
Received April 2, 2019, accepted April 23, 2019, date of publication May 1, 2019, date of current version May 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2913439

Adversarial Examples for CNN-Based
Malware Detectors
BINGCAI CHEN 1, 2, (Member, IEEE), ZHONGRU REN 1, CHAO YU 1, IFTIKHAR HUSSAIN3,
AND JINTAO LIU1
1School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
2School of Computer Science and Technology, Xinjiang Normal University, Urumqi 830054, China
3School of Computer Science and Technology, University of Science and Technology of China, Hefei 230000, China

Corresponding author: Zhongru Ren (renzhongru@mail.dlut.edu.cn) and Chao Yu (cy496@dlut.edu.cn)

This work was supported by the Natural Science Foundation of China under Grant 61771089 and Grant 61502072.

ABSTRACT The convolutional neural network (CNN)-based models have achieved tremendous break-
throughs in many end-to-end applications, such as image identification, text classification, and speech
recognition. By replicating these successes to the field of malware detection, several CNN-based malware
detectors have achieved encouraging performance without significant feature engineering effort in recent
years. Unfortunately, by analyzing their robustness using gradient-based algorithms, several studies have
shown that some of these malware detectors are vulnerable to the evasion attacks (also known as adversarial
examples). However, the existing attack methods can only achieve quite low attack success rates. In this
paper, we propose two novel white-box methods and one novel black-box method to attack a recently
proposed malware detector. By incorporating the gradient-based algorithm, one of our white-box methods
can achieve a success rate of over 99%. Without prior knowledge of the exact structure and internal
parameters of the detector, the proposed black-box method can also achieve a success rate of over 70%.
In addition, we consider adversarial training as a defensive mechanism in order to resist evasion attacks.
While proving the effectiveness of adversarial training, we also analyze its security risk, that is, a large
number of adversarial examples can poison the training dataset of the detector. Therefore, we propose a
pre-detection mechanism to reject adversarial examples. The experiments show that this mechanism can
effectively improve the safety and efficiency of malware detection.

INDEX TERMS Adversarial examples, CNN, malware detection.

I. INTRODUCTION
The detection of malicious software (malware) has been play-
ing an increasingly important role in cyber security. In recent
years, the number of malware and its variants has shown
a trend of explosive growth [1]. For example, the notorious
WannaCry ransom virus, which caused huge losses world-
wide in May 2017, has generated a number of variants that
have been active until now.

Anti-virus products provide some protection against mal-
ware. Traditional malware detection methods, such as
signature-based methods and heuristic-based methods, have
been widely used by these anti-virus products untill now [2].
Typically, signature-based methods are primarily used to
identify the known malware, so these methods can be
easily bypassed by malware writers using anti-anti-virus

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

techniques (such as encryption, packing, obfuscation, and
polymorphism) [3]. Heuristic-based methods can detect par-
tially unknown malware, but these methods rely on the
rules/patterns constructed by domain experts, which are often
error-prone and time consuming. Therefore, traditional mal-
ware detection methods cannot adapt to rapidly growing
malware and a large number of variants. Machine learning
algorithms provide an opportunity to solve this issue by gen-
eralizing known malware to new ones in an efficient way [4].
In the last decades, a great number of machine learning
based methods have been proposed in the literature [5]–[8].
However, most of thesemethods require substantial effort and
domain expertise in creating and identifying important fea-
tures, calling for new end-to-end malware detection methods
without significant manual feature engineering.

As a widely used machine learning algorithm,
Convolutional Neural Networks (CNN) excels in many
end-to-end applications, such as image identification [9],

54360
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-7158-6537
https://orcid.org/0000-0002-3850-3493
https://orcid.org/0000-0002-4371-3663

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

text classification [10], and speech recognition [11], because
of its excellent feature learning capabilities. By replicating
these successes to the field of malware detection, in recent
years, several CNN-based malware models have been pro-
posed, achieving high detection accuracy without domain
knowledge [12], [13].

However, it has been shown that most machine learning
based models, including state-of-the-art CNN based models,
are vulnerable to evasion attacks, also known as adversar-
ial examples (AEs) [14]. AEs are a class of inputs that are
derived from legitimate inputs by adding carefully chosen
perturbations such that the model can be induced to out-
put erroneous predictions. The majority of existing stud-
ies mainly focus on image classification models [15]–[17],
where attackers add subtle modifications that are beyond
human recognition to the input image pixels so as to deceive
the victimmodels. Similarly, in the domain of malware detec-
tion, an AE is a carefully modified binary file that is derived
from existing malware but misclassified as benign to avoid
detection. Although the use of CNN to detect malware is well
known, the emergence of AEs makes the existing CNN-based
malware detectors no longer robust. Thus, it is highly urgent
to analyze the vulnerability of existing malware detectors
and propose effective defensive mechanisms to improve the
robustness of these detectors.

In this paper, we extensively investigate the vulnerability
of the CNN-based malware detectors, specifically a recently
proposed detector Malconv [12]. Most attack methods in pre-
vious literature [18]–[20] against Malconv appended pertur-
bations to the end of malicious files for evading detection.
These perturbations were all initialized by random noises and
iteratively modified by gradient-based algorithms. However,
the ignorance of the importance of selecting initial perturba-
tions can lead to low attack success rates using these methods.
To address this issue, we propose two novel white-box attack
methods that use saliency vectors to select perturbations from
benign files. For an explicit illustration, we use a saliency
vector to represent the feature (benign or malicious) of each
region in an input file. These saliency vectors can be gener-
ated by using the Gradient-weighted Class Activation Map-
ping (Grad-CAM)method [21]. In addition, we also present a
black-box attack method for situations when attackers cannot
know the exact structure and internal parameters of the victim
model. By implementing these attack methods on a dataset of
Windows Portable Executable (PE) files, we demonstrate the
vulnerability of the CNN-based malware detector to evasion
attacks. At last, we also consider two defensive mechanisms,
including adversarial training and rejecting AEs, in order to
resist evasion attacks.

The major contribution of this paper is as follows:
1) We propose two novel white-box attack methods and

a novel black-box attack method against CNN-based mal-
ware detectors. When attacking a recently proposed malware
detector Malconv, one of our white-box methods, by incor-
porating the Fast Gradient Sign Method (FGSM) [15], can
achieve an attack success rate of over 99%, and our black-box

method can also achieve a success rate of over 70% without
knowing the detector details.

2) We consider adversarial training [14] as a defensive
mechanism in order to resist evasion attacks. While proving
the effectiveness of adversarial training, we also analyze its
security risk that the training dataset of the detector can be
poisoned by a large number of AEs. Therefore, we propose
a pre-detection mechanism, which can effectively reject the
AEs, to protect the malware detector.

The rest of this paper is organized as follows. Section II
presents background and related work. Section III describes
the methods of evasion attacks. Experiments for attacks are
given in Section IV. Defenses against these attacks are given
in Section V. Finally, we conclude the paper in Section VI.

II. RELATED WORK
Malware detection is gradually shifting from tradi-
tional rule-based approaches to machine learning based
methods [22]. In this section, we first give a short introduction
to machine learning based malware detection methods (II-A),
and then mainly focus on CNN-based malware detec-
tors (II-B). Subsequently, we discuss the methods of evasion
attacks in the field of image classification and malware
detection (II-C). Finally, we briefly review several defensive
mechanisms that have been proposed so far (II-D).

A. MACHINE LEARNING BASED MALWARE DETECTION
Most machine learning based malware detection methods
analyze the input binary files by man-made features. These
features, which are extracted by security experts according
to the specific format of the software, largely determine
the quality of detections. The software formats in different
operating systems are quite different. For example, the PE
format [23] is the standard format for Windows operating
system software. According to the way of feature extrac-
tion, these machine learning based methods can be mainly
divided into dynamic methods and static methods. Static
methods, including n-gram based, PE-header based, and
multi-features based methods etc. [5], [6], [24], are simple
and efficient, which extract features directly from the raw
bytes of static binary files. Dynamicmethods, such as system-
call-based and behavior-based methods [7], [8], have higher
detection accuracy but require more complex feature engi-
neering by running binary files. In terms of classification
algorithms, Support Vector Machine (SVM), Random Forest,
fully-connected Deep Neural Networks (DNN), Recurrent
Neural Network (RNN), and CNN are widely used in recent
years [25]–[29]. Since most machine learning based methods
require a lot of effort and domain expertise in manual feature
engineering, end-to-end malware detection methods, without
domain knowledge, have attracted much more attention in
recent years.

B. CNN-BASED MALWARE DETECTORS
Malware examples are generated by real attackers, who usu-
ally use encryption and obfuscation techniques for malware

VOLUME 7, 2019 54361

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

to combat static parsing and dynamic analyzing. In this
case, manual feature engineering requires significant effort
of experts with sufficient prior knowledge. As a typical
end-to-end algorithm, CNN has excellent feature learning
capabilities in many real-life applications, including mal-
ware detection. Recent studies by Raff et al. [12] and
Krc̆al et al. [13] have reported effective end-to-end mal-
ware detectors using the CNN algorithm. These detectors
analyze the raw bytes directly and discriminate malicious
and benign files by automatically extracting features. The
detector namedMalconv proposed by Raff et al. [12], using a
shallowCNN-basedmodel, could obtain a detection accuracy
of 95.9% when trained on a dataset with two million PE files.
Based on this, Krc̆al et al. then proposed a deeper model
which could achieve better performance than Malconv when
trained on a larger dataset. However, recent studies [18]–[20]
have demonstrated that these detectors are vulnerable to eva-
sion attacks, which calls for a more in-depth analysis to the
robustness of these detectors and motivates our work in this
paper.

C. EVASION ATTACKS
Evasion attacks use AEs to trick the model classifier into
outputting incorrect classification results. An AE x̃ is gen-
erated by adding iteratively modified perturbations η to a
correctly classified original file x. x̃ is called an effective
AE when the model outputs the incorrect classification result
for x̃. At present, the majority of existing evasion attackmeth-
ods, such as L-BFGS [14], Deepfool [30], FGSM [15], and
JSMA [16], focus on the field of image classification. The
L-BFGS and Deepfool reduce the AEs generation problem to
the process of searching for the optimal perturbation η. Their
complex optimization processes result in slow speed and high
computational costs. The advantage of FGSM and JSMA is
that they are easier to generate AEs when the model is very
sensitive to input changes. The difference is that FGSM can
generate AEs quickly when using larger perturbations, but
JSMA is much slower because it requires adversarial saliency
maps to be calculated at each iteration. Therefore, FGSM is
more widely used when generating AEs with large perturba-
tions. All these previous attack methods are white-box meth-
ods that require attackers to understand the exact structure and
parameters of the victim model. Without knowing the model
details, Papernot et al. later used the FGSM and JSMA to
implement black-box attacks against the DNN-based models
by training substitute models [17], [31].

Recently, generating malware AEs has also become a hot
topic in the security field. However, different from the image
AEs, there are more stringent restrictions on the genera-
tion of PE format malware AEs. A PE binary file is an
executable file that is characterized by an organizational
structure, and any changes to its bytes can cause its function-
ality to be corrupted or even make it impossible to execute.
So attacks that modify the raw bytes of PE files must maintain
the full syntax structure and functionality of the original
files. Anderson et al. [32] proposed a black-box attack

method, which uses a Reinforcement Learning (RL) algo-
rithm to generate AEs against a Gradient Boosted Decision
Tree (GBDT) based malware detector. Grosse et al. [33] pro-
posed a JSMA-based method against DNN-based malware
detection models. Hu and Tan [34] generated AEs against
DNN-based models by a black-box method based on Gener-
ative Adversarial Networks (GAN). Attack methods against
the CNN-based model Malconv have also been proposed by
Kolosnjaji et al. [18], Kreuk et al. [19], and Suciu et al. [20]
more recently. Directly modifying the internal bytes of PE
files during the process of generating AEs requires suffi-
cient domain expertise, so most these methods simplify this
process by appending perturbations to the end of PE files.
Kolosnjaji et al. [18] proved the vulnerability of Malconv for
the first time, but their method requires high computational
costs and achieves low attack success rate. Kreuk et al. [19]
proposed an improved loss function to increase the attack
success rate of the FGSM-based method. Suciu et al. [20]
compared several attack methods on a large-scale dataset
and a small-scale dataset. Their experiments show that the
FGSM-based attack method hardly works on the small-scale
dataset but achieves a higher success rate on the large-scale
dataset. Common to these methods is that the perturbations
added to AEs are all initialized by random noises and then
iteratively modified by gradient-based algorithms. However,
the ignorance of the importance of selecting initial perturba-
tions can lead to low success rates of these methods. In con-
trast, we use saliency vectors to select perturbations in benign
files in order to increase the attack success rate.

D. DEFENSIVE MECHANISMS
Defenses against evasion attacks mainly focus on the field
of image classification. The extending defensive distillation
method [35] proposed by Papernot et al., which can identify
abnormal inputs with large uncertainty, protects the original
model by training a distillation model of the same scale.
Szegedy et al. [14] proposed to actively construct virtual
AEs for adversarial training. Although adversarial training
is effective, it cannot resist all AEs and still has limitations.
Hosseini et al. [36] proposed to add ‘NULL‘ to the output
labels for training and identify AEs by classifying them as
‘NULL‘. Lu et al. [37] proposed a framework named Safe-
tyNet that contains detectors and classifiers. Their frame-
work uses the detector to discriminate whether the input is
an AE, such that AEs will be rejected before entering into
the classifier. The defensive mechanisms against malware
AEs aremainly adversarial training and defensive distillation.
Al-Dujaili et al. [38] proposed an online adversarial training
framework named SLEIPNIR that treats adversarial training
as a saddle point problem. Grosse et al. [33] evaluated two
potential defensive mechanisms, including adversarial train-
ing and defensive distillation, for system-call-based malware
detectors. They showed that the effect of the defensive dis-
tillation method is not as obvious as the adversarial train-
ing. Since few studies focus on the defenses for end-to-end
malware detectors, in this paper, we study two defensive

54362 VOLUME 7, 2019

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

mechanisms in this situation and analyze their pros and cons
in detail.

III. METHOD
We first describe the detail architecture of Malconv and
introduce how to generate saliency vectors for input files
by using the Grad-CAM method. We then introduce two
white-box attack methods by using these saliency vectors.
One is called Benign Features Append (BFA) and the other,
called Enhanced-BFA, is an enhanced version of the first one
by incorporating the FGSM algorithm. Finally, we briefly
describe the Random attack method and introduce a more
efficient black-box method by summarizing the successful
experiences of Random attacks.

A. ARCHITECTURE
First, we describe the specific network architecture of
the Malconv model, as shown in Fig.1 [12]. An input
x (maximum length L) is a sequence of discrete bytes,
x = (x1, x2, . . . , xi), i < L. Data preprocessing, ensuring
that the input vectors provided to the network have a fixed
size regardless of the size of input files, is first performed
to generate a fixed length sequence by padding 0. Then the
preprocessed sequence is mapped to a fixed-size matrix e by
an embedding layer W, where e = (e1, e2, . . . , ei), i = L.
The embedding layer, which allows the meaning of input
bytes to depend on the context rather than the byte values,
is essentially a lookup table that maps each input byte xi to
a D-dimensional vector ei ∈ RD. Then the matrix e is fed
into two 1-dimensional convolution layers whose activation
functions are sigmoid and relu respectively. The correspond-
ing outputs (feature maps) of the two convolutional layers are
multiplied element-wise. This mechanism, which is called
gating, was proposed by Dauphin et al. [39] when dealing
with gradient vanishing problems in language models. After-
wards, the result of gating is passed to a global max-pooling
layer, such that all feature maps are reduced to a fixed-size
vector before entering into a fully-connected layer. Finally,
the classification result will be output by a softmax layer.

B. SALIENCY VECTORS
Next, we describe saliency vectors in detail and introduce
how to generate them by using the Grad-CAM method.
A saliency vector, which contains features of a series of
data blocks in an input binary file, can roughly show the
benign and malicious regions of the file. The position of
the elements in the vector corresponds with the regions of
the original file and the value of each eliment indicates the
significance of features in the corresponding region, namely,
a larger value indicates a more significant feature. In the
image classification task, Zhou et al. [40] proposed a method
by using the Class Activation Mapping (CAM) to produce
a ‘visual interpretation‘ for the decision of a CNN-based
model. Raff et al. [12] then improved this approach to visu-
alize the sections where the malicious features are located.
However, these two methods, which all require modifying

FIGURE 1. Architecture of the CNN-based malware detector MalConv [12].

and retraining the original model to obtain the CAM, are diffi-
cult to implement for attackers. Selvaraju et al. [21] proposed
a Grad-CAMmethod more recently, which uses the gradients
of target concept flowing into the final convolutional layer to
produce CAM, without modifying and retraining the origi-
nal model. Inspired by these efforts, we use the Grad-CAM
method to generate saliency vectors for subsequent attacks.

Let the convolution filter size of Malconv be sfilter .
An input file xwith lengthm can be divided into u data blocks
of size sfilter , where u = dm/se. vcx ∈ Ru is used to represent
the saliency vector of x for the classification target c ∈ { 0,1},
which can be generated as follows. First, the gradient of the
kth featuremapAk for the target label c is calculated, recorded
as αck =

∂yc

∂Ak , which captures the importance of the kth feature
map for target c. According to the importance of all feature
maps, the weighted superposition is performed to obtain the
saliency vector vcx = { vc1, . . . , v

c
u} , where v

c
i can be given

by (1).

vci =

∑
k

αckA
k
i , i = argmax(Ak1,...,u)

0, i = other
(1)

If vci is positive, then the feature of ith data block is malicious.
Similarly, a negative value indicates benign and 0 indicates
no significant feature. We used two 250KB benign and mali-
cious files to calculate their saliency vectors respectively.
In order to facilitate visualization, these two saliency vec-
tors are converted into 500*500 grayscale images, as shown
in Fig.2. The dark lines indicate benign regions and the bright
lines represent malicious regions. The remaining regions with
no significant features are represented by gray lines with
a pixel value of 128. It can be seen that a saliency vector
can effectively display the malicious and benign regions of

VOLUME 7, 2019 54363

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

FIGURE 2. Grayscale images converted from the saliency vectors of a
benign file (a) and a malicious file (b). (a) Benign. (b) Malware.

an input file. By comparison, it can be observed that the
bright (malicious) region of the malicious file is obviously
larger than the benign one.

C. WHITE-BOX ATTACK METHODS
In the following section, we introduce two white-box attack
methods against Malconv using saliency vectors. Both meth-
ods require attackers to get the exact structure and all param-
eters of the victim model. The difference is that the first
attack method only needs to debug the victim model once
for generating saliency vectors, and then the model can be
regarded as a black-box for subsequent attacks, while the sec-
ond attack method, by incorporating the FGSM algorithm,
requires continuous debugging of themodel to obtain a higher
attack success rate.

1) BENIGN FEATURES APPEND METHOD
The BFA attack method can generate effective AEs by
appending carefully selected perturbations to the end of mali-
cious files. These perturbations are selected from benign files
by using saliency vectors. A file x0 that was predicted to
be benign by the model is chosen to generate the saliency
vector v. First, the feature maps A are calculated by the Mal-
conv model (line 1). The saliency vector v = { vc1, . . . , v

c
u}

can be obtained using the Grad-CAM method described in
Subsection III-B, where vci can be given by Equation (1)
(line 2). The positions of the negative elements in the vector
are used as indexes of the benign feature blocks in x0, denoted
as l = { l1, l2, . . . , lp} , where p is the number of data blocks
with benign features (line 3). A benign block represents a
data block (size is sfilter) corresponding to a benign feature
index. If the size of a malicious file x is m and the maximum
length of model input is L, then the maximum number of data
blocks that can be appended to x is

⌊
(L − m)/sfilter

⌋
(line 4).

At each time, one data block is selected from p benign blocks
as perturbations and appended to x for generating an AE x̃
(line 7). This process loops up to min(p,

⌊
(L − m)/sfilter

⌋
)

times until x̃ is predicted to be benign (lines 6-13). It is impor-
tant to note that the starting location for appending should
be set to padidx = (

⌊
m/sfilter

⌋
+ 1) ∗ sfilter . For convenient

illustration, we will ignore the padding bytes, which will be

initialized to 0, from the end of the file to the starting location
for appending. The more benign features are appended to the
end of the malicious file x, the greater the probability that x̃
will be identified as a benign file by the victim model. The
pseudocode is described in Algorithm 1.

Algorithm 1 The BFA Attack Method
Input: x0, x, ybenign, sfilter ,L,m;
Output: x̃;
1: A = Model(x0);
2: v = GradCAM(A);
3: l = Index(v < 0);
4: q = min(p,

⌊
(L − m)/sfilter

⌋
);

5: padidx = (
⌊
m/sfilter

⌋
+ 1) ∗ sfilter ;

6: for i = 1 to q do
7: x̃ = Append(x, padidx, x0[li:li + sfilter]);
8: if Model.predict(x̃) == ybenign then
9: return x̃;
10: else
11: padidx = padidx + i ∗ sfilter ;
12: end if
13: end for
14: return False;

2) ENHANCED-BFA METHOD
The Enhanced-BFA attack method can significantly improve
the attack success rate by incorporating the FGSM [15] algo-
rithm with the BFA attack method. The FGSM-based attacks
against Malconv proposed by Kreuk et al. [19] and Suciu
et al. [20], using random noises to initialize the perturbations,
could only achieve quite low attack success rate. By ana-
lyzing these random perturbations flowing in the model,
we can discover why these methods are inefficient. At first,
these random raw-byte perturbations are mapped to random
vectors through the embedding layer, then features of these
vectors are extracted by the convolution layer. Afterwards,
these features are passed to the global maximum pooling
layer before entering into the fully-connected layer. Since
most feature values of these random vectors are not largest
when passed to the global maximum pooling layer, these
features will be ignored by the model before entering the
subsequent fully-connected layer. In this situation, the back
propagation gradients of these vectors will be 0 most of
the time, and thus these random vectors cannot be modified
by the gradient-based algorithms (e.g. FGSM) effectively.
Moreover, since the raw-byte inputs are discrete and their
mapped vectors are continuous, the modified vectors cannot
be mapped back to raw bytes by looking up the table W
directly. So even if these random vectors are modified suc-
cessfully, the resulting AEs may also be invalid because the
modified vectors cannot always be mapped back to valid
raw-byte perturbations. Therefore, using random noise as
the initial perturbations will make these methods have low
success rates. In contrast, the appended perturbations in our

54364 VOLUME 7, 2019

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

Algorithm 2 The Enhanced-BFA Attack Method
Input: x0, x, ybenign, sfilter ,L,m, ε, β;
Output: x̃;
1: A = Model(x0);
2: v = GradCAM(A);
3: l = Index(v < 0);
4: q = min(p,

⌊
(L − m)/sfilter

⌋
);

5: padidx = (
⌊
m/sfilter

⌋
+ 1) ∗ sfilter ;

6: for i = 1 to q do
7: x̃ = Append(x, padidx, x0[li:li + sfilter]);
8: ea =W(xa)
9: while J

(
θ, ea, ybenign

)
>= β do

10: g = sign
(
∇eaJ

(
θ, ea, ybenign

))
11: ηpad = ε Mask(g)
12: ea[padidx : padidx + i ∗ sfilter] = Mask(ea)− ηpad
13: end while
14: x̃ =W−1(ea)
15: if Model.predict(x̃) == ybenign then
16: return x̃;
17: else
18: padidx = padidx + i ∗ sfilter ;
19: end if
20: end for
21: return False;

attack method, which are initialized by significant benign
blocks, can quickly attract the attention of the model to obtain
back propagation gradients. On this basis, by incorporating
the FGSM algorithm to iteratively modify these perturba-
tions, AEs can be generated more efficiently.

The pseudocode of the Enhanced-BFA attack method is
described in Algorithm 2. First, using the BFA attack method
introduced in the previous section, a benign block index vec-
tor l = { l1, l2, . . . , lp} is generated (lines 1-3). According
to the index number, a benign block will be selected from the
original benign file x0 as initial perturbations and appended
to the malicious file x (line 7). Then the appended file xa
is mapped to the matrix ea through the embedding layer W
(line 8). Let θ be the parameters of the model, ybenign the
target label (‘benign‘ in our case) and J

(
θ, ea, ybenign

)
the

cost function used by themodel, then the optimal perturbation
direction can be expressed as g, which is given as follows:

g = sign
(
∇eaJ

(
θ, ea, ybenign

))
(2)

where g is a vector whose elements are equal to the sign
of the elements of the gradient of the cost function J with
respect to ea. The perturbations will be iteratively modified
until the value of the cost function is below the threshold β
(lines 9-13). In this loop, Mask operation limits the region
modified by the perturbations and ε is a weight factor which
determines the extent of each modification (lines 11-12). The
larger the value of ε, the faster the process but the optimal
solution may not be obtained. In our case, only the appended
region can be iteratively modified by imperceptibly small
perturbations. Afterwards, by using the K-Nearest Neighbor

(KNN) [41] algorithm to find the nearest bytes for vectors
in ea, the modified matrix ea is mapped back to a sequence
of raw bytes x̃ (line 14). If x̃ is predicted to be benign, then
the function will return the successful AE x̃ (lines 15-16),
otherwise, the above process will continue to loop until no
more data blocks can be appended (lines 6-20).

D. BLACK-BOX ATTACK METHODS
In the following section, we introduce two black-box attack
methods for situations when attackers cannot know the exact
structure and internal parameters of the victimmodel. In order
to speed up the attack process, it is assumed that the convolu-
tion filter size sfilter is known. Apart from this, according to
the input file, only the classification result of the model can
be obtained.

1) RANDOM METHOD
Our Random method, different from the random method
proposed by Suciu et al. [20], appends randomly selected data
blocks of a benign file instead of random noises to increase
the success rate. First, a benign file x0 of moderate size m
is divided into p data blocks as perturbations, where p =⌈
m/sfilter

⌉
. Then at each time a data block will be randomly

selected from the p data blocks and appended to the malicious
file x as perturbations to generate AE x̃. Assuming that the
maximum number of data blocks that can be appended to x
is q, this process will be repeated up to min(p, q) times until
the model predicts x̃ as benign.

2) EXPERIENCE-BASED METHOD
The Experience-based attack method selects the perturba-
tions by summarizing the successful trajectories of Random
attacks. By calculating the contribution degree of each data
block to the successful trajectories, data blocks with high
contribution degrees will be used as perturbations for sub-
sequent attacks. First, N Random attacks are performed and
n successful trajectories τ = (τ1,τ2, . . . ,τn) are recorded,
where τk = (bk1,b

k
2, . . . , b

k
i) ∈ Rlk represents the kth suc-

cessful trajectory, with each bki representing the index of a
data block in x0 used for the kth successful trajectory and
lk indicating the total number of data blocks appended in
kth trajectory. Then the number of times each data block
appearing in τ is counted andmultiplied by the corresponding
weights. Thus the contribution degree dj of each block in x0
can be computed as follows:

dj =
n∑

k=1

(
1
lk
count(τk, j)+ αI (bklk == j)) (3)

where j ∈ (1, . . . , p), count(τk, j) indicates the number of
occurrences of jth block in τk, 1

lk
is a penalty factor, indicating

that the more data blocks required for the kth trajectory,
the smaller the importance of the trajectory, α indicates the
extra weight of the last data block in τk and I is the indicator
function (I ∈ (0, 1)). Since the entire trajectory is successful
after appending the last data block, the last data block is given

VOLUME 7, 2019 54365

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

an extra weight α to highlight its contribution. Then a vector
d = (d1, d2, . . . , dp) with contribution degrees of all the
data blocks in x0 is obtained. Finally, d is sorted from high
to low and its first q data blocks are chosen to be the final
perturbations for subsequent attacks. The subsequent attack
process is similar to the BFA attack.

IV. EXPERIMENTS
In this Section, we describe the experiments carried out for
evasion attacks. First, the dataset for training is described.
Then the malware detector Malconv is trained and its per-
formance for malware detection is evaluated. Afterwards,
the saliency vectors for all files in the dataset are generated
to analyze the quantity distribution of benign and malicious
blocks. Finally, the trained Malconv is attacked using the
methods introduced above and the effects of each attack
method are analyzed in detail.

A. DATASET
In our experiments, two groups of PE files are collected to
form a dataset. The first group is the malware set containing
5,200 malicious files from three projects: VirusShare [42],
DAS [43], and malwarebenchmark [44], where each file is
labelled with 1. The second group is the benign set containing
5,150 benign files from the pure version of Windows XP
(32bit/SP3), Windows 7 ultimate (64bit/SP1), Windows 8.1
(64bit) image and more than 30 software companies, where
each file is labelled with 0. All these files are larger than 1KB
and less than 2MB, including multiple PE file types (such as
exe, dll etc.). Source of files in the dataset is shown in Fig.3.

FIGURE 3. Source of files in the dataset. Benign (Left) and malware
(Right).

B. MODEL PERFORMANCE EVALUATION
The Malconv model is reproduced by using the Keras
library [45] and its parameters used for training are
as follows: the maximum filesize is 2,000,000 Bytes,
1-dimensional convolution filter size is 500 and stride is
500. Other parameters are shown in Fig.1. The dataset is
shuffled and divided into a training set, validation set and
test set by 80%, 10%, and 10% respectively. As with the
original literature, the metrics accuracy and AUC are used
to evaluate the performance of the model. All experiments
are performed on a CUDA-enabled NVIDIA Tesla K80 GPU
server. In order to lower the bias, the training and testing pro-
cesses are repeated 5 times, as shown in Table 1. It can be seen
that the average accuracy and AUC are similar to the original
literature reported (ACC=94.0%, AUC=98.1%) [12].

TABLE 1. Performance (Accuracy and AUC) of Malconv.

C. SALIENCY VECTORS GENERATION
Saliency vectors for all files in our dataset are generated
to analyze the quantity distribution of benign and mali-
cious blocks in a file. The joint distribution maps are shown
in Fig.4, where the horizontal axis represents the number
of benign blocks in a file and the vertical axis represents
the number of malicious blocks. According to the Pearson
Correlation Coefficient, we can see that there is a strong
linear correlation between the number of benign blocks and
malicious blocks contained in each file. In addition, Fig.4
shows that the number of benign blocks in a benign file is
mainly 10-30. For convenience of description, 20 is used as
the number of benign blocks in a benign file.

FIGURE 4. The joint distribution maps show the number of benign and
malicious blocks in a file. Benign files are showed in the left map and
malicious files are showed in the right map.

D. EVASION ATTACKS
Using themodel trained in Section IV-B as the originalmodel,
twowhite-boxmethods in Section III-C, two black-boxmeth-
ods in Section III-D and the FGSM-based method described
by Suciu et al. [20] are used to generate AEs for all files in
the malware dataset. The effectiveness of all these attacks are
evaluated by using the success rate (SR): the percentage of
AEs that can successfully evade detection.

Table 2 gives the results of SR using three white-box attack
methods, with different sizes of appended perturbations.
The BFA method can achieve a SR of 60% by appending
20 benign blocks (10,000 bytes) taken from only one benign
file. If another benign file is taken to get 40 benign blocks
(20,000 bytes) for attacking, the SRwill increase to 90%. Fur-
thermore, the Enhanced-BFA attacks (ε = 0.01, β = 0.001)
can achieve a SR of 74% by appending only one benign
block (500 bytes). By appending 40 benign blocks, more than
99% of AEs can successfully evade detection. In contrast,
it can be seen that the SR of the FGSM-based attacks is
very low, only about 1 2%, which is similar to the result on
Mini-dataset reported by Suciu et al. [20]. The FGSM-based

54366 VOLUME 7, 2019

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

TABLE 2. The success rates of 3 white-box attack methods with different
sizes of appended perturbations.

(also known as FGM) attack method in [20], which could
only achieve quite low SR on the Mini-dataset (8,598 files)
but achieve 71% SR on the Full-dataset (16.3 million files),
are unstable and the reason why this method is inefficient has
been analyzed in section III-C.2.

Table 3 gives the results of SR using two black-box
attack methods. The Random attack method is used as a
baseline to evaluate other methods. Although the Random
method achieves low SR, its successful attack trajectories
can be recorded to implement the Experience-based attacks.
We performed 19,150 Random attacks (by appending 40 data
blocks) and recorded 1,340 successful trajectories, such that
40 high contribution degree blocks could be obtained for
subsequent attacks. The most interesting finding is that more
than half of these blocks are identical to the benign blocks
obtained by the BFA attack method, which means that we
can use the Experience-based method instead of the BFA
method when the model details are unknown. The results
in Table 3 show that the SR of Experience-based attack
(α = 2) is similar to that of the Full-dataset FGSM attack
reported in [20]. Moreover, if more Random attacks can be
performed, more effective benign blocks will be obtained
through more successful trajectories, resulting in a better per-
formance of Experience-based attacks. The most important
is that the Experience-based method does not need to under-
stand the exact structure and parameters of the victim model.
Fig.5 plots the SR curves of the above five attack methods,
with different sizes of appended perturbations. It can be seen
that the Enhanced-BFA method achieves the highest SR with
minimal perturbations. Although BFA and Experience-based
method start to achieve lower SR, SR will rise rapidly as the
perturbations increases.

TABLE 3. The success rates of 2 black-box attack methods with different
sizes of appended perturbations.

In summary, the two write-box methods and one black-box
method we proposed can effectively generate AEs to
deceive the CNN-based malware detector Malconv. The
Enhanced-BFA attack method is the most efficient when
the exact structure and parameters of the victim model can

FIGURE 5. The success rates of 5 attack methods with different sizes of
appended perturbations. Random attack is the baseline and FGSM-based
attack is proposed in [20].

be given beforehand. If the model details are unknown,
the Experience-based attack method can also achieve satis-
factory results. Although these attacks in this paper are all
against Malconv, they can be readily extended to other similar
CNN-based malware detectors.

V. DEFENSES
In this section, we investigate two defensive mechanisms
against evasion attacks, one is adversarial training, and the
other is rejecting AEs. Adversarial training can improve the
robustness of the model itself to AEs, and rejecting AEs is a
pre-detection mechanism that requires an additional database
system to help identify the AEs.

1) ADVERSARIAL TRAINING
The most common defensive mechanism against evasion
attacks is adversarial training, which was first proposed by
Szegedy et al. [35]. Adversarial training involves the follow-
ing steps: a) Train the model F on the original training set
D = M ∪ B, where M is the malware set, and B is the set
of benign; b) generate AEs set A against F using the evasion
attackmethods described in Section III; c) modify the training
set D̃ = D∪A and perform iterative training on the basis ofF.

First, two groups of effective AEs sets Atrain and Atest ,
containing 5,168 and 5,152 AEs respectively, are actively
generated by using the Enhanced-BFA method. The initial
perturbations required to generate these two group AEs are
selected from two files, xtrain in the training set and xtest in
the test set. These two files are all predicted to be benign by
F with high probability. Different number of AEs from these
two AEs groups are used to create new training sets and then
the new model F̃ can be retrained based on F. Afterwards, F̃
is used to evaluate the SR of all AEs and to test whether xtrain
and xtest are correctly classified. Table 4 reports the evaluation
and test results in detail. The first two lines indicate the SR

VOLUME 7, 2019 54367

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

TABLE 4. Evaluation of adversarial training by adding different number of
AEs to training set.

of the two groups of AEs against the retrained model F̃.
SR(Atrain) represents the SR of the first group of AEs Atrain
and SR(Atest) the SR of the second group Atest . The last two
lines indicate whether xtrain and xtest are correctly classified
by F̃.
As can be seen from the data in Table 4, when 5 AEs are

added to the training set (8,280 files), the SR of other AEs in
both groups will reduce to 29%. If 50 AEs are added, the SR
is only less than 5% and lower than the detection error rate
(7.7%) of the original model, thus the remaining few AEs
that can successfully avoid detection can be ignored. It can
also be observed that when 100 AEs are added, although
the SR decreased to 1.4%, the file xtest , which is considered
to be benign by F, is incorrectly identified as malicious
by F̃. Therefore, we urge researchers to pay attention to this
problem, that is, implementation of adversarial training needs
to be cautious. The same group of AEs cannot be used in
large numbers for adversarial training. Otherwise, the training
dataset will be poisoned. Moreover, it is necessary to pre-
vent attackers from adopting a similar method to implement
poisoning attacks [46]. Attackers can use essential operation
system PE files to generate a large number of ineffective AEs
and send them to the detector. Although these AEs cannot
evade detection, they may be added to the training set as
regular malware by the defender, resulting in the training
dataset being poisoned. If the defender retrains a new detector
by using the poisoned training dataset, the essential system
files may be misclassified as malware. In this case, the new
detector may in turn damage rather than protect the operating
system, so there is an urgent need for a defensive mechanism
to reject AEs.

2) REJECTING ADVERSARIAL EXAMPLES
We next propose a pre-detection mechanism to identify AEs,
and these identified AEs are rejected before entering into the
malware detector. Fig.6 shows the specific architecture of this
mechanism. A database table is used to record the character-
istics of malware being detected. Through the expertise of the
PE format, it is generally agreed that directly modifying the
executable section of a PE file is difficult, because a subtle
change may lead to unpredictable consequences, such as
destruction function or running error. Therefore, it is assumed
that the hash values of the executable section in AEs for the
same malicious file should be equal. The input x is parsed
by LIEF library [47] to get its executable code section xcode.
So the hash values, denoted as Hash(xcode), can be used as
the indexes of the table. The other fields of the table are

FIGURE 6. The architecture of the pre-detection mechanism for rejecting
AEs.

including the hash value of the entire file Hash(x), number of
times the record has been accessed xnum and the last accessed
timestamp tnow. The pre-detection mechanism identifies and
records the AEs by querying and updating the database.

The Algorithm 3 highlights the architecture of our
pre-detection mechanism. First, Hash(xcode) of the input file
x is used as the index to query the database. If a record
exists, it first indicates that the input file is malware, then
the values of the record and the file attributes are compared
to discriminate whether the input file is an AE. AEs will be
dropped but normal malware can be stored for retraining.
No record means that the input file can be accepted and
predicted by the malware detector. If the file is predicted to
be malware, its characteristics will be inserted into the table
as a new record. In order to prevent a large number of records
in the table from affecting the query speed, one can set a time
threshold T to periodically delete some expired records.

By performing the pre-detection mechanism based on the
trained Malconv, we build a malware detection system which
deployed in the following configuration server: 40 Xeon(R)
E5-2630 cpus, 32*16G memory, Ubuntu16.04 64-bit operat-
ing system,MYSQL 14.14 databasewhich is accessed locally
by the pymysql library of Python 3.6. This detection system
continuously detects normal files (malware and benign) for
24 hours, and every 10 seconds an AE was inserted to the
normal files. The experiment shows that 100% of the AEs
can be accurately rejected. Rejecting all AEs means that our
pre-detection mechanism can successfully help the malware
detector resist evasion attacks. In order to evaluate the effi-
ciency of the detection system, the clock function in Python
is used to calculate the cpu time spent by the pre-detection
mechanism and malware detector respectively. The cpu time
used for detecting 800 files by Malconv is about 3,800s,
but for pre-detection (e.g. file parsing and hash operations,
database connecting and querying operations) is not more
than 10s. That is to say, if the number of malware exceeds

54368 VOLUME 7, 2019

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

Algorithm 3 The Pre-Detection Mechanism for Rejecting
AEs
Input: x,N ;
Output: malware,benign,reject;
1: xcode = LIEF(x);
2: index = Hash(xcode);
3: xhash = Hash(x);
4: tnow = Now();
5: QueryDB(index);
6: if record exists then
7: rnum, rhash, rtime = GetValue(index) ;
8: if (rnum > N) and (rhash 6= xhash) then
9: UpdateDB(index, rnum + 1, tnow)
10: return reject;
11: else
12: return malware;
13: end if
14: else
15: if Model.predict(x) ==‘malware‘ then
16: InsertDB(index, 1, xhash, tnow) ;
17: return malware;
18: else
19: return benign;
20: end if
21: end if

0.26% of the total files being detected, the efficiency of
the detection system will be higher than the single detector.
In summary, the pre-detection mechanism can not only effec-
tively reject the AEs, but also greatly improve the efficiency
of the malware detection system.

VI. CONCLUSIONS
In this paper, we extensively investigated the vulnerability
of the CNN-based malware detectors, specifically a recently
proposed detector Malconv. We proposed two white-box
attack methods and one black-box attack method to attack
these CNN-based malware detectors. By implementing these
attack methods to Malconv, our Enhanced-BFA white-box
method can achieve an attack success rate of over 99%, and
our Experience-based black-box method can also achieve a
success rate of over 70%. These high attack success rates
strongly demonstrate the vulnerability of such CNN-based
malware detectors. Our Enhanced-BFA method, combining
the Grad-CAM and FGSM algorithms to improve the attack
success rate, can be readily extended to other similar adver-
sarial machine learning tasks. In addition, we considered
adversarial training as a defensive mechanism in order to
resist evasion attacks. Experiments show that although adver-
sarial training has a certain effect, there is a risk that the
training dataset can be poisoned by a large number of AEs.
Finally, we proposed a pre-detection mechanism to reject
the AEs. Experiments show that this mechanism can not
only effectively reject evasion attacks, but also improve the
efficiency of malware detection.

There are several future research works. We plan to modify
the raw bytes of the code section of the PE files to gener-
ate AEs, and such AEs will be difficult to detect. We also
plan to repeat the attack methods of this paper on a larger
production-scale dataset. Moreover, the database system,
which may cause other security risks (e.g. the vulnerabilities
of MySQL [48]), is introduced by our pre-detection mecha-
nism. Therefore, we will continue to study the model-based
defensive mechanisms to resist the evasion attacks and
ultimately improve the robustness of the model detectors
themselves.

REFERENCES
[1] Symantec. (2018). The 2018 Internet Security Threat Report (ISTR).

[Online]. Available: https://www.symantec.com/security-center/threat-
report

[2] Y. Ye, T. Li, D. A. Adjeroh, and S. S. Iyengar, ‘‘A survey on malware
detection using data mining techniques,’’ ACM Comput. Surv., vol. 50,
no. 3, pp. 41:1–41:40, 2017. doi: 10.1145/3073559.

[3] J. Aycock, ‘‘Anti-anti-virus techniques,’’ in Computer Viruses and Mal-
ware. Boston, MA, USA: Springer, 2006, pp. 97–108.

[4] D. Ucci, L. Aniello, and R. Baldoni. (2017). ‘‘Survey on the usage of
machine learning techniques for malware analysis.’’ [Online]. Available:
http://arxiv.org/abs/1710.08189

[5] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, ‘‘N-gram-based
detection of new malicious code,’’ in Proc. 28th Annu. Int. Comput. Softw.
Appl. Conf., Sep. 2004, pp. 41–42.

[6] J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection
using two dimensional binary program features,’’ in Proc. 10th Int. Conf.
Malicious Unwanted Softw., Oct. 2015, pp. 11–20. doi: 10.1109/MAL-
WARE.2015.7413680.

[7] K. Rieck, T. Holz, C. Willems, and P. Düssel, and P. Laskov, ‘‘Learn-
ing and classification of malware behavior,’’ in Proc. Int. Conf. Detec-
tion Intrusions Malware, Vulnerability Assessment, 2008, pp. 108–125.
doi: 10.1007/978-3-540-70542-0_6.

[8] G. Yan, N. Brown, and D. Kong, ‘‘Exploring discriminatory features for
automatedmalware classification,’’ inProc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment, 2013, pp. 41–61. doi: 10.1007/978-3-
642-39235-1_3.

[9] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-
v4, inception-resnet and the impact of residual connections on learn-
ing,’’ in Proc. 31st AAAI Conf. Artif. Intell., Feb. 2017 pp. 4278–4284.
[Online]. Available: http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/
view/14806

[10] Y. Kim, ‘‘Convolutional neural networks for sentence classification,’’
in Proc. Conf. Empirical Methods Natural Lang. Process.,
Oct. 2014, pp. 1746–1751. [Online]. Available: http://aclweb.org/
anthology/D/D14/D14-1181.pdf

[11] Y. Zhang, W. Chan, and N. Jaitly, ‘‘Very deep convolutional networks for
end-to-end speech recognition,’’ inProc. IEEE Int. Conf. Acoustics, Speech
Signal Process., New Orleans, LA, USA, Mar. 2017, pp. 4845–4849.
doi: 10.1109/ICASSP.2017.7953077.

[12] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro,
and C. K. Nicholas, ‘‘Malware detection by eating a whole
EXE,’’ in Proc. Workshops 32nd AAAI Conf. Artif. Intell.,
New Orleans, LA, USA, Feb. 2018, pp. 268–276. [Online]. Available:
https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16422

[13] M. Krcál, O. Svec, M. Bálek, and O. Jasek, ‘‘Deep convolutional malware
classifiers can learn from raw executables and labels only,’’ in Proc. 6th Int.
Conf. Learn. Represent. (ICLR), Vancouver, BC, Canada, Apr./May 2018.
[Online]. Available: https://openreview.net/forum?id=HkHrmM1PM

[14] C. Szegedy et al. (2013). ‘‘Intriguing properties of neural networks.’’
[Online]. Available: http://arxiv.org/abs/1312.6199

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy. (2014). ‘‘Explaining
and harnessing adversarial examples.’’ [Online]. Available:
http://arxiv.org/abs/1412.6572

[16] N. Papernot, P. D. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, ‘‘The limitations of deep learning in adversarial settings,’’
in Proc. IEEE Eur. Symp. Secur. Privacy, Mar. 2016, pp. 372–387.
doi: 10.1109/EuroSP.2016.36.

VOLUME 7, 2019 54369

http://dx.doi.org/10.1145/3073559
http://dx.doi.org/10.1109/MALWARE.2015.7413680
http://dx.doi.org/10.1109/MALWARE.2015.7413680
http://dx.doi.org/10.1007/978-3-540-70542-0_6
http://dx.doi.org/10.1007/978-3-642-39235-1_3
http://dx.doi.org/10.1007/978-3-642-39235-1_3
http://dx.doi.org/10.1109/ICASSP.2017.7953077
http://dx.doi.org/10.1109/EuroSP.2016.36

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

[17] N. Papernot, P. D. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, ‘‘Practical black-box attacks against machine learning,’’ in
Proc. ACM Asia Conf. Comput. Commun. Secur., 2017, pp. 506–519.
doi: 10.1145/3052973.3053009.

[18] B. Kolosnjaji et al., ‘‘Adversarial malware binaries: Evading deep learning
for malware detection in executables,’’ in Proc. 26th Eur. Signal Process.
Conf., Sep. 2018, pp. 533–537. doi: 10.23919/EUSIPCO.2018.8553214.

[19] F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and
J. Keshet. (2018). ‘‘Adversarial examples on discrete sequences
for beating whole-binary malware detection.’’ [Online]. Available:
http://arxiv.org/abs/1802.04528

[20] O. Suciu, S. E. Coull, and J. Johns. (2018). ‘‘Exploring adver-
sarial examples in malware detection.’’ [Online]. Available: http://
arxiv.org/abs/1810.08280

[21] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, ‘‘Grad-cam: Visual explanations from deep networks via
gradient-based localization,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Oct. 2017, pp. 618–626. doi: 10.1109/ICCV.2017.74.

[22] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, ‘‘Data min-
ing methods for detection of new malicious executables,’’ in Proc.
IEEE Symp. Secur. Privacy, Oakland, CA, USA, May 2001, pp. 38–49.
doi: 10.1109/SECPRI.2001.924286.

[23] M. Pietrek, ‘‘Peering inside the PE: A tour of the win32 (R) portable
executable file format,’’ Microsoft Syst. J.-US Ed., pp. 15–38, 1994.

[24] E. Raff, J. Sylvester, and C. Nicholas, ‘‘Learning the PE header, mal-
ware detection with minimal domain knowledge,’’ in Proc. 10th ACM
Workshop Artif. Intell. Secur., Dallas, TX, USA, Nov. 2017, pp. 121–132.
doi: 10.1145/3128572.3140442.

[25] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, ‘‘Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,’’ Inf. Sci., vol. 231, pp. 64–82, May 2013.
doi: 10.1016/j.ins.2011.08.020.

[26] A. Sharma, S. K. Sahay, and A. Kumar. (2016). ‘‘Improving the detection
accuracy of unknown malware by partitioning the executables in groups.’’
[Online]. Available: http://arxiv.org/abs/1606.06909

[27] B. Kolosnjaji, A. Zarras, G. D. Webster, and C. Eckert, ‘‘Deep learning for
classification of malware system call sequences,’’ in Proc. Australas. Joint
Conf. Artif. Intell., 2016, pp. 137–149. doi: 10.1007/978-3-319-50127-
7_11.

[28] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
‘‘Malware classification with recurrent networks,’’ in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process., 2015, pp. 1916–1920.
doi: 10.1109/ICASSP.2015.7178304.

[29] B. Athiwaratkun and J. W. Stokes, ‘‘Malware classification with LSTM
and GRU language models and a character-level CNN,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process., 2017, pp. 2482–2486.
doi: 10.1109/ICASSP.2017.7952603.

[30] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, ‘‘Deepfool: A simple
and accurate method to fool deep neural networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016,
pp. 2574–2582. doi: 10.1109/CVPR.2016.282.

[31] N. Papernot, P. D.McDaniel, and I. J. Goodfellow. (2016). ‘‘Transferability
in machine learning: From phenomena to black-box attacks using adver-
sarial samples.’’ [Online]. Available: http://arxiv.org/abs/1605.07277

[32] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth. (2017).
‘‘Learning to evade static PE machine learning malware models via
reinforcement learning.’’ [Online]. Available: http://arxiv.org/abs/1801.
08917

[33] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel,
‘‘Adversarial examples for malware detection,’’ in Proc. Eur. Symp. Res.
Comput. Secur., 2017, pp. 62–79. doi: 10.1007/978-3-319-66399-9_4.

[34] W. Hu and Y. Tan. (2017). ‘‘Generating adversarial malware exam-
ples for black-box attacks based on GAN.’’ [Online]. Available: http://
arxiv.org/abs/1702.05983

[35] N. Papernot and P. D. McDaniel. (2017). ‘‘Extending defensive distilla-
tion.’’ [Online]. Available: http://arxiv.org/abs/1705.05264

[36] H. Hosseini, Y. Chen, S. Kannan, B. Zhang, and R. Poovendran. (2017).
‘‘Blocking transferability of adversarial examples in black-box learning
systems.’’ [Online]. Available: http://arxiv.org/abs/1703.04318

[37] J. Lu, T. Issaranon, and D. A. Forsyth, ‘‘Safetynet: Detecting and rejecting
adversarial examples robustly,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
Venice, Italy, Oct. 2017, pp. 446–454. doi: 10.1109/ICCV.2017.56.

[38] A. Al-Dujaili, A. Huang, E. Hemberg, and U. O’Reilly, ‘‘Adversarial deep
learning for robust detection of binary encoded malware,’’ in Proc. IEEE
Secur. Privacy Workshops, SPW, San Francisco, CA, USA, May 2018,
pp. 76–82. doi: 10.1109/SPW.2018.00020.

[39] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, ‘‘Language modeling
with gated convolutional networks,’’ in Proc. 34th Int. Conf. Mach. Learn.,
Sydney, NSW, Australia, Aug. 2017, pp. 933–941. [Online]. Available:
http://proceedings.mlr.press/v70/dauphin17a.html

[40] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, ‘‘Learn-
ing deep features for discriminative localization,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, Jun. 2016,
pp. 2921–2929. doi: 10.1109/CVPR.2016.319.

[41] T. M. Cover and P. E. Hart, ‘‘Nearest neighbor pattern classification,’’
IEEE Trans. Information Theory, vol. 13, no. 1, pp. 21–27, Jul. 1967. doi:
10.1109/TIT.1967.1053964.

[42] VirusShare. (2015). Virusshare.com. Accessed: May 05, 2018. [Online].
Available: https://virusshare.com/

[43] DAS. (2015). DAS MALWERK. Accessed: May 05, 2018. [Online]. Avail-
able: https://dasmalwerk.eu/

[44] G. Liang, J. Pang, Z. Shan, R. Yang, and Y. Chen, ‘‘Automatic
benchmark generation framework for malware detection,’’ Secur.
Commun. Netw., vol. 2018, pp. 4947695:1–4947695:8, Aug. 2018.
doi: 10.1155/2018/4947695.

[45] F. Chollet et al. (2015). Keras. [Online]. Available: https://github.
com/keras-team/keras

[46] S. Shen, S. Tople, and P. Saxena, ‘‘Auror: Defending against poisoning
attacks in collaborative deep learning systems,’’ in Proc. 32nd Annu. Conf.
Comput. Secur. Appl., Los Angeles, CA, USA, Dec. 2016, pp. 508–519.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2991125

[47] R. Thomas. (Apr. 2015). LIEF—Library to Instrument Executable For-
mats. [Online]. Available: https://lief.quarkslab.com/

[48] J. Fonseca, M. Vieira, and H. Madeira, ‘‘Evaluation of Web security mech-
anisms using vulnerability & attack injection,’’ IEEE Trans. Dependable
Secure Comput., vol. 11, no. 5, pp. 440–453, Sep./Oct. 2014.

BINGCAI CHEN received the M.S. and Ph.D.
degrees in information and communication engi-
neering from the Harbin Institute of Technology
(HIT), Harbin, China, in 2003 and 2007, respec-
tively.

He has been a Visiting Scholar with the Univer-
sity of British Columbia, Canada, in 2015. He is
currently an Associate Professor with the School
of Computer Science and Technology, Dalian Uni-
versity of Technology, Dalian, China, and also

with the School of Computer Science and Technology, Xinjiang Normal
University, Urumqi, China. His current research interests include computer
vision, wireless ad hoc networks, and network and information security.

Dr. Chen received the National Science Foundation Career Award of
China, in 2009. He is severing as a Reviewer for project proposals with
the National Science Foundation of China, Ministry of Education of China.
He is also serving as a Reviewer for some refereed journals including the
IEEE/ACM TRANSACTIONS ON NETWORKING, Journal of Electronics, and the
Journal of Communication.

ZHONGRU REN received the B.S. degree in com-
puter science and technology from Zhenzhou Uni-
versity, Zhenzhou, China, in 2011. He is currently
pursuing the M.S. degree with the School of Com-
puter Science and Technology, Dalian University
of Technology, Dalian, China. His current research
interests include information security and deep
learning.

54370 VOLUME 7, 2019

http://dx.doi.org/10.1145/3052973.3053009
http://dx.doi.org/10.23919/EUSIPCO.2018.8553214
http://dx.doi.org/10.1109/ICCV.2017.74
http://dx.doi.org/10.1109/SECPRI.2001.924286
http://dx.doi.org/10.1145/3128572.3140442
http://dx.doi.org/10.1016/j.ins.2011.08.020
http://dx.doi.org/10.1007/978-3-319-50127-7_11
http://dx.doi.org/10.1007/978-3-319-50127-7_11
http://dx.doi.org/10.1109/ICASSP.2015.7178304
http://dx.doi.org/10.1109/ICASSP.2017.7952603
http://dx.doi.org/10.1109/CVPR.2016.282
http://dx.doi.org/10.1007/978-3-319-66399-9_4
http://dx.doi.org/10.1109/ICCV.2017.56
http://dx.doi.org/10.1109/SPW.2018.00020
http://dx.doi.org/10.1109/CVPR.2016.319
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1155/2018/4947695

B. Chen et al.: Adversarial Examples for CNN-Based Malware Detectors

CHAO YU received the M.S. degree in computer
science and technology from Huazhong Normal
University, Wuhan, in 2010, and the Ph.D. degree
in computer science from the University of Wol-
longong, Wollongong, NSW, Australia, in 2013.
He is currently an Associate Professor with the
School of Computer Science and Technology,
Dalian University of Technology, Dalian, China.
His current research interest includes multiagent
systems and learning, with their wide applications

in modeling and solving various real-world problems.

IFTIKHAR HUSSAIN received the B.S. degree in
computer science from the Islamia College Uni-
versity of Peshawar, in 2013, and the M.S. degree
in computer science and technology from the
Dalian University of Technology, Dalian, China,
in 2018. He is currently pursuing the Ph.D. degree
with the School of Computer Science and Tech-
nology, University of Science and Technology of
China, Hefei, China. His research interests include
information security and wireless networks.

JINTAO LIU received the B.S. degree in computer
science and technology from Zhenzhou Univer-
sity, Zhenzhou, China. He is currently pursuing
the M.S. degree with the School of Computer Sci-
ence and Technology, Dalian University of Tech-
nology, Dalian, China. His current research inter-
ests include natural language processing and code
retrieval.

VOLUME 7, 2019 54371

	INTRODUCTION
	RELATED WORK
	MACHINE LEARNING BASED MALWARE DETECTION
	CNN-BASED MALWARE DETECTORS
	EVASION ATTACKS
	DEFENSIVE MECHANISMS

	METHOD
	ARCHITECTURE
	SALIENCY VECTORS
	WHITE-BOX ATTACK METHODS
	BENIGN FEATURES APPEND METHOD
	ENHANCED-BFA METHOD

	BLACK-BOX ATTACK METHODS
	RANDOM METHOD
	EXPERIENCE-BASED METHOD

	EXPERIMENTS
	DATASET
	MODEL PERFORMANCE EVALUATION
	SALIENCY VECTORS GENERATION
	EVASION ATTACKS

	DEFENSES
	ADVERSARIAL TRAINING
	REJECTING ADVERSARIAL EXAMPLES

	CONCLUSIONS
	REFERENCES
	Biographies
	BINGCAI CHEN
	ZHONGRU REN
	CHAO YU
	IFTIKHAR HUSSAIN
	JINTAO LIU

