ Fundam. Inform., vol. 94,
no. 2, pp. 245–260, Apr. 2009.

[27] Y. Fan, C.-C. Chern, and C.-C. Huang, ‘‘Rule induction based on an
incremental rough set,’’ in Proc. IEEE Int. Joint Conf. Neural Netw.,
Jun. 2008, pp. 1207–1214.

[28] X. Zhang, C. L. Mei, D. G. Chen, and J. H. Li, ‘‘Multi-confidence
rule acquisition and confidence-preserved attribute reduction in interval-
valued decision systems,’’ Int. J. Approx. Reasoning, vol. 55, no. 8,
pp. 1787–1804, 2014.

[29] S. Petrov, ‘‘Dynamics properties of knowledge acquisition,’’ Cogn. Syst.
Res., vol. 47, pp. 12–15, Jan. 2018.

[30] W.-Z. Wu, Y. H. Qian, T.-J. Li, and S.-M. Gu, ‘‘On rule acquisition in
incomplete multi-scale decision tables,’’ Inf. Sci., vol. 378, pp. 282–302,
Feb. 2017.

[31] M. Ali et al., ‘‘A data-driven knowledge acquisition system: An end-to-
end knowledge engineering process for generating production rules,’’ IEEE
Access, vol. 6, pp. 15587–15607, 2018.

[32] F. Ganz, P. Barnaghi, and F. Carrez, ‘‘Automated semantic knowledge
acquisition from sensor data,’’ IEEE Syst. J., vol. 10, no. 3, pp. 1214–1225,
Sep. 2016.

[33] W. H. Shu and H. Shen, ‘‘Incremental feature selection based on rough
set in dynamic incomplete data,’’ Pattern Recognit., vol. 47, no. 12,
pp. 3890–3906, Dec. 2014.

[34] K.-P. Lin, K.-C. Hung, and C.-L. Lin, ‘‘Rule generation based on
novel kernel intuitionistic fuzzy rough set model,’’ IEEE Access, vol. 6,
pp. 11953–11958, 2018.

[35] UCI Machine Learning Repository. [Online]. Availble: http://www.
ics.uci.edu/~mlearn/MLRepository.html

WENHAO SHU received the M.S. degree in com-
puter science from the Key Laboratory of Data
Processing and Intelligent Computing, Guangxi
Normal University, in 2011, and the Ph.D. degree
in computer science from the School of Com-
puter and Information Technology, Beijing Jiao-
tong University, China, in 2015. She is currently a
Lecturer with the School of Information Engineer-
ing, East China Jiaotong University, China. Her
main research interests include knowledge discov-

ery, granular computing, and data mining. She has authored some inter-
national journal papers in her research field, such as Pattern Recognition,
Knowledge-Based Systems, and the International Journal of Approximate
Reasoning.

WENBIN QIAN received the M.S. degree in com-
puter science from the Key Laboratory of Data
Processing and Intelligent Computing, Guangxi
Normal University, in 2010, and the Ph.D. degree
in computer science from the School of Computer
and Communication Engineering, University of
Science and Technology Beijing, China, in 2014.
He is currently an Associate Professor with the
School of Software, Jiangxi Agricultural Univer-
sity, China. His current research interests include

granular computing and machine learning. He has published more than
30 referred journal and conference papers in these areas.

YONGHONG XIE received the M.S. and Ph.D.
degrees in computer science from the School of
Computer and Communication Engineering, Uni-
versity of Science and Technology Beijing, China,
in 2001 and 2005, respectively. She is currently
an Associate Professor with the Beijing Key Lab-
oratory of Knowledge Engineering for Materials
Science, and the School of Computer and Commu-
nication Engineering, University of Science and
Technology Beijing. Her current research interests
include data mining and intelligent systems.

54878 VOLUME 7, 2019


	INTRODUCTION
	PRELIMINARIES
	COMPUTATION OF TOLERANCE CLASSES FOR DATA WITH MISSING VALUES
	THE NON-INCREMENTAL KNOWLEDGE ACQUISITION APPROACH FOR DATA WITH MISSING VALUES AT THE ARRIVAL OF NEW OBJECTS
	INCREMENTAL KNOWLEDGE ACQUISITION ALGORITHM FOR DATA WITH MISSING VALUES AT THE ARRIVAL OF NEW OBJECTS
	INCREMENTAL COMPUTATIONS OF THE NEW ACCURACY MATRIX AND COVERAGE MATRIX
	INCREMENTAL KNOWLEDGE ACQUISITION ALGORITHM FOR DATA WITH MISSING VALUES AT THE ARRIVAL OF NEW OBJECTS

	EXPERIMENTAL ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	WENHAO SHU
	WENBIN QIAN
	YONGHONG XIE


