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ABSTRACT In recent years, a 3D reconstruction based on structure from motion (SFM) has attracted much
attention from the communities of computer vision and graphics. It is well known that the speed and quality of
SFM systems largely depend on the technique of feature tracking. If a big volume of image data is inputted for
SFM, the speed of this SFM system would become very slow. And, this problem becomes severer for large-
scale scenes, which typically needs to capture several thousands of images to recover the point-cloud model
of the scene. However, none of the existing methods fully addresses the problem of fast feature tracking.
Brute force matching is capable of producing correspondences for small-scale scenes but often getting stuck
in repeated features. Hashing matching can only deal with middle-scale scenes and is not capable of large-
scale scenes. In this paper, we propose a new feature tacking method working in a parallel manner rather
than in a single thread scheme. Our method consists of steps of keypoint detection, descriptor computing,
descriptor matching by parallel k-nearest neighbor (Parallel-KNN) search, and outlier rejecting. This method
is able to rapidly match a big volume of keypoints and avoids to consume high computation time, then
yielding a set of correct correspondences. We demonstrate and evaluate the proposed method on several
challenging benchmark datasets, including those with highly repeated features, and compare to the state-of-
the-art methods. The experimental results indicate that our method outperforms the compared methods in
both efficiency and effectiveness.

INDEX TERMS 3D reconstruction, K nearest neighbor, feature matching, structure from motion, parallel
computing.

I. INTRODUCTION
In recent years, feature tracking include feature detection,
descriptor matching, and outliers remove, has received much
attention from the communities of computer vision and
machine learning due to its many potential applications,
such as image-based localization, image stitching, stereo
matching [1], image retrieval [2], [3] and structure from
motion (SFM) [4]. For example, the SFM use the feature
correspondences that produced by feature tracking to recover
sparse point clouds with respect to the scene and camera
parameters. SFM is a set of technologies, which contains
feature tracking [5], camera calibration [6], pose estimation,

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiachen Yang.

motion averaging [7], perspective-n-point (PnP) [8], regis-
tration [9], triangulation [10], and bundle adjustment [4].
Generally, SFM can be used to estimate camera parameters
containing intrinsic and extrinsic parameters, and can also
be used to recover point-cloud model of the scene from the
given image collections. It has been proved to be one of the
most effective 3D reconstruction approaches, and has been
widely and successfully exploited in many 3D model-based
applications including virtual reality [11], [12], augmented
reality [13], city-scale modeling [14], navigation [15], smart
city [16], [17], geographic information system [18], [19] and
autonomous driving [20].

One of themost distinguished SFMs is Bundler [21], which
is a standard implementation of incremental SFM and has
good extendibility. Later, many excellent SFMs have also
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been proposed, such as ETH-3D, Visual SFM [22], Hyper
SFM [23], ACTS [24], LS-ACTS [25], and COLMAP [26].
State-of-the-art SFM systems can produce accurate 3D point
clouds for large-scale scenes [26], [27], but they are very
time consuming. Thus, various strategies have been proposed
to reduce the computation burden of SFM. For example,
Wu et al. [28] proposed a multicore bundle adjustment
method to optimize the point-cloudmodel and camera param-
eters for saving computation time. Crandall et al. [29]
proposed a discrete continuous optimization method with
Markov random filed (MRF) for large-scale structure from
motion in parallel architecture, the proposed method does
not have feature tracking routines, then significantly relieve
computational burden. Bhowmick et al. [30] proposed graph
partitioning-based approach to reconstruct point-cloud mod-
els, in which a divide and conquer method is used to partition
the image data set into smaller sets or components that can
be reconstructed independently. Sweeney et al. [31] proposed
a distributed camera model for large-scale SFM, in which
the incrementally adding one camera at a time to grow the
reconstruction is replaced by a distributed camera. Although
some effective methods have been proposed to accelerate the
SFM system, the computational cost of SFM still needs to
relieve especially in large-scale scenes.

According to the recent survey works made by
Saputra et al. [32] and Ozyesil et al. [33], one of the most
expensive steps in SFM is feature tracking. They also con-
sider that as data grows, feature-tracking methods become
more time-consuming. Therefore, a fast and effective feature-
tracking method is urgently needed to handle large-scale 3D
reconstruction with thousands of images having high resolu-
tion. To accelerate feature tracking, Guofeng et al. [25] pro-
posed an effective non-consecutive feature tracking (ENFT)
method for large-scale SFM. But, the ENFT heavily relies
on the segmented-based coarse-to-fine scheme to improve
the quality of SFM, it could not handle crowdsourcing
image data. With the development of graphics process units
(GPUs), many expensive operations could be accelerated
using parallelization technique. For example, Sinha et al. [34]
implemented KLT-GPU method with CUDA to improve
the efficiency of original KLT, resulting in a significant
acceleration. Moreover, depth image-based 3D reconstruc-
tion methods have already exploited GPUs to accelerate
time-consumed operations, such as fusion of depth map and
RGB image. For example, BundleFusion [35], dense fusion
and mapping [36] and Parallel Kinect Fusion [37] all run
on GPU devices for saving computation times. Thus, GPU
have been proved to be an efficient approach to accelerate
the computational expensive operations in the field of 3D
reconstruction [38].

Inspired by GPU-acceleration, we propose a real-time fea-
ture tracking method based on parallel k nearest neighbor
search (Parallel-KNN) for large-scale SFM. In the proposed
feature tracking method, we first use ORB feature [39] to
locate keypoints, and compute feature descriptors. Second,
we design a Parallel-KNN search algorithm, and implement

it in CUDA SDK for matching feature descriptors. Third,
a distance-based test approach is proposed to remove out-
liers from initial matching collections that constructed by the
naïve brute-force-match (BFM). Owing to the combination of
above efficient and effective strategies, the proposed RTFT
not only have fast speed but also has high matching preci-
sion. Our work is of broad interest to the 3D reconstruction,
computer vision and computer graphics communities since
many of the key steps in the proposed method are shared by
other methods, which can also be accelerated on the GPU.
In summary, the contributions of this work are summarized
as follows:
(1) A GPU-accelerated k nearest neighbor matching called

Parallel-KNN is designed and implemented in Nvidia
CUDA SDK on GPU device, which can significantly
improve feature matching speed and can also accelerate
SFM-based large-scale 3D reconstruction with thou-
sands of images having high resolution.

(2) A distance-based testing (DBT) approach is proposed
to reject incorrect feature correspondences that created
by traditional feature matching methods, such as BFM
and KLT.

(3) Based on the proposed Parallel-KNN and DBT,
we design a parallel pipeline for feature tracking, then
resulting in a significantly acceleration on speed and
highly matching precision.
real-time feature tracking method for large-scale 3D
reconstruction based on SFM.

The rest of this paper is organized as follows. Related
work is presented in Section 2. The parallel k nearest neigh-
bor and the proposed real-time feature tracking (RTFT)
method is described in Section 3. In Section 4, Comparative
experiments conducted on several challenging datasets are
presented. The conclusion and final remarks are given in
Section 5.

II. RELATED WORK
In this sectionwewill briefly revisit some existing works con-
tain feature tracking and 3D reconstruction methods based on
SFM technique to better understand the proposed method.

A. FEATURE TRACKING
Recently, feature tracking based on feature detection and
matching framework (DMF) [40], [41] have received much
attention from the communities of compute vision [42]–[46]
and computer graphics [47]. For example, Zhang et al. [42]
proposed a non-consecutive feature tracking method for
SFM-based 3D reconstruction and simultaneous localiza-
tion and mapping. This method uses brute-force-matching
(BFM) scheme to match descriptors in feature database.
To improve the robustness and speed of feature tracking
method in large-scale scenes, Garrigues and Manzanera [48]
proposed a mobile feature tracking method, which can be
run on mobile device and also can recover dense trajecto-
ries. Lee and Hollerer [49] proposed an optical flow-based
feature tracking method named hybrid feature tracking for
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virtual reality, augmented reality, and navigation. However,
this method is time consuming because computing opti-
cal flow is slow, and may produce few numbers of fea-
ture correspondences in the occlusion scenes. To improve
the robustness of feature tracking in occlusion surround-
ings, Buchanan and Fitzgibbon [50] proposed an dynamic
programming-based feature tracking method which uses
interactive manner to deal with feature tracking drift problem,
then significantly boosting the matching precision. In addi-
tion to desire matching score, the effectiveness of the feature
tracking method is also improved due to the KD-Tree used.

Recently, someone dedicated to handle the ambiguous
problem which raised by repeated feature or structure in
scenes. For example, Zhang et al. [51] proposed an epipolar-
constraint approach to handle incorrect feature matches,
then resulting in a compact point-cloud model of the scene.
However, the epipolar-geometry estimation may increase the
computation time, and may decrease the speed of the SFM
system when it was used. To accommodate image rotation
and scale change, Wu et al. [52] proposed a viewpoint-
invariant patches (VIP)–based feature tracking method for
SFM-based 3D reconstruction in outdoors. The proposed
method has an excellent performance according to the report
executed on the several challenging benchmark datasets.
Zach et al. [53] propose to use SURF having fast speed [54]
to replace SIFT to obtain significant acceleration on speed.
Svärm et al. [55] proposed a graph matching-based fea-
ture tracking method to construct feature correspondences,
in which the Gomory-Hu algorithm [56] is used to remove
outliers from the initial matching collections. Roth et al. [57]
proposed a wide-baseline image matching approach by pro-
jective view synthesis and geometric verification.

Although, the existing feature tracking methods, such as
ROML [58], MODS [59] and RepMatch [60], have already
obtained excellent performance on the small or middle scale
surroundings, their performance including both matching
speed and matching precision still needs to improve in
large scale scenes with repeated structures. For example,
Zhou et al. [61] hold that the ability of the existing feature
tracking approaches is still essentially limited by the abrupt
scale changes in images. Thus, they designed a scale-invariant
image matching method to handle the very large-scale vari-
ation of view-points. The proposed method can work well
in scale space by encoding the image’s scale space into a
compact multi-scale representation. Cui et al. [5] proposed
am approximate yet efficient approach to construct thematch-
ing graph for SFM-based large-scale 3D reconstruction.
The proposed GraphMatch does not require any expensive
offline pre-processing phase to construct matching graph,
then resulting in a significant acceleration. Shen et al. [62]
proposed a graph-based consistent feature tracking method
to handle the problems of completeness, efficiency and con-
sistency in a unified framework. The proposed method uses
a visual-similarity-based minimum spanning tree (MST) to
chain all the input images. Then the MST can be incremen-
tally expanded to construct locally consistent strong triplets.

Finally, the global consistency is improved by reinforcing the
large connected components. The proposed method performs
an excellent performance on the duplicated scenes.

B. 3D RECONSTRUCTION
In recent years, the problem of recovering 3D geometry from
image collections has drawn much attention from various
research areas including computer vision, computer graph-
ics, and topography. As a result, many 3D reconstruction
approaches have been proposed for the various applications.
Among those methods, one of the most efficient approach is
SFM-based 3D reconstruction, which can not only recover
sparse geometry but also can estimate camera parameters, so
it is widely used in many practical applications. For instance,
Snavely et al. [21] developed an excellent SFM system,
named Bundler, based on the standard pipeline of incremental
SFM, which consist of camera calibration, feature detection
and matching also called feature tracking, pose estimation,
triangulation, and bundle adjustment. The computing effi-
ciency of Bundler is slow, although it has desire result for
recovering geometry model. After analysis the designing ide-
ology, we found that the main reason to restrict the computing
efficiency of Bundler is SIFT [39] which is used to detect
keypoints and compute descriptors. To improve the efficiency
of Bundler, Zach [63] proposed SURF to detect keypoints
and compute descriptors in feature tracking process. Based
on this ideology, they developed a novel SFM system named
ETH-3D, which has faster speed than that of Bundler accord-
ing to the newest report in [32].

Recently, Dong et al. [24] developed an automatic camera
tracking system (ACTS) based on keyframe extraction and
recognition to estimate camera parameters and recover sparse
geometrymodel. TheACTS uses a GPU-accelerate SIFT [64]
to detect keypoints and compute descriptors, then resulting in
a significantly acceleration on the speed of feature tracking.
Based on the ACTS, Zhang et al. [51] developed a large-scale
SFM system named LS-ACTS. for real-time applications,
such as augmented realty and robotic navigation. Like ACTS,
based on the thought of GPU-acceleration, Wu [22] devel-
oped an excellent SFM system named Visual SFM (VSFM),
which has both desire robustness for recovering geometry
model an fast speed. Moulon et al. [65] developed a global
SFM system based on the global fusion of relative camera
motions between images. Based on the optimized viewgraph,
Sweeney et al. [66] developed an incremental SFM system
named Theia-SFM for the purpose of producing compact and
accurate point clouds in both indoor and outdoor scenes. The
Theia-SFM is consist of several independent modules such
as feature tracking and surface reconstruction for recovering
mesh.

With the development of depth-camera such as Kinect V2,
ASUS Xtion Pro and Intel RealSense, RGB-D datasets are
easily to construct, and are widely used in 3D reconstruc-
tion [67]. For example, Xiao et al. [68] developed RGBD-
based SFM system to construct dense point clouds from
RGB-D image collections. Yu and Zhang [69] proposed an
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FIGURE 1. The flowchart of the proposed feature tracking method. (a) Input. (b) Pipeline of feature tracking. (c) Matching results.

approach for 3D reconstruction of indoor scenes based on
RGB-D feature tracking and graph optimization, in which
they detect loop closures based on the keyframe selec-
tion. Dai et al. [35] developed a real-time globally con-
sistent 3D reconstruction approach, named BundleFusion,
based on on-the-fly surface re-integration and depth-map
fusion. The BundleFusion obtained a state-of-the-art result.
Zeng et al. [70] proposed an octree-based depth-map fusion
approach for real-time 3D reconstruction for RGB-D cam-
eras. Bao and Savarese [71] proposed to use semantic infor-
mation to help SFM system to recover geometry model,
so they developed a semantic SFM (SSFM) system which
can not only produce point clouds but also can recognize
objects in scenes. Wang et al. [72] developed a dynamic SFM
system, which can detect scene changes from image pairs.
Kelly et al. [14] proposed a deep learning-based approach to
reconstruct urban surface from UAVs with high resolution.

Although, some excellent 3D techniques have been
proposed for various applications, their performance still
needs to improve especially in large-scale outdoor scenes.
Schöps et al. [73] hold that the fisheye is capable of recon-
structing large-scale scenes in only a few minutes by simply
walking through the scene. Thus, they proposed a method for
reconstructing large-scale outdoor scenes through monocular
fisheye camera, in which they exploit GPU device to com-
pute depth maps for accelerating 3D reconstruction pipelines.
Brilakis et al. [74] proposed a videogrammetric framework
for acquiring 3D model of the outdoor scene, which uses
a calibrated set of low-cost high resolution video cameras
that is progressively traversed around the scene and aims
to reconstruct a dense point-cloud model. Cui et al. [75]
hold that insufficient feature correspondences may break
the completeness of the reconstructed scene, they proposed
a progressive SFM approach to handle the completeness,
robustness and efficiency issues in a unified framework.
By progressively performing the feature tracking and pose
estimation, the method can produce a large number of redun-
dant correspondences that can improve quality of the recon-
structed point clouds. The most recently, Zhu et al. [76] hold

that global structure from motion (GSFM) techniques have
superior performance in both efficiency and accuracy than
that of incremental SFM. They proposed a very large-scale
global SFM at the scale of millions of high-resolution images.
The global SFM is solved by the distributed framework that
significantly improve the effectiveness and robustness of the
large-scale rotation averaging.

III. PARALLEL KNN BASED FEATURE TRACKING
To improve the efficiency and accuracy of feature track-
ing for SFM-based 3D reconstruction, we propose a real-
time feature tacking method (RTFT), which is based on the
Parallel-KNN. The RTFT consists of three phrases: keypoint
detection, descriptor computing, descriptor matching, and
incorrect matches removing. The pipeline of the RTFT is
depicted in Fig.1 where the green lines represents correct
feature correspondences.

According to the pipeline of the RTFT depicted in Fig.1,
for given two images, the ORB feature [77] is firstly utilized
to locate keypoints and compute descriptors with respect to
the located keyoints due to its fast speed and highly discrim-
ination of the descriptor. Second, based on the similarity of
feature descriptors, we use the implemented Parallel-KNN
to match descriptors for producing visual correspondences
that may include many outliers. Third, the distance-based
testing (DBT) approach is proposed, and is utilized to remove
incorrect correspondences from the initial matching collec-
tions, then resulting in a set of correct correspondences.
To this end, the RTFT method has fast speed and desirable
matching precision. The procedure of the RTFT is summa-
rized in Algorithm 3, where loop operation is not required
when calculating the distances between the query descriptor
vectors and the reference descriptor vectors, so the computa-
tion time can be reduced significantly.

A. PROBLEM FORMULATION
For given a set of images Is with n frames, Is = {It |
t = 1, · · · , n}, the goal of feature tracking is to extract and
match potential local features in all frames to construct a set
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FIGURE 2. Visual correspondences of two views with repeated features, rotation and illumination variation, where some
incorrect matches are produced.

of visual correspondences [78]. A visual correspondence K
is defined as a tuple that include two similar keypoints in
different images: K =

〈
k1,1, k ′2,1

〉
, where ki represents the

ith image. For feature tracking, a feature from It to It+1,
an invariant keypoint in It is represented as kt,i with descriptor
p
(
kt,i
)
. To determine if there is a corresponding keypoint

kt+1,i with descriptor p
(
kt+1,i

)
in It+1, the 2nd closet ratio

approach [59] is adopted.
For a query keypoint kt,i in It , we want to find the two

nearest neighboring keypoints in It+1 with respect to the
Euclidean distance of the descriptor vectors and denote them
as I1t+1

(
kt,i
)
and I2t+1

(
kt,i
)
. Their corresponding descriptor

vectors are represented as p
(
I1t+1

(
kt,i
))

and p
(
I2t+1

(
kt,i
))

respectively. As a result, the matching score for measuring
the similarity of kt,i and I1t+1

(
kt,i
)
can be defined as

s =

∥∥p (kt,i)− p (I1t+1 (kt,i))∥∥∥∥p (kt,i)− p (I2t+1 (kt,i))∥∥ (1)

where s is used to measure the global distinctiveness of
keypoint kt,i with respect to the ratio of the smallest descriptor
distance and the second smallest one. If s < τ , we consider
that I1t+1

(
kt,i
)
is a potential candidate for kt,i , and assign

kt+1,i = I1t+1
(
kt,i
)
. According the report in [39], the feature

matching approach could obtain a desirable result when s ∈
[0.6, 0.8]. In this paper, we chose 0.7 to s for achieving the
best balance between matching precision and the number of
matches. Base on the matching score, the standard feature
matching approach for two views can be summarized in
Algorithm 1 where none of post-process steps is used to
remove outliers except to RANSAC.

However, the measure approach in practical can be easily
affected by repeated features, image scale, image noise and
lighting, which make it difficult to find reliable candidates
for some keypoints even in the adjacent images. This prob-
lem usually makes the SFM produce ambiguous point-cloud
model and even break the completeness and compactness
of the reconstructed 3D models [79]. Fig. 2 illustrates the

Algorithm 1 The Standard Two View Matching Approach
Input: I1, I2-two images.

Output:
{〈
f1,1, f ′2,1

〉
, · · · ,

〈
f1,n, f ′2,n

〉}
-a collection of

visual correspondences.
Step 1:

for I1 and I2 independently do
Detect keypoints and compute descriptors

using
local features such as ORB and SIFT.
end for

Step 2: Construct tentative correspondences for I1 and I2
using brute-force-match (BFM) approach and ratio
test.

Step 3: Remove incorrect matches from the tentative
correspondences using geometric verification, i.e.,
RANSAC, then resulting in a set of feature
correspondences.

resulting visual correspondences constructed by purely
descriptor matching, in which there are many incorrect cor-
respondences. Thus, the post-process step, i.e., RANSAC,
is usually used to reject outliers from the collection of initial
visual correspondences. In addition to resulting outliers, the
naïve feature matching by BFM result in highly computa-
tional cost especially in large-scale scenes. As a result, paral-
lel procedure for feature matching is to be urgently needed for
real-time feature tracking in the field of 3D reconstruction.

B. PARALLEL KNN SEARCH
In this subsection, we will discuss how to parallelize the
traditional KNN algorithm in Nvidia CUDA SDK for com-
puting the distance between the query descriptor vector and
the reference descriptor vectors on GPU device. Unlike Hash-
based approach [80] used for feature matching, the traditional
KNN search alone still performs an ‘‘exhaustive search’’,
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FIGURE 3. The diagram of distance computing on GPU.

meaning that the distance computing still requires comparing
the query vector to every reference vector in the database.

However, the exhaustive computation is very time con-
suming. Thus, the key idea in this subsection is to design a
parallel approach for the distance computing. Fig. 3 illustrates
the diagram of distance computing between the query vector
and the reference vectors on the GPU device, in which the
query vectors and the reference vectors are stored in the
global memory and the matching distance is temporarily
stored in the sharedmemory for improving access time. Every
matching distance computing is conducted on the single GPU
thread independently and N blocks is used for the different
keypoints, so the calculating for distance computing can be
done in few times.

Let h be the dimension of the descriptor vector,
so the CUDA kernel function of the distance computing
defined as,

DCker nel <<< N , h >>> (pq, pr) (2)

where pq and pr are the pointers of the query vector and
the reference descriptors in the GPU global memory, respec-
tively. Since the ORB keypoint is 32 dimensional, namely
h = 32.N is the number of keypoints in feature database. The
kernel function totally calls N blocks and each block calls h
threads. The distance computing needs to do N ∗h accumula-
tion. Owning to the GPU global memory access is relatively
slow andGPU requires to access global memory repeatedly in
the accumulation step, so the GPU shared memory is utilized
to reduce access delay [80]. The shared memory is a kind of
GPU cache having fast access speed. Thus, to save access
time, the results of the distance computing are stored in the
GPU shared memory temporarily when doing accumulation,
so the computation speed is improved. Moreover, in order
to maximize the efficiency of the distance computing in the
CUDA framework and make every thread to do more works,
the reference descriptors can be divided into a number of
small vectors. Each block is responsible for the calculating of

the small vectors, making fully use of the GPU’s computing
resources.

The parallel k nearest neighbor search scheme is summa-
rized in Algorithm 2, where we respectively set the values of
the GPU block and threads according to the number of key-
points and the dimensional of feature descriptor. Moreover,
we make use of the shared memory to temporarily store the
matching distance for further saving computational burden.
As a result, the Parallel-KNN can achieve 10 times faster than
that of the traditional KNN matching algorithm.

Algorithm 2The Parallel k Nearest Neighbor Search Scheme
Input: vq andMr represent the query descriptor vector and
the reference descriptor matrix.
Output: {m1, · · · ,m32} -a set of matching score (matching
distance).
Step 1: allocate the spaces of the global memory for the

query vector and the reference matrix.
Step 2: Set the value for the input keypoints according to

the number of input keypoints.
Step 3: Set the value for a single feature descriptor

according to the length of the feature descriptor.
Step 4: Access the global memory to get the query

descriptor and the reference descriptor vectors.
Step 5: Calculate matching distance on GPU threads and

save the matching value in shared memory for
improving computation time.

Step 6: Access the shared memory to get the matching
matrix.

C. REMOVE OUTLIERS
A common problem in feature tracking is to remove outliers
from the tentative matching collections. If many incor-
rect matches in the final collection of visual correspon-
dences, then the SFM is easily to result in ambiguous
point-cloud model, even cannot produce point-cloud model.
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Algorithm 3 The Real-Time Feature Tracking Scheme
Input: {I1, · · · , IN }-a set of images.
Output: {m1, · · · ,mx}-a collection of feature correspondences.
Step 1:

for Ii in {I1, · · · , IN } independently do
Detect keypoints and compute descriptors using ORB feature, then resulting keypoints

{
k1, · · · , ky

}
and

corresponding feature descriptors
{
d1, · · · , dy

}
.

end for
Step 2: Load the feature descriptors

{
d1, · · · , dy

}
into the global memory in GPU device.

Step 3: Allocate the space of the shared memory in GPU device to temporarily store the matching distance between the query
descriptor and the reference descriptor vector.

Step 4: Construct tentative correspondences for {I1, · · · , IN } using the proposed Parallel-KNN method, so the matching
collection is obtained as

{
m′1, · · · ,m

′
z
}
.

Step 5: Remove incorrect feature matches from the tentative correspondences,
{
m′1, · · · ,m

′
z
}
, using the proposed DBT

method, so a new matching collection is obtained, {m1, · · · ,mx}, where the value of x may be less than that of y.
Step 6: Transfer the final matching collection

from the shared memory in GPU device to the CPU memory for the access from the host device.

Thus, to improve the quality of point-cloud model con-
structed by SFM system, the outliers must be removed in
practical.

To address the problem of outlies removing, many
approaches have been proposed in recent years, such as
ratio test and cross check proposed by Lowe [39], geometric
scheme based on RANSAC [81], in which the homography
matrix or fundamental matrix should be estimated and is used
to verify visual correspondences [82]. However, the above
methods suffer easily from affine transformation. In the other
word, for given two images, if the query image is affine
transformed, then these methods cloud not remove incorrect
matches from the tentative matching collection. Moreover,
the RANSAC-based method has precondition that is the
number of inliers must be greater than fifty percent, this
condition is very rigorous. Recently, Bian et al. [83] proposed
a statistic-based method called GMS—Grid-based Motion
Statistics, for outlies removing. However, the GMS is heavily
dependent on the number of keypoints, if there is few key-
points the GMS cloud not work well at al. Zhao et al. [84]
proposed a vector filed consensus-based method (VFC) to
remove outliers in feature tracking, for given a set of observed
input-output pairs s = {(xn, yn) ∈ X × Y }Nn=1, the VFC is
utilized to lean a mapping f : X → Y to fit the inliers,
then result in a desirable matching precision. Unfortunately,
the VFC is time consuming when processing high-resolution
images.

According to deeply review recent feature matchingworks,
we found that the distance between the first candidate and
the second candidate keypoints for the query keypoint is very
short in the correct matches estimated by 2nd nearest neigh-
bor search. Conversely, if the distance between the two candi-
date keypoints is exceed a threshold, the matchmay incorrect.
To deeply address the ambiguous problem in feature track-
ing, based on our observation, we propose a distance-based
test (DBT) method to improve the feature matching method
to produce high-confidence matching collection.

For given a set of query keypoints, Q = {q1, · · · , qm}, and
a set of reference keyoints, R = {r1, · · · , rm}, we firstly use
2nd nearest neighbor search to estimate the tentative match-
ing collection, the confidence of two candidate keypoints for
the query keypoint can be calculated as

c =
‖p (qi)− p (ri)‖∥∥p (qi)− p (rj)∥∥ (3)

where p (qi) and p (ri) denote the descriptor for keypoint
qi and keypoint ri respectively. If c < 0.7 , the

〈
qi, rj

〉
is

considered as a correct match. Looping the matching step,
a set of initial matches can be obtained.

M̂ = {〈qk , rk 〉 |k ∈ [1,min (m, n)]} (4)

Based on the initial matching collection M̂ , the homography
matrix is easily estimated in four-point algorithm [85],

Hq,r =

 h1,1 h1,2 h1,3
h2,1 h2,2 h2,3
h3,1 h3,2 h3,3

 (5)

thus, the geometric approach is utilized to verify the matching
collection M̂ , namely

q′k = Hq,rqk (6)

and

d =
∥∥q′′k − rk∥∥ (7)

where q′′k demotes the homogeneous coordinate of q′k .
If d < ε , the 〈qk , rk 〉 is a correct match, thus an improved
matching collection M̆ = {〈ql, rl〉 |l ∈ [1,min (m, n)]}.
Assuming r ′l is the second candidate keypoint for the keypoint
ql , the Euclidean distance between rl and r ′l can be calcu-
lated by

d ′ =
∥∥rl − r ′l∥∥ (8)

If d ′ < ϕ, the 〈ql, rl〉will consider as a correct match. Repeat-
ing the verification step, the final correct matching collection
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FIGURE 4. Remove outliers using the DBT method. (a) Initial matches. (b) Final matches.

can be obtained as

M̃ =
{〈
qj, rh

〉
|j, h ∈ [1,min (m, n)]

}
(9)

Fig. 4 illustrates the initial matching and final matching,
in which the former is generated by 2nd nearest neighbor
search (2NN), the latter is generated by using the 2NN+DBT.
We can see clearly that our method can efficiently remove
outliers.

IV. EXPERIMENTAL RESULTS
The proposed method is developed in C++, Nvidia CUDA
SDK 10.0 and OpenCV SDK 3.4 and run on a PC with an
Intel i5 processor having 3.4GHz and 32.0 GB of memory.
To assess the performance of the RTFT method, we have
evaluated the proposed method on the Repeating dataset
(Ours) and building dataset [86] respectively, and also make
a comprehensive comparison with KNN [21], ENFT [25] and
MODS [59]. We have collected a set of images for evaluating
feature tracking method. These form the Repeating Dataset
with many repeated structures and repeated features on the
surfaces of each image. The samples of Repeating dataset are
depicted in Fig. 5. The dataset with keypoints and the source
code of the RTFT method will be released when the paper is
accepted.

A. EVALUATION ON REPEATING DATASET
We have evaluated the Parallel-KNN method on the Repeat-
ing dataset which is a challenging benchmarking dataset
having 60 images, and contains some repeated features on
the surface of architecture. In the experiment, we use ORB
feature to detect keypoints, and also use it to compute descrip-
tions for each image. And, we test the Parallel-KNN, and
make a comparison with the state-of-the-art feature tracking
methods. The assessment results are listed in Table 1, in
which the traditional KNN method is selected as a base-
line, and has the lowest matching precision and the high-
est computational cost. Comparison to KNN, the Kd-Tree
has a little acceleration on matching speed, and also has
a little improving on matching precision. The SiftGPU has
a 11.49 times acceleration, and also has 0.689 matching
score. Although the MODS has a significant improving on
matching precision, it is too time consuming because of views
synthesis. Both RepMatch and CODE have big improve-
ment on aspect of matching precision, but their matching
speed have only a little acceleration. The CasHash is a Local
Sensitive Hashing-based feature tracking method for SFM-
based 3D reconstruction, thus, it has a desirable matching
precision and also has 3.10 times acceleration. The ENFT is
also a GPU-acceleration feature tracking method for SFM,
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FIGURE 5. Samples from the Repeating dataset. Note that many repeated features are appeared on the surface of each image.

TABLE 1. The assessment results for repeating dataset with 60 pairs.

FIGURE 6. Samples from the building dataset. Note that many repeating features are appeared on the surface of each image.

and use various strategies to decrease computational bur-
den, thus it obtains a 12.55 times matching acceleration.
Owing to the usage of Ratio-Test in the ENFT, then leading

a desirable matching precision, namely 0.892. Among these
feature trackingmethods, the RTFT has significant improving
on both aspects of matching precision and computational
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FIGURE 7. Visual correspondences of each feature tracking method for the building dataset. (a) KNN. (b) MODS. (c) ENFT. (d) RTFT.

cost, which only consumes 1.31 second for matching image
pairs. According to our statistics in experiment, the RTFT
has 17.63 times faster than that of the traditional KNN
approach. As a result, the RTFT could be consider as an
excellent feature trackingmethod on aspects of efficiency and
accuracy.

B. EVALUATION ON BUILDING DATASET
To assess the performance of the proposed RTFT method,
we evaluate it on the building dataset, and compare it with
the state-of-the-art methods. The building dataset is the latest
benchmarking dataset that is constructed for evaluation of
SFM-based 3D reconstruction. Fig. 6 illustrates the selected
samples of the building dataset, which contains repeated
structures and repeated features.

Fig. 7 illustrates the visual correspondences for each fea-
ture tracking method, in which the traditional KNN has the
minimum number of matches, and conversely the proposed
RTFT has the maximum number of matches. The number of
visual correspondences for the MODS method is in the sec-
ond place, but which has consumed higher computation cost
because it needs to synthesize some virtual views in feature
matching for improving matching precision. Although the
ENFT has number of visual correspondences less than that
of MODS, it has fast speed, and is capable of dealing with
non-consecutive feature tracking. The RTFT not only has the

FIGURE 8. Averaging computational time for each feature tracking
method that consumed on the building dataset.

fastest speed but also obtain the maximum visual correspon-
dences. This assures that the point-cloud model produced by
SFM has high quality when the RTFT is used. Fig. 8 presents
computational costs for each compared method, in which the
RTFT has the fastest speed, which achieves 10 times accel-
eration than that of the traditional KNN method. As a result,
we can consider that the RTFT has the best performance on
both computational cost and matching precision.

We have integrated the RTFT in to ISFM system [8] to
evaluate the practical ability of it. Fig. 9 illustrates the sparse
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FIGURE 9. The sparse point-cloud model for the building dataset, and constructed by the ISFM system with the RTFT method. (a) Front of the
reconstructed point-cloud model. (b) Side of the reconstructed point-cloud model.

point-cloud model produced by the ISFM system with the
RTFT for the building dataset. The constructed point-cloud
model has 496,090 vertices, and only 50 images was input
to ISFM system. Thus, we can concern that the RTFT has
excellent performance in practice.

V. CONCLUSION
To improve the quality of the point-cloud model that is
produced by the SFM system, we designed a novel feature

tracking method, and have implemented it in parallel archi-
tecture with Nvidia CUDA SDK, then resulting in a signif-
icant acceleration on computational cost. Specifically, the
proposed RTFT method consists of three modules: 1) key-
point detection and descriptor computing, 2) feature match-
ing, and 3) outliers removing. In the first stage, the ORB
feature is used to find keypoints and obtain robust descrip-
tions for the detected keypoints. In feature matching process,
the Parallel-KNN is utilized to match feature descriptors for
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decreasing the computational burden in large-scale 3D recon-
struction where too many images are available. Moreover,
the design logically behind of the Parallel-KNN is easily to
generalize for other fields that also need parallel-computing
technique. In the last step, we developed a novel approach
to rectify the visual correspondences for resulting a set of
correct feature matches, this method is only based on the
Euclidean distance comparison, and is easily to implementa-
tion in programming language. Finally, we assess the RTFT
method on three benchmarking datasets with some repeated
structures and many repeated features, then result in a desir-
able performance in both feature matching precision and the
quality of the point-cloud model.

In summary, the RTFT is versatile and expansible, which
can be easily extended to other applications such as simulta-
neous localization and mapping, optical flow estimation, and
robotics navigation. In the future, we will revise the Parallel-
KNN and RTFT, and implement it on the multi-GPU devices
for extreme fast acceleration on computation time.
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