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ABSTRACT Differentiating arterioles and venules in the fundus image is important for not only various
eye diseases but also systemic diseases such as hypertension and ischemic stroke. In this paper, we use
dual-modal fundus images and develop a cascade refined U-net (CRU-net) to improve the arteriovenous
segmentation. In this paper, dual-modal fundus images include not only a regular color fundus image
(RGB image) but also another two monochromic images acquired using two different wavelengths, 570 and
610 nm. The choice of these two wavelengths is based on the absorption spectra of hemoglobin. The two
monochromic images provide much richer information on the arteriole and venule. Our proposed CRU-net
can fully utilize the information and achieves the state-of-the-art performance on our dual-modal dataset
(DualModal2019). The arteriovenous classification accuracy evaluated on the automatically detected vessels
is 97.27%, significantly surpassed previous methods. The F1-scores are 77.69% and 79.53% for the arteriole
and venule segmentation, respectively. We also test our CRU-net on the public DRIVE dataset with only the
color fundus images. We achieve the accuracy of 93.97%, F1-scores of 73.50%, and 75.54% for the arteriole
and venule, all of which significantly surpassed previously published methods. Our DualModal2019 dataset
with manually annotated arterioles and venules is publicly available.

INDEX TERMS Dual-modal fundus image, arteriovenous segmentation, deep convolutional neural network
(DCNN), cascade refined U-net (CRU-net).

I. INTRODUCTION
The morphology of retinal blood vessels is associated with
various ophthalmic and systemic diseases [1]–[3]. Retinal
images have been used to diagnose conditions such as dia-
betic retinopathy [3], glaucoma [4], narrowing arteriole [1],
age-related macular degeneration (AMD) [5], arteriosclero-
sis and hypertension [6], etc. These diseases have varying
effects on arterioles and venules. Some affect specifically the
arteriole or the venule. For example, the coronary arterial
disease is indicated by the decreased arteriole caliber [7];
hypertensive retinopathy is suggested by the arteriole
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narrowing at the early stage [8], and diseases of the pan-
creas lead to narrowed arteriole [9]. Other conditions affect
venules. For example, increased venular caliber is associated
with diabetic retinopathy and risk of stroke [3]. Diseases
may also affect the arteriole and venule to varying degrees,
which leads to the change of the ratio between the calibers
of arteriole and venule (AVR). AVR [10] is commonly used
as an important diagnostic indicator of various associated
diseases. For example, high cholesterol levels or high blood
pressure causes abnormal AVR [11].

Evident from the situations above, the arteriovenous analy-
sis is important for the diagnosis of different diseases.Most of
the published retinal arteriovenous studies are based on RGB
images (Fig 1). The morphological structure of the arteriole
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FIGURE 1. A typical color fundus image (left) with annotated arterioles and venules (right) from the DRIVE dataset. The
blue and red color mark the venule and arteriole, respectively. Intersections between the venule and arteriole are marked
green. White color labels the uncertain segmentations.

FIGURE 2. A typical dual-modal image set from the DualModal2019 dataset. (a) RGB color image, (b) the grayscale images
acquired at 570 nm and 610 nm (c). (d-f) manually annotated ground truth images for the vessels, arterioles, and venules.

and venule is very similar, and the contrast, particularly at the
distant part is very low on the RGB image (Fig 1), making it
prone to misclassification of the venules and arterioles.

Recently, dual-modal fundus imaging technique has been
applied to the diagnosis of retinal diseases (Fig 2). In addi-
tion to the RGB image, dual-modal fundus camera applies
two monochromatic wavelengths (570 nm and 610 nm in
our study) to image the retina. These two wavelengths are

chosen based on the absorption spectra of hemoglobin. The
oxyhemoglobin and deoxyhemoglobin share nearly the same
extinction coefficient at 570 nm, while they have signifi-
cant differences at 610 nm where oxyhemoglobin has little
absorption [12]. The differences result in clear visibility of
both arterioles and venules at 570 nm, but much less vis-
ibility of arterioles than venules at 610 nm (Fig 2(b), (c)).
Full utilization of the different visibility of arterioles and
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venules at the two wavelengths can significantly improve the
arteriovenous analysis.

In this study, we combine RGB, 570 nm and 610 nm
images and fully utilize the rich information of the
dual-modal images.We propose a new segmentation network,
a cascade refined U-net (CRU-net), to detect and segment
arterioles and venules. The CRU-net takes full advantage
of the three image types to promote performance. Besides,
the CRU-net shows superior performance on conventional
fundus images (RGB images).

The main contributions of the study are: 1) we develop
a CRU-net, which takes advantages of the dual-modal reti-
nal images, to achieve the state-of-the-art performance in
arteriole and venule segmentation; 2) we systemically
demonstrate that dual-modal retinal images provide richer
information about the venules and arterioles, which signif-
icantly improves the arteriovenous analysis by comparing
with single-modal retinal image (RGB only) analysis; 3) we
make the dual-modal fundus image dataset, DualModal2019,
together with the annotated ground truth images, publicly
available so that other researchers can explore it.

II. RELATED WORK
The studies on arteriole and venule segmentation can be
mainly grouped into two categories: feature-based and
graph-based methods. The feature-based methods classify
target pixels by capturing features from fundus image patches
centered on the target pixel. They usually share several com-
mon steps. The first step is to obtain the segmentation of the
vasculature tree or to start with it directly. Next, the vessel
centerlines were extracted from the vasculature. Finally, these
vessel segments were classified into arteriole or venule by
the features extracted from their status or the type of cen-
terline pixels belonging to them. Welikala et al. [13] applied
profile-based and region-of-interest-based feature extraction
methods and two other classification methods based on sup-
port vector machines and neural networks to classify arteriole
and venule. The idea in [14] is to justify the balanced layout
of arteriole and venule in retinal fundus by the local nature of
the classification process.

There is also much progress in graph-based approaches.
Rothaus et al. [15] developed an automated graph separa-
tion algorithm to distinguish between arterioles and venules
in retinal images. Dashtbozorg [16] proposed a three-step
method. The first step is to classify the entire vascular tree
deciding on the type of each intersection point (graph nodes)
and the second is assigning one of two labels to each vessel
segment (graph links). Final classification of a vessel segment
as arteriole and venule is performed through the combination
of the graph-based labeling results with a set of intensity
features.

Deep learning approaches have been successfully applied
in many medical image analysis system, like detection of the
brain tumors [17], breast nodules, lesions from ultrasound
images [18], and Alzheimer disease from brain MRIs [19].
Deep learning was also applied in fundus image analysis,

such as exudates segmentation [20], and arteriovenous seg-
mentation. Hemelings et al. [21] and Xu et al. [22] applied
improved U-net [23] to segment the arteriole and venule
simultaneously and evaluated their performance on DRIVE
dataset. Meyer et al. [24] used an FCN with a loss function
which only focused on the pixels of vasculature regardless of
the background pixels of the fundus image to adapt for arte-
riole/venule classification. Albadawi and Fraz [25] applied
SegNet [26] based fully convolutional deep neural network
for pixel level classification of the retinal pixel into arteriole,
venule, and background.

The information from dual-modal images is much richer
than the information from the RGB image only. However,
richer information also puts forward higher requirements for
feature extraction ability of the network. Currently, there are
no deep-learning based studies on arteriovenous segmenta-
tion using dual-modal fundus images. To this end, we pro-
pose a cascade refined U-net network (CRU-net) to fully
utilize the dual-modal fundus image information for retinal
arteriovenous segmentation. In order to compare our pro-
posed network with previous studies, we evaluate our method
both on the publicly available DRIVE dataset and our own
dual-modal fundus images dataset (DualModal2019 dataset).
The performance of CRU-net exceeds the highest level of
existing literature on the vessel, venule, and arteriole segmen-
tation.

III. METHOD
A. DATASETS
Two datasets were applied in the study. One is the pub-
licly available DRIVE [27] dataset, and the other is our own
dual-modal fundus image dataset (DualModal2019), which
we make publicly available with manually annotated ground
truth images of the arterioles and venules.

DRIVE dataset consists of 40 fundus images with a reso-
lution of 565× 584 pixels. The arteriovenous annotations of
the database are provided by [28].

The DualModal2019 dataset has 30 sets of images with a
resolution of 1024 × 1024 pixels. Each set of images com-
prises three images: RGB color image and the correspond-
ing 570 nm and 610 nm monochromic images as illustrated
in Fig. 2. All the dual-modal fundus images were acquired
with a dual-modal fundus camera (OT-110M, Hefei Orbis
Biotech LTD, China). The camera provides a field of view
of 45◦ using a xenon lamp as the light source. It captures
images of 570 nm, 610 nm and RGB channels simulta-
neously. The three images are aligned automatically with
the provided software. All the images were acquired from
16 healthy volunteers aged from 20-30 years old with no
sign of retinal diseases. For 14 volunteers, images from both
eyes (left and right eyes) were acquired, while for the other
2 volunteers, images from only one eye were chosen because
of the poor image quality from the other eye. The ground
truth images for the vessels, arterioles, and venules were
manually annotated for the corresponding RGB, 570 nm and
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FIGURE 3. Structure of the RU-net. Yi and Y ′i are the resized ground truth image and the predicted image; Li represents
the loss term between Yi and Y ′i .

TABLE 1. Configuration of the RU-net.

610 nm images with the help of an ophthalmologist. During
training, 24 sets of images were used as the training dataset
and 6 sets of images were applied as the testing dataset.
However, to ensure complete independence of the training
and testing data, images of the left and right eyes from the
same volunteer are assigned into the same dataset, either
the training or the testing dataset. There is no situation that
images of the left eye are assigned in the training dataset while
images of the right eyes are in the testing dataset or vice versa.
We make the DualModal2019 dataset publicly available with
clear identification of the images with the subject id and
identification of right and left eyes.

B. RU-NET
We developed a refined U-net (RU-net) based on the inspi-
ration from the U-net and the label refinement network
(LRN) [23], [29]. As shown in Fig. 3, the RU-net is an
encoder-decoder architecture, with the detailed configuration
listed in Table. 1. The novelties of the RU-net lie in the

concatenation module and the multi-scale loss evaluation.
Different from the original U-net, the RU-net applies an
additional convolutional layer before concatenating with the
corresponding decoder layer, as shown in the red dotted
rectangles in Fig. 3. Four loss functions of different scales are
evaluated at the decoder path. The total loss is the sum of all
the four multi-scale losses. We applied a class-balanced loss
function for each loss term by comparing the semantic seg-
mentation map with the corresponding ground truth image.
The total loss of RU-net is defined as:

Ltask (Y |X; θ ) = k1 · L1(Y ′1,Y1|X; θ )

+k2 · L2(Y ′2,Y2|X; θ )

+k3 · L3(Y ′3,Y3|X; θ )

+k4 · L4(Y ′4,Y4|X; θ ) (1)

where θ denotes the parameters of the RU-net, and X denotes
the input images. Y ′ and Y are the predictions and the corre-
sponding annotated ground truth images, with the subscripts
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FIGURE 4. The overview structure of the CRU-net.

(1, 2, 3 and 4) to identify different scales (576× 576, 288×
288, 144×144 and 72×72 pixels). Li represents multi-scale
losses, and ki is the weight to balance the losses of different
scales. In general, higher values should be assigned to kis
corresponding to the semantic segmentationmapswith higher
resolution [30]. We experimented different ki and achieved
the best performance with k1 = 0.3, k2 = 0.25, k3 = 0.2
and k4 = 0.15. For each loss term Li(Y ′i ,Yi|X; θ ), it is
defined as:

Li(Y ′i ,Yi|X; θ ) = −β
∑
j∈Y+

logP(yj = 1|X; θ )

− (1− β)
∑
j∈Y−

logP(yi = 0|X; θ ),

i ∈ {1, 2, 3, 4} (2)

where Y+ and Y− represent the pixel sets that are labeled
positive and negative in the annotated ground truth image,
respectively. The yj denotes the label of the pixel j. β is the
weight of the loss that is used to balance the losses from the
positive and negative samples. We scanned different β values
from 0.6 to 0.95 and achieved the best performance with β
of 0.9.

C. CASCADE REFINED U-NET (CRU-NET)
The CRU-net consists of three sub-networks (A-, B-, and C-
net), each of which is an RU-net (Fig. 4). At the first stage,
the A-net focuses on the detection of all the vessels without
classifying the vessel types. The A-net takes the RGB image
only or together with the 570 nm and 610 nm images as the
inputs. The output of the A-net is the prediction of the blood
vessels. The loss function of the A-net is defined as:

LA = Lvessel(Yvessel |X; θA) (3)

where θA denotes the parameters of the A-net, X denotes the
input, and Yvessel represents the ground truth of the vessels.

The objective at the second stage is to segment the venules
with reference of all the predicted vessels from the A-net. The
input of the B-net is the sum (concatenation) of the input and
output of the A-net (Y ′vessel). The loss function of B-net is:

LB = Lvenule(Yvenule|X ,Y ′vessel; θB) (4)

where θB represents the parameters of the B-net, Y ′vessel is the
output of the A-net, and Yvenule is the ground truth image of
the venule.

At the third stage, the C-net is designed to process the most
challenging arteriole segmentation. The input of the C-net is
the concatenation of the original input and the outputs from
the A-net and the B-net. The output is the segmentation of the
arteriole. The loss function of the C-net is:

LC = Larteriole(Yarteriole|X ,Y ′vessel,Y
′
venule; θC ) (5)

where θC denotes the parameters of C-net. Yarteriole is the
ground truth image of the arteriole, Y ′venule is the prediction
of the B-net.

The total loss of the CRU-net is the sum of the three loss
terms:

Ltotal(Yvessel,Yvenule,Yarteriole|X; θ )
= w1 · Lvessel(Yvessel |X; θA)
+w2 · Lvenule(Yvenule|X ,Y ′vessel; θB)
+w3 · Larteriole(Yarteriole|X ,Y ′vessel,Y

′
venule; θC ) (6)

where wi is to balance the three different loss terms with∑3
i wi = 1. Experimentally, we achieved the best perfor-

mance with w1 = 0.3,w2 = 0.35, and w3 = 0.35. Higher
weights are assigned to arterioles and venules segmenta-
tion tasks as we emphasize the spatial accuracy of the two
tasks [30].

VOLUME 7, 2019 57565



S. Zhang et al.: Simultaneous Arteriole and Venule Segmentation of Dual-Modal Fundus Images

TABLE 2. Definitions of the evaluation metrics.

FIGURE 5. The illustration of all the situation of points in the fundus
image. Yv , Ya denoted the points which were annotated as venule and
arteriole, respectively. Y ′v and Y ′a represented the points which were
predicted as venule and arteriole, respectively.

D. EVALUATION METRICS
To assess the segmentation performance, we applied the pixel
level evaluation on the entire retinal images. We directly
counted the number of pixels that were correctly classified
or misclassified. We computed the accuracy, sensitivity,
specificity, precision, F1-score, and Matthews correlation
coefficient (MCC) according to the equations defined
in Table 2.

To evaluate the segmentation performance on the venules,
TP and TN are the numbers of the pixels which are correctly
predicted as venules and background (non-venule), respec-
tively. FP and FN stand for the pixels that are misclassified
as the venules and background (non-venule), respectively.
A similar interpretation of the symbols applied for the arteri-
ole segmentation.

Differentiating venules and arterioles from the vessels is
also a classification problem. Therefore, we quantify the
performance of the classifier. Fig. 5 shows all the possible
situations of the pixels in the arteriole and venule segmenta-
tion experiment. Yv, Ya denote the pixels that are annotated
as venules and arterioles, respectively. Y ′v and Y ′a represent
the pixels that are predicted as venules and arterioles, respec-
tively. Pixels 1, 4, 8 and 9 are venule pixels that are correctly
predicted; pixels 3, 4, 5 and 6 are arteriole pixels that are
correctly classified as arterioles; pixel 2 is an arteriole pixel
that is misclassified as a venule pixel; pixel 7 is a venule pixel
that is misclassified as an arteriole.

We define the misclassification rate of arterioles (MISCa)
and venules (MISCv).MISCa is defined as the rate of arteriole
that is misclassified as venule. Similarly,MISCv is defined as

the rate of venule that is misclassified as arteriole.

MISCv =
FPa

TPv + FPa
(7)

MISCa =
FPv

TPa + FPv
(8)

We also define the Matthews correlation coefficients for
the venule and arteriole as following:

MCCv = (TPv × TNv − FPv × FNv)/

(
√
FPv + TPv ×

√
FNv + TPv

×

√
FPv + TNv ×

√
FNv + TNv) (9)

MCCa = (TPa × TNa − FPa × FNa)/

(
√
FPa + TPa ×

√
FNa + TPa

×

√
FPa + TNa ×

√
FNa + TNa) (10)

where TPv denotes the true positive of venule pixels (pixels
1, 4, 8 and 9 in Fig. 5); FPv, FNv and TNv represent the false
positive (pixel 2), false negative (pixel 7) and true negative
(pixel 3, 5 and 6) of the venules; TPa denotes the true pos-
itive of arterioles (pixels 3, 4, 5 and 6); FPa, FNa and TNa
represent false positive (pixel 7), false negative (pixel 2) and
true negative (pixel 1, 8 and 9) of the arteriole. The accuracy
of arteriole and venule classification on the correctly detected
vessels is defined as:

Acc = 1−
FPv + FPa

TPv + TPa + FPv + FPa − S4

= 1−
S2 + S7∑9

i=1 Si
(11)

where Si denotes pixel i in Fig. 5.

E. NETWORK TRAINING AND TESTING
Image preprocessing was applied before training of the net-
works. The images were first cropped with a rectangle to
remove the black margin and then resized to 576×576 pixels.
The same procedureswere applied to the ground truth images.

On the DRIVE dataset, to compare the performance of
the U-net, RU-net and the CRU-net, we applied the 5-fold
cross-validation method. The 40 images were split into 5 sub-
sets with equal size. For each experiment condition, we per-
formed 5 experiments to ensure that each subset was used as
a test set and the remains as the training set.

On the DualModal2019 dataset, we performed two differ-
ent experiments. For the first experiment, we applied only
the RGB images from the dataset and compared the perfor-
mances of the U-net, RU-net, and CRU-net. For the second
experiment, we used the dual-modal images (RGB image,
570 nm, and 610 nm images) to compare the performances
of the three networks. In addition, we compared the perfor-
mance of the same network with two different inputs, i.e.
RGB images only or dual-modal images to evaluate how
the addition of 570 nm and 610 nm monochromic images
improve the performance of the networks.
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FIGURE 6. The experiment results on the DRIVE dataset. (a)The comparison of F1-score for the venule and arteriole segmentation results of the U-net,
RU-net, and CRU-net on the DRIVE dataset. Different colors represented the three different networks. ∗: p-value < 0.5, and ∗ ∗: p-value < 0.01. (b) and
(c) were the PR-curves of the U-net, RU-net, and CRU-net on the venule and arteriole segmentation tasks trained using the DRIVE dataset with 5-fold
cross validation.

TABLE 3. Comparison of the performance of the U-net and RU-net and CRU-net on the DRIVE dataset.

The networks were implemented in Python 3.6 using Keras
with TensorFlow as backend. All experiments were per-
formed on a cluster with 10 GeForce GTX 1080Ti GPUs.
We initialized all the convolutional layers with the built-in
Keras glorot uniform initializer, and the biases were initial-
ized with 0. During training, we applied data augmentation by
rotating the image with a random angle between 0◦ and 360◦,
flipping left or right randomly and adding random Gaus-
sian noise (N (0, 0.2)) to the images. Besides, all the images
were normalized by subtracting the mean pixel value of each
channel of the image followed by dividing the corresponding
standard deviation.We achieves the networks for 1000 epochs
with a batch size of 2, an Adam optimizer with a learning rate
of 0.001 and β1 of 0.5.

IV. EXPERIMENTAL RESULTS
In this section, we first demonstrate that the CRU-net and
RU-net outperformU-net on the venule and arteriole segmen-
tations as tested on theDRIVE dataset. The CRU-net achieves

the best performance. On the Dualmodal2019 dataset, with
only the RGB images as the input, we draw the same con-
clusion. Then we illustrate that with the additional input of
the 570 nm and 610 nm images all the three networks show
significant improvement of performance.

A. BOTH CRU-NET AND RU-NET OUTPERFORM THE
U-NET ON THE DRIVE DATASET
We conducted the venule and arteriole segmentation experi-
ments on the DRIVE dataset using the U-net, RU-net, and the
CRU-net. The results are listed in Table 3.

Since F1-score is a more comprehensive index to evaluate
the network performance, we draw the bar graphs using the
F1-score in Fig. 6 (a). From both Table 3 and Fig. 6 (a),
it is clear that both the RU-net and CRU-net significantly
outperform the U-net. The F1-scores of the RU-net are 2.76%
and 2.63% higher than those of the U-net on the venule
and arteriole segmentations, respectively. The F1-scores of
the CRU-net are more than 6.73% and 7.19% higher than
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TABLE 4. The 5-fold cross validation experiment results of U-net, RU-net, and CRU-net on DualModal2019 dataset with only RGB inputs.

FIGURE 7. The 5-fold cross validation experiment results of U-net, RU-net, and CRU-net trained on DualModal2019 dataset with only inputting fundus
RGB images. (a)The comparison of the F1-score of U-net, RU-net, and CRU-net on the venule and arteriole segmentation. (b) and (c) shown the
PR-curves of the venule and arteriole segmentation for U-net, RU-net, and CRU-net. ’SM’: Networks were trained with only RGB images.

those achieved by the U-net. MCCs have the same trend as
F1-scores as shown in Table 3.

Fig. 6 (b, c) show the precision-recall (PR) curves of
the 5-fold cross validation experiments for the venule and
arteriole segmentations, respectively. The PR-curve of the
CRU-net and RU-net enclose the curve of the U-net, suggest-
ing the better performance of the CRU-net and RU-net. The
AUC of the RU-net on venule and arteriole segmentation are
0.7962 and 0.7459, respectively. The CRU-net has the largest
AUCs of 0.8357 and 0.7919.

B. THE CRU-NET AND RU-NET OUTPERFORM THE U-NET
ON THE DUALMODAL2019 DATASET
We conducted 5-fold cross-validation experiments on the
DualModal2019 dataset with two different experimental
conditions.

In the first experiment, the networks were trained only
with the RGB images as the input, without using the 570 nm
and 610 nm monochromic images. We wanted to further
test the performance of the networks. The results are shown
in Table 4 and Figure 7. The F1-scores of the RU-net are
1.72% and 1.81% higher than U-net on the venule and
arteriole segmentation; the F1-scores of the CRU-net were
3.27% and 4.12% higher than those of the U-net. A similar
trend is found for the MCCs. Fig. 7(a) show that both the
RU-net and CRU-net outperform the U-net, and the CRU-net
achieved the best performance. Fig. 7(b) and Fig. 7(c)
are the PR-curves of the three networks. In both cases,
the PR-curves of the CRU-net completely encloses those of
the other two networks, suggesting the best performance. The
RU-net achieves better performance than the U-net as
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TABLE 5. The 5-fold cross validation experiment results of U-net, RU-net, and CRU-net on the DualModal2019 dataset with dual-modal inputs.

FIGURE 8. The 5-fold cross validation experiment results of U-net, RU-net, and CRU-net trained on DualModal2019 dataset with dual-modal images.
(a)The comparison of the F1-score for the venule and arteriole segmentation results of the U-net, RU-net, and CRU-net. (b) and (c) shown the PR-curves
of U-net, RU-net, and CRU-net on venule and arteriole segmentation task. ’DM’: Networks trained with dual-modal images.

suggested by the PR-curves and the AUC. The conclusion
of this experiment is consistent with the test on the DRIVE
dataset.

In the second experiment, all the networks were trained
on the DualModal2019 dataset with the addition of 570 nm
and 610 nm monochromic images. As shown in Table 5,
the F1-scores of the RU-net are 1.13% and 2.4% higher
than U-net on the venule and arteriole segmentation, and the
F1-scores of the CRU-net are 2.12% and 4.16% higher than
U-net. As shown in Fig. 8(a), the CRU-net achieves the best
performance and the RU-net shows better performance than
the U-net. The PR-curves of the CRU-net completely enclose
those of the RU-net and the U-net (Fig. 8(b, c)), and the
AUCs of the CRU-net and RU-net are larger than those of the
U-net.

C. ADDITION OF 570 NM AND 610 NM IMAGES
IMPROVES THE SEGMENTATION PERFORMANCE
To verify whether the addition of dual-modal images
improves the performance of the networks, we compare the
results of the two experimental conditions on the three net-
works. As shown in Fig. 9, for both the venule and arte-
riole segmentations, all the three networks achieve higher
F1-scores when trained with dual-modal images than trained
only with RGB images.

D. DUAL-MODAL IMAGES SIGNIFICANTLY IMPROVE THE
CLASSIFICATION ACCURACY
We evaluated the misclassification rates, Matthews correla-
tion coefficient, and classification accuracy as defined by
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FIGURE 9. Comparisons of the network performance trained using the RGB only versus trained with
dual-modal images (RGB, 570 nm, and 610 nm images) on the DualModal2019 dataset.

TABLE 6. The misclassification rates and accuracy on the DRIVE and DualModal2019 datasets.

Eq. (7), Eq. (8) Eq. (9), Eq. (10), and Eq. (11). As shown
in Table 6, on the DRIVE dataset, both RU-net and CRU-net
achieve much lower MISCv and MISCa, higher MCCv and
MCCa, and higher Acc than the U-net. The misclassification
rate of the venules achieved by the CRU-net is more than 2%
lower than the U-net, and the Acc is 1.98% higher. Similarly,
MCCv andMCCa are 3.95% and 3.91% higher, respectively.

On the DualModal2019 dataset, we compared the per-
formance of the CRU-net trained only with RGB images
(labeled as CRU-net_SM in the table) with the CRU-net
trained with dual-modal images (labeled as CRU-net_DM).
With the dual-modal images, the misclassification rate of
the venules decreases from 3.64% to 1.93%, and the Acc
increases more than 1%. Both MCCv and MCCa increase
more than 2%.

V. DISCUSSION
Accurate segmentation of the arteriole and venule is impor-
tant in the diagnosis ofmany diseases. In this study, we sought
to develop a deep convolutional neural network (DCNN)
based method for automatic arteriovenous detection and seg-
mentation. To alleviate the difficulties of previous studies,
we 1) applied dual-modal images, which acquiredmuchmore
information on the venule and arteriole than conventional
color fundus images; 2) constructed a refined U-net (RU-net)

and a cascade RU-net (CRU-net), both of which showed
superior performance on the arteriovenous segmentation.

The proposed RU-net significantly improves arteriove-
nous segmentation as shown in Table 3 and 4. The RU-net
(Fig 3) is based on the conventional U-net [23] but with
significant modifications. First, we applied a multi-scale loss
structure. In the decoder path, a scale loss was evaluated for
each upsampling step. Multi-scale losses alleviate vanishing
gradient problem to facilitate the learning process of the
network [35]. Also, applying multi-scale losses is equivalent
to applying multiple supervisors. Second, as marked with
the blue dotted box shown in Fig. 3, the upsampling feature
maps are the outputs of convolution operations instead of the
segmentation map. The feature maps from the convolution
operations can retain more features to prevent feature loss
in the decoder path. Third, we applied a convolution oper-
ation (marked with a red dotted box in Fig. 3) before the
feature maps from the encoding path were concatenated into
the decoding path. This configuration helps to transfer low
dimensional features to the higher dimensional space.

The CRU-net further improves the arteriovenous segmen-
tation. It comprises three sub-networks (Fig 4), each of which
is an RU-net. The first subnetwork (A-net) gets the overall
vessel segmentation, which is part of the input of the follow-
ing B-net and C-net, providing prior vessel information. The
B-net focuses on the venule segmentation, which is easier
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TABLE 7. Comparison of the classification accuracy with previous methods on the DRIVE dataset.

than the arteriole segmentation. The C-net targets on the most
difficult task of arteriole segmentation. The three tasks are
nested and mutually reinforcing. Compared with the U-net
and RU-net, the CRU-net is an integrated architecture that
combines the vessel and arteriovenous segmentation. It max-
imizes the utilization of the correlation information among
the three tasks and significantly improves the performance of
the network. This differs from most of the published work,
where vessel segmentation and arteriovenous classification
are two-step process [13], [21], [22], ignoring the correla-
tions among the tasks.

We listed our results with published studies on the arteriole
and venule detection and segmentation in Table. 7. However,
one should note that a direct comparison of the methods is
not possible because the evaluation indices used in different
studies are different. For example, in reference [16], [31],
the accuracy was defined on the known vessel centerlines,
while in reference [34] it was defined on the known vessels.
Therefore, we listed the studies and provided a brief descrip-
tion of the methods applied in the studies.

Dual-modal images improve the CRU-net network per-
formance, particularly on the segmentation of the arterioles.
Dual-modal images contain much more information than
conventional RGB fundus images. The contrast of the venules
in the 610 nm wavelength images is much higher than the
arterioles, helpful for differentiating arterioles and venules.
In this paper, we applied the RGB, 610 nm and 570 nmwave-
length images as input to train CRU-net. Compared with the
network trained with only RGB images, the features extracted
from RGB, 570 nm and 610 nm images are much more
distinguishable, significantly reducing the misclassification
rate of the arterioles and venules.

On average, it took two hundred and twenty, two hun-
dred and four, and three hundred and forty-three minutes to
train the U-net, RU-net, and CRU-net on the DRIVE dataset
on a GeForce GTX 1080Ti GPU, respectively. However,
to segment both the arterioles and the venules, we need to
train the U-net and RU-net twice, one time on the arteri-
ole and another time on the venule segmentations. There-
fore, the total training time for CRU-net is much less than
RU-net and U-net. To process an image, the U-net, RU-net,
and CRU-net all took about 350 milliseconds. In total,
the CRU-net has about 5.57M parameters to train, while
the U-net and RU-net have 1.95M and 1.86M parameters,
respectively.

As demonstrated in the study, the dual-modal fundus
images providemuchmore information about the venules and
arterioles. In combination with a properly designed network,
we can fully utilize the information to improve arteriovenous
analysis. However, the current limitation is that dual-modal
fundus cameras are not as widely used as conventional fun-
dus cameras. Therefore, the data is limited. Considering the
advantages of the dual-modal fundus cameras, we expect it to
be more widely adopted in the future.

VI. CONCLUSION
In the study, we constructed a CRU-net, which fully took
advantages of the dual-modal fundus images to detect
and segment the arterioles and venules simultaneously.
Dual-modal fundus images provide much richer informa-
tion about the retina. For example, retinal oxygen saturation
level can be evaluated by using the 570 nm and 610 nm
monochromic images. In combination with the developed
CRU-net, wewill be able to quantitatively analyze the oxygen
saturation level in arterioles and venules, which is related to
many diseases. For example, recent studies [36], [37] show
a significant difference in the oxygen saturation level of
Alzheimer’s patients and healthy populations. In addition,
we expect that ophthalmic diseases, such as diabetic retinopa-
thy, retinal vein occlusion (RVO) and ischemic optic neu-
ropathy (ION), which have different effects on arterioles and
venules to take advantages of the dual-modal fundus imaging
technique and our accurate arteriovenous analysis.

Besides, one of the common difficulties in deep learn-
ing study is the lack of high-quality data, especially expert
labeled data. We make our DualModal2019 dataset, together
with the manually annotated ground truth images, pub-
licly available upon publication of the study so that more
researchers can explore it. We expect more studies and better
algorithms to come.
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