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ABSTRACT Using a traditional e-learning system, when teaching structured query language (SQL) queries
in classical classrooms help instructors, to improve the students’ SQL skills and learning effectiveness.
However several problems in using e-learning as a teaching and learning assistant remain – such as
difficulties in differences in learning ability and knowledge level. We solved these problems by applying an
adaptation module to our e-learning system. However, we still found it required considerable effort to create
enough exercises to make the adaptation effective enough. So, we developed a novel automatic question
generating algorithm, named Reverse SQL Question Generation Algorithm (RSQLG), to automatically
generate exercises (including both answer and question) from a source database. RSQLG reverses the
traditional manual process used previously by instructors. Instead of creating questions and answers for
them, RSQLG creates the answers first. The generated exercises are presented to students by applying
question adaptation methodology based on student knowledge level in each supported learning objective.
We evaluated the learning effectiveness of our approach by using outcome-based learning. After post-test
to pre-test scores were compared, we found students using our system improved their scores by 26%.
Consequently, the adaptive e-learning framework using RSQLG could be applied in any adaptive or
traditional e-learning for a database course to benefit the instructors leading to less effort in exercise
management and to improve the learning outcome from the students allowing as much practice as they
need.

INDEX TERMS E-learning, adaptive system, automated question generating algorithm, computer-aided
instruction, SQL learning.

I. INTRODUCTION
Basic SQL statements (SELECT, FROM and WHERE
clauses) are a key foundation when studying practical
database courses. Many instructors use an e-learning system
to improve the quality of teaching and learning. Applying
e-learning benefits both instructors and students, leading to
flexibility to review learning materials at any time, ability
to access exercises on their own initiative and convenience to
check the correctness of student answers. However, teaching
and learning through e-learning still faces multiple chal-
lenges. Students will receive the same, fixed set of contents
and exercises created by instructors, whereas, in reality, each
student has a different knowledge level and learning ability.
These exercises may not align with or do not cover the
learning development of individual learning. As a result,
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its effectiveness of expected learning outcome was not
achieved. In the same class, there might be some students
who already know some SQL commands andwhomight want
to learn new commands. There are also students who do not
know any SQL commands. If students practice repeatedly
with the same set of exercises, their knowledge will not
improve because they may answer the questions from mem-
ory, without understanding. Also, studentsmay become bored
because there is no progression in difficulty and complexity
of the exercises. There are also difficulties in tracing which
SQL commands the students did not understand. In teach-
ing and learning management, instructors must know how
their students should learn in both theoretical and practical
dimensions. Therefore, instructors should develop content to
suit students individually [1]. For this reason, we developed
idea concept of adaptive e-learning which can adapt content,
learning sequence and exercises to suit students individu-
ally [1]. Adaptive e-learning can help students gain a better
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learning outcome than traditional e-learning, which allows
only learning in a classroom without assisting systems [2].

However, there are still few studies developing adap-
tive e-learning systems for fundamental SQL courses. From
the researchers’ perspective, the implementation of adaptive
e-learning in practical courses leads to variety and a large
numbers of available exercises tomake the adaptation process
effective. This is a key problem for instructors due to the
effort needed to provide enough exercises to satisfy student
needs. Generally, the instructor sets learning objectives for
testing each SQL command and writes SQL questions based
on these learning objectives. Consequently, the process of
creating exercises is time consuming. To solve all these prob-
lems, we divided the problem into three tasks. Firstly, we
present an algorithm to automatically generate basic SQL
questions to be used in an adaptive e-learning system. The
algorithm works in reverse, it generates the SQL queries
from the answers. Secondly, we present an approach for
developing an adaptive e-learning system for SQL courses
using the Reverse Generation SQL Question (RSQLG) algo-
rithm. This algorithm generates large numbers of questions
with much less instructor effort. Students also see questions
which suit their knowledge level and needs. We believe that
students will improve their basic SQL skills by using our
system. Lastly, we will show that learning outcomes from our
DBLearn Adaptive e-learning system exceed those of tradi-
tional e-learning systems and our system can adapt to student
knowledge level effectively. Our research will also enable
instructors to achieve outcome-based learning by teaching a
practical database course.

II. RELEATED WORK
A. ADAPTIVE E-LEARNING
E-learning systems are playing an important role in educa-
tion. Many instructors use e-learning in their courses, includ-
ing basic database courses. For example, Cvetanovic et al.
developed an e-learning system for teaching a basic database
course in both theoretical and practical aspects [3]. Students
can practice their skills with exercises. The system supports
almost every learning objective listed in the course syllabus.
In traditional e-learning, instructors must create content by
themselves. After that, students must practice using the same
set of materials. So, some researchers developed a con-
cept of adaptive e-learning which adapts contents, learning
sequences and exercises in accordance with the differences
in student knowledge and skills [1], [4].

E-learning adaptation techniques try to make traditional
e-learning adapt and respond to student differences in knowl-
edge and skill. There are many proposed techniques. Fol-
lowing Brown et al., approaches are separated into two
groups [5]. First, adaptive presentation systems, which adapt
the method of presenting content to suit student style of
perceiving or learning categorized by learning style theory
or trained user model [6]–[9]. Second, adaptive navigation
systems adapt the learning sequence and suggest the next
learning objective that the student should take matching their

goals and knowledge level [10]. This technique can be applied
using many methodologies. Zemirline et al. presented five
adaptive navigation techniques – direct guidance, adaptive
ordering, link hiding, link annotation and link generation –
which can use student actions in the system, such as answer
correctness and time used to read content, to make sug-
gestions [11]. Computer adaptive testing (CAT) adapts the
number of questions, their difficulty and learning objective
of exercises to suit student ability [12], [13].

There are few studies on adaptive e-learning for database
courses. For example, Pahl and Kenny. presented an approach
to correcting, providing feedback and presenting recom-
mended questions for programming courses [14]. This
approach uses language grammars and syntax trees to process
the feedback. Mitrovic presented SQLT-Web, which used
constraint-based modeling to form knowledge models from
submitted answers [15]. When a student submits answers,
the system analyzes answers and mistakes by comparing
a student’s answer with the correct answer using defined
constraints. Then it sends an appropriate action such as repeat
the same question, log out and go to next question. Nalin-
tippayawong et al. proposed an approach to predict student
knowledge using mistakes from answers [16]. However, all
researchers [14]–[16] still do not prepare enough questions
to lead to knowledge improvements.

B. ALGORITHM FOR AUTOMATED
QUESTION GENERATION
Using an algorithm to automatically generate questions
is a new approach to lighten the instructor’s workload
and enhance sustainable e-learning practices for students.
We believe that this is the first work that proposes algorithm
generated SQL questions and answers. Reviewing genera-
tion algorithms in related areas, we found four approaches.
Firstly, ‘‘questions by mutation’’ mutates the input into a
new object or answer. For example, for English language
courses, Lee et al. used sets of errors found by analysis of
existing corpora and generated questions containing com-
mon errors which students were required to identify [17].
Similarly, Funabaki et al. created debugging questions for
programming courses [18], [19]: their algorithm creates bugs
in JAVA source code using one (or more) of three meth-
ods – command deletion, variable swapping and command
insertion. Secondly, ‘‘questions by keyword’’ extracts key-
words from the input and generates a new question from the
extracted keywords. In mathematics courses, Nandhini and
Balasundaram generated mathematical problems for students
with learning difficulties: to enable students to understand
various problems, the keywords in the original problem were
used to generate new several problems that require solutions
which differ from that of original problems [20]. Liu et al.
helped students improve their literature reviews by parsing
sentences from their reviews, extracting key phrases and
finding appropriate sentences from Wikipedia pages, then
forming questions about those sentences [21]. These ques-
tions help students improve their reviews without needing
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instructor responses. In, ‘‘questions from input’’, Jain et al.
generated questions from the input image [22]. Their research
can be applied in many fields, e.g. educational study, driving
assistance and chatbots. Lastly, Abdul Khalek and Khurshid’s
‘‘questions from metadata’’ generates new SQL queries from
the database schema for testing database performance [23].
However, their work did not consider data in tables or present
any way to generate a text explanation of the query being used
as an SQL question in exercises.

Previous research basically converts a source element into
a new element (question). The source element can be either
the answer, such as a grammatically correct sentence and bug-
free source code, or something more complex, such as an
input image or student’s literature review. We applied this
concept in our study to generate SQL questions and answers.
The data in a database is our source element. Since the
exercises in a basic SQL course query data from the database,
we will extract data from the database to generate, as output,
the SQL query. Then, we augment the output query with a
text explanation of the query.

FIGURE 1. Structure of adaptive e-learning (DBLearn).

III. OUR ALGORITHM
The RSQLG algorithm was adopted in the adaptive e - learn-
ing shown in an architecture of adaptive e-learning (Fig. 1).
Our system has two main parts – SQL question generation
and adaptive e-learning system. The SQL question gener-
ation module generates SQL exercises with questions and
answers and stores them in the questions bank. The exercise
generation step is needed once per course when initiating the
system. The generated SQL questions are stored in the SQL
questions bank. An adaptive module uses a question from the
bank and the student’s profile from the learning management
system (LMS) –DBLearn system [16] - to process and deliver
a set of suitable SQL exercises via the LMS interface. After
the student has finished the exercises, the system analyzes
the results and predicts whether the student understood each
SQL command or not. The system will store the predicted
result to the student’s profile ready for his or her next use of
the system.

A. SQL QUESTION GENERATION ALGORITHM
The generation of SQL questions process uses our SQL ques-
tion generation algorithm (RSQLG). This algorithm operates
on the input database and converts it into SQL exercises. The
exercise has both questions and answers. Each SQL answer is
a query formulated from database metadata. Then, each SQL
answer is translated into a text explanation and used as the
SQL question for students.

Thus, we applied two approaches i.e. ‘‘questions from
keywords’’ (SQL question generating process) and ‘‘ques-
tions from metadata’’ (SQL answer generating process) to
our algorithm. The two approaches are discussed further in
section V.

B. ADAPTIVE E-LEARNING
1) LEARNING MANAGEMENT SYSTEM (LMS)
The study used DBLearn system [16] as LMS. DBLearn is
an e-learning tool designed specifically for database courses.
The system supports student practice of SQL queries and is
able to check the correctness of the student answers. It also
automatically gives error feedback to students. DBLearn is
the interface between students and the adaptation module;
it sends data retrieved from the student profile to the adap-
tation module. The adaptation module processes it and stores
it in the student profile. The student profile stores the stu-
dent history, e.g. exercise results, learning progression and
knowledge level for each learning objective.

2) ADAPTIVE MODULE
Since we aimed to adapt methods currently used in e-learning
SQL courses, so that students could practise online until
they are skilled, we considered that the content adaptation
technique might not be optimal for practical courses. Thus,
we should adapt the exercises the students practised, to make
sure they understood the SQL commands and achieved the
learning objectives of the course. For this practical course,
appropriate adaption strategies are learning sequence adapta-
tion, knowledge suggestion and adaptive testing.

FIGURE 2. Example of SQL query using LIKE command.

The exercises or tests adaptation [12], [13] is the algo-
rithm to evaluate and predict student knowledge level in each
learning objective using the results from previous recorded
answers. The exercises with appropriate difficulty degrees,
i.e. ‘‘not too easy’’; ‘‘not too difficult’’, etc., will be pre-
sented to students. As the student attempts more exercises,
the algorithm can predict their knowledge level more accu-
rately from the answers. For the SQL course, the difficulty
level is based on the complexity of the query. For example,
a correct response for the LIKE command exercise is shown
in Fig. 2.
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FIGURE 3. Example of SQL query using LIKE with AND commands.

The query in Fig 2 is basically very simple and easy,
but other clauses, e.g. AND, OR, can be added making it
more difficult – see Fig 3, so we classified exercises by their
associated learning objectives. The algorithm can suggest
more difficult and complex exercises which use multiple
commands, as needed.

IV. DBLearn – RSQLG CONCEPT AND FRAMEWORK
A. DBLearn – RSQLG CONCEPT
The traditional process of generating SQL exercises is shown
in Fig. 4. The instructor usually begins with exploring the
database schema and the data itself. Then, a question is posed
based on a query that a student should understand and aligned
with a learning objective. Next, the instructor specifies the
correct SQL query to answer the question. Finally, this query
is validated using the real database to determine if the result
is returned as specified in the question or not.

Our RSQLG concept generates SQL exercises by reversing
the process in the traditional method. We choose a set of data
and, from that data, infer the SQL query that will produce
it: this is the ‘reverse’ step in our algorithm. Finally a text
explanation of the SQL query is output – see Fig. 5.

B. DBLearn – RSQLG FRAMEWORK
Our RSQLG framework has two parts. Firstly: Database
pre-processing extracts database features necessary for

generating questions. Secondly: the RSQLG algorithm has
three main steps – a) query metadata generation, b) output
of the SQL and c) text explanation generation. The input
for the RSQLG algorithm is the pre-processed database with
metadata and question settings. These are SQL commands
and required question styles or patterns. RSQLG returns a
complete SQL exercise with question and answer as well as
the input database. This algorithm currently supports basic
SELECT statements which allow data selection from one
table and aWHERE clause including the relational operators:
BETWEEN, IN, IS NULL, LIKE and logical operators. The
process for RSQLG is shown in Fig. 6.

All possible exercises from the input database will be
generated before students log in to the system to prevent slow
response time problemwhile doing the exercises. We decided
not to generate SQL questions one by one after students
chose the learning objective because generating advanced
SQL exercises is slow if the query contains more than one
condition. These conditions cannot use pre-processed data
from database metadata due to differences in details. Then,
we need to confirm that the generated query is valid by
testing it on the actual database by using the MySQL web
service [24]. Finally, all possible exercises are ready to use
by the DBLearn system.

1) DATABASE PRE-PROCESSING
RSQLG pre-processing extracts the data and metadata nec-
essary for SQL query creation, e.g. database schema, table
schema, attribute data type, attribute data length, attribute
constraints, relationship and key. This reduces the time to
generate exercises, because RSQLG will not need to connect
to the real database, whenever it needs some data. Further-
more, we generate some aggregated data, e.g. the maximum
and minimum values of numeric attributes when the SQL
query contains a WHERE clause with relational operators
(>, <, =); common strings, date and time attributes when
the query contains a WHERE clauses with a LIKE operator.
This data will be input to the RSQLG algorithm.

FIGURE 4. Process of manually generating SQL exercises.

FIGURE 5. Concept in generating SQL exercises using RSQLG.
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FIGURE 6. Framework of RSQLG algorithm.

FIGURE 7. Query metadata example.

2) QUERY METADATA GENERATOR
An example of SQL query metadata - in the JavaScript
Object Notation (JSON) - for generating SQL queries and
accompanying text explanations is shown in Fig. 7. The
SQL queries are generated in sequential order by SELECT
statement execution order (FROM, WHERE, GROUP BY,
HAVING, SELECT, ORDER BY, LIMIT) [25]. The Query
Metadata Generator algorithm works on basic SQL clauses –
FROM, WHERE, SELECT and ORDER BY clauses.

The first key in the JSON object is ‘‘command’’, which
selects the type of metadata, in Fig. 7, the metadata is used
to create a SELECT command, the ‘‘columns’’ key defines
which fields will be presented. The value of this key is an
array of JSON objects containing the table and attribute name
for each field. The ‘‘condition’’ key describes the WHERE
clause of the query: it is a JSON array of expressions (key
‘‘exp’’) and logical operator for joining the expressions (key
‘‘lop’’). The ‘‘exp’’ array contains JSON objects for each
expression. The members of the object are table, attribute,
operator (key ‘‘op’’) and value of the expression. Finally,
the ‘‘order’’ key defines the ORDER clause. The member
is an array of order expressions, each containing a table,
attribute and order (ASC or DESC).

Details of the SQL query metadata generation follow.

a: FROM CLAUSE (TABLE SELECTION)
Firstly, the database table will be chosen from a list in
the input database and sent to the next step (generation of
WHERE clause, fields selection and ORDER BY clause).
After RSQLG has generated all possible exercises from one
table, it will choose the next table in the list for further query
metadata generation.

b: WHERE CLAUSE
After the table has been chosen, the algorithm will generate
conditions for the query. The operators in the WHERE clause
are described in sections b.1–b.6 or, if question setting speci-
fies no WHERE clause, this step will be skipped.

b.1: RELATIONAL OPERATORS
For a WHERE clause with relational operators, the algorithm
selects each operator (>,<,=,>=,<=, !=) in turn, coupled
with a pair of randomly chosen fields and values for them
from the table. The field data type can be either numeric or
text. There are some constraints: if the operator is > or >=,
the chosen value must not be the highest value (for a numeric
data type) or the last value in alphabetical order (for text data
type). Similarly for < or <=, the other extremes must not
be chosen. These constraints prevent an empty result being
returned from the query. The number of possible generated
conditions, Y. is:

Y =
∑n

i=1
(ViO− 4) (1)

when
Vi = Number of possible values in field i
O = Number of operators (default is 6 - >, <, >=,

<=, =, !=)
n = Number of fields in the table that meet constraints

b.2: BETWEEN OPERATORS
For BETWEEN or NOT BETWEEN operators, fields are
iteratively select from the table. Again, the data type of can
be either numeric or text. The algorithm randomly chooses
two or more values for the chosen field to be used with the
operator. There are some constraints here also. The chosen
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values must not be neighboring values in an ordered set and
may not be the first and the last values in the same condi-
tion. These constraints are created to avoid students being
confused, when they write a legal SQL statement, which
accidentally returns a NULL, because the test data is sparse.
The number of possible conditions for one table is

Y = O
(
(n− 3)+

∑n−3

i=1
n
)

(2)

The default value ofO is 2 (BETWEENandNOTBETWEEN
operators).

b.3: IN OR NOT IN OPERATORS
Each field is selected iteratively and coupledwith two ormore
randomly selected values. We arbitrarily restricted the size of
the set of values which is the argument of IN or NOT IN to
four values. In this case, we can generate

Y =
∑n

i=1
O
[(

Vi − 2
3

)
+

(
Vi
4

)]
(3)

conditions.
The default value of O is 2 (IN and NOT IN operators).

b.4: IS (NOT) NULL OPERATORS
Each nullable field is selected iteratively. A pair of conditions
matches the number of nullable columns in the table.

b.5: LIKE OPERATORS
LIKE or NOT LIKE operators iteratively select a text field
by looking up the metadata in the pre-processed database and
generate a pattern from pre-processed data. The number of
possible conditions is determined by the number of generated
patterns.

b.6: LOGICAL OPERATORS (AND, OR)
The AND operator links condition A and condition B: con-
dition A is chosen to select more than one record. Then
condition B is created from data in the result set of query A.
The fields are checked: they must not be primary keys of the
table.

For OR, the steps are essentially the same, but condition B
is created from data not in the result set of query A.

c: SELECT CLAUSE (FIELD SELECTION)
The fields listed in a SELECT clause can be chosen in two
ways. When some fields are specified in the question setting,
the algorithm will randomly select one or more (but not
all) fields. Up to three fields may be set. If the question
setting does not allow field selection, the algorithm selects
all fields (SELECT ∗).

d: ORDER CLAUSE
The ORDER clause can only be generated for a query whose
result set has more than one record: Again, we avoid stu-
dent confusion when an ORDER clause has no effect. The
algorithm randomly selects one or more different fields to

use in the ORDER clause. Again, we arbitrarily limited the
maximum number of fields to be two and assigns ORDER
operator (ASC or DESC) to the selected fields.

3) SQL ANSWER GENERATOR
After query metadata has been generated, the metadata from
Fig. 7 will be processed to generate the SQL query: the basic
query statement will have this form:

SELECT select_expr
FROM table_references
WHERE where_condition
ORDER BY (col_name | expr | position)

[ASC | DESC],...]

For example, after query metadata from Fig. 7 was pro-
cessed, the algorithm outputs this SQL query:

SELECT name, salary
FROM employees
WHERE salary = 25,000;

FIGURE 8. Example of output from query extraction and translation.

4) SQL QUESTION GENERATOR
The SQL question generator augments the query metadata
output from the generator with a text explanation. This is a
natural language description of the query by separating out
each part of command and replacing it with natural language.
An example is shown in Fig. 8. The table and field names
will be retrieved from the database metadata. There is no
restriction on the pattern or language of the SQL questions.
Instructors can set their own preferences by editing the SQL
question templates. In our experiments, Thai language was
actually used in the template, but English equivalent exam-
ples are shown in Fig. 8. It shows a template based on the
query metadata in Fig. 9.

5) ALGORITHM WRAP-UP
Fig. 10 demonstrates a pseudocode of RSQLG algorithm
for generating the following SQL exercise. The multiple-
line comments describe the step-by-step output in RSQLG
algorithm.

Question: Display salary of employees whose first name
is Adam and last name is Smith in descending order of their
salary.

Answer:

SELECT employees.salary
FROM employees
WHERE employees.first_name = ‘Adam’
AND employees.last_name = ‘Smith’
ORDER BY employees.salary DESC;
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FIGURE 9. Example of SQL question template.

V. ADAPTIVE E-LEARNING FRAMEWORK
Reading textbooks and participating in a lecture class are not
enough for learning SQL in practical courses. It is essential
to make students show they have met the objective of the
class by carrying out exercises, assignments and quizzes
themselves. The selected adaptation techniques are ques-
tions adaptation and knowledge suggestion to accomplish
the self SQL practice. The adaptive e-learning framework
was designed and applied in the DBLearn system shown
in Fig. 11.

After the student has logged into the system, the student
chooses whether he or she wants to use default configuration
suggested by the system or not. If the student has used the
system before, the system will retrieve the student profile to
suggest the next learning objectives they should take from
their historical data and also suggests the number of questions
they should practice in a session – default value is 10 ques-
tions. For students who have never used the system before,
the system will suggest the default questions by degree of
difficulty from the easiest to the hardest ones. If they do
not want to use the suggested questions, they can choose
other learning objectives and the number of questions they
want to practice by themselves. Then, the system will retrieve
SQL questions from the SQL questions bank, and deliver
them to the students. The system will analyze the submitted
answers to make a suggestion for the next login. In questions
retrieval, the number of questions for each learning objective
is calculated using the weight for each learning objective. The
weight was defined from the number of questions generated
in the SQL questions bank, the learning objective difficulty
and the student’s knowledge level. The number of questions
is calculated by (4).

Qi =
⌊
Qall ×

(
Wi

Wall

)⌉
(4)

where Qi = number of questions for learning objective i
Qall = total number of questions

FIGURE 10. Pseudocode of RSQLG.

Wi = chosen weight
Wall = Sum of chosen weights
For example, in Table 1, the student chose four learning

objectives – SELECT table, WHERE conditions (>, <, =),
WHERE conditions (IS NULL) and ORDER BY. The default
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FIGURE 11. Adaptation module framework.

TABLE 1. Example question volume calculation for each learning objective.

FIGURE 12. Question retrieval pseudocode.

weights were 1, 3, 2 and 3 respectively. The system will gen-
erate a number of questions based on the chosenweight. In the
example in Table 1 the student chose to attempt 20 questions
in total and the system calculated numbers of questions for
each learning objective using Eq. (4), leading to 2, 7, 4 and 7
respectively.

The system retrieves questions by randomly selecting them
from the SQL questions bank. For complicated learning
objectives or learning objectives following on from other
learning objectives, e.g. ORDER BY and AND or OR oper-
ators in WHERE clauses, the algorithm for selecting ques-
tions randomly chooses two learning objectives and retrieves
questions associated with the basic question having ORDER
BY and AND or OR operators in WHERE clauses. The
pseudocode is shown in Fig. 12.

After questions retrieval is finished, the system will
deliver questions to the student via the DBLearn system.
Fig. 13 shows a DBLearn screenshot.

After the student submitted his or her answers, the system
will calculate the percentage of questions in each learning

FIGURE 13. Sample screenshot of DBLearn.

objective that the student answered correctly. In the same
learning objective, the average percentage of the last three
sessions was calculated as a value representing student’s
knowledge level in each learning objective. Each session
of three consecutive sessions must lie in a 7-day interval
between this and the previous session. For example, the
student did the first session on day 1, the second session
on day 5, and the third session on day 17, the system will
calculate percentage of correct answers from only the third
session. In another example, the student took the first session
in day 1, the second on day 10 and the third on day 12.
The system will calculate a percentage using the correct
answers from only the second and the third session. This con-
straint was added because it represents the current knowledge
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FIGURE 14. Sample of DBLearn knowledge suggestion screen.

level better. In that period, the student might have studied
from other sources and improved his or her skills. In addition,
the students may have not been practicing for long time
and forgotten some points. The developed system is shown
in Fig. 14.

VI. SYSTEM EVALUATION
A. DBLearn – RSQLG CONCEPT
We measured the achievement of adaptive SQL learning sys-
tem using the RSQLG algorithm against three objectives:

1) To evaluate the hypothesis: students who use the system
had better learning outcomes than students who did not.

2) To assess the accuracy of the knowledge level
prediction.

3) To assess user satisfaction.

We tested a population of 152 students who enrolled in
a database system concepts course (2nd semester of aca-
demic year 2017, Faculty of Information Technology, King
Mongkut’s Institute of Technology Ladkrabang). There were
42 first and 110 second year students. Since we wanted to
assess the learning progress and learning outcome of stu-
dents in the same background, 110 second years were chosen
as samples. In addition, this course is a core course for
all second-year students. All sampled students took a basic
SELECT command quiz (Quiz #1) which had six questions
(25 points total) to assess their basic SQL skill including.
This basic SQL command includes SELECT clause, FROM
clause, WHERE clause and ORDER clause. The students
were randomly divided into two groups based on their quiz #1
score in order that the average scores of both groups were
not significantly different. Students in the adaptive group
(experimental group) were assigned to use the adaptive SQL
learning system for two weeks whereas the control group
used the traditional e-learning system. Students who already
scored 100% in quiz #1 were not assigned to any group
because we assumed that they have totally understood the
basic SELECT command. The exercises in the systemwritten
in Thai were verified by IT-oriented experts. After ending
two weeks, both groups took a basic SELECT command quiz
(Quiz #2) having the same number of questions, knowledge,
score, and difficulty as those of quiz #1. The study used scores
from both quizzes to analyze the results. We assigned half of
the students must use the system (#1), but optional for the
other half (#2). We found that 42 of #1 students actually used
the system and 38 of #2 students did not.

From quiz #1, the scores of the adaptive group and the
control group were close: both at 60% – see Table 2.

To ensure that there is no difference in background of
sampled groups, we checked that SQL knowledge for the
two groups should be similar. So, a two-sample z-test eval-
uated the difference between two groups, based on these
hypotheses:

H0: µ1 = µ2 (Students in the adaptive group and students
in the control group have the same level of SQL knowledge.)

H1: µ1 6= µ2 (Students in the adaptive group and students
in the control group have a different level of SQL knowledge.)

With α = 0.01 and a two-tail test, the critical values of
z are −2.576 and +2.576. We accepted H0, because z =
−0.5503 lies in ( −2.576, 2.576). Thus, at α = 0.01,
p < 0.010, there was no significant difference in SQL knowl-
edge between two groups.

TABLE 2. Mean scores for both quizzes.
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B. LEARNING OUTCOME EVALUATION
After finishing the experiment, the mean scores from quizzes
#1 and #2were compared: the mean score of students in adap-
tive group increased from 14.3 to 18.1 (a 26% improvement).
On the other hand, the control group score decreased by 1% –
see Table 2.

The data in Table 2 show that 81% of students in the
adaptive group scored better, with improvements greater than
those in the control group. Only 58% of control group stu-
dents improved their score, but 39% of those students actually
lowered their score.

To show that students in the adaptive group had better
learning outcomes, the study used quiz #2’s scores on a two-
sample z-test.

H0:µ1 > µ2 (Students in the adaptive group had the better
learning outcome)

H1: µ1 <= µ2 (Students in the adaptive group did not
have better learning outcome)

We found z= 2.343 (>−2.576, z of critical value at lower-
tailed 0.005 alpha level). So, we accepted H0: students in the
adaptive group really had a better learning outcome.

C. KNOWLEDGE SUGGESTION EVALUATION
For knowledge suggestion evaluation, we analyzed the asso-
ciated learning objectives of each question from quiz #2,
in which each question assessed one of the learning objectives
of SQL commands. If the student answered correctly two-
thirds of all questions for each learning objective, we assumed
that the student understood that associated learning objective.
Table 3 shows the results.

TABLE 3. Knowledge suggestion evaluation.

In the system, instructors can set achievement levels to
match their requirements. In this test, we set 80% to rep-
resent satisfactory achievement for SQL knowledge in Thai
universities and schools. Otherwise, the system will suggest
students obtaining less than this level to practice more.

We found that knowledge suggestion precision – the ratio
of true positive to both true and false positive values [26] –
is 77%, recall is 89% and F-measure is 84%, or more
than 80%, sowe concluded that the result is satisfactory. False
predictions arise from many false positives in integrated and
complex questions. For example, one question might need an
SQL answer with a combination of BETWEEN, LIKE and
AND operators, but the student might not understand only the
LIKE operator. This made the student answer this question
incorrectly. Consequently, the knowledge suggestion result

FIGURE 15. Number of sessions for Q1.

FIGURE 16. Q2: Number of questions per session.

showed that the student did not understand all BETWEEN,
LIKE and AND operators. This impacts knowledge sugges-
tion results from other learning objectives (BETWEEN and
AND operators) that they might have already understood.
To prevent this false prediction, the grading system needs to
be able to identify only the incorrect part of the query. This
limitation of the grading system needs further work.

D. USER’S PERSPECTIVE EVALUATION
In addition to evaluating by outcome-based learning, students
were surveyed to evaluate system usability and student satis-
faction with five questions scored on a 5-point Likert scale.
There were 86 respondents from students in the adaptive
group and students who received a full score in a prelimi-
nary test and voluntarily used the system. Results from each
question are shown below.

Q1: How many sessions did you practice?
Fig. 15 shows that 43% of respondents only used the

system once, but the others used the system more than one
time.

Q2: How many questions did you practice per session on
average?

Fig. 16 shows that most students (55%) chose to practice
16-20 questions. 37% of respondents attempted 10-15 ques-
tions per session. This data can be used to adjust the default
question settings suggested for students in the future.

Q3: Before using the system, what level of understanding
of SQL commands did you have?
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FIGURE 17. Q3 and Q4: knowledge level before and after using the
system.

TABLE 4. Responses to question 5.

Q4: After using the system, what level of understanding of
SQL commands did you have?

Fig. 17 (the highlighted bars) demonstrated that 88% of
students evaluated their level of knowledge asmedium (41%),
high (42%) to very high (5%). 12% of students evaluated
themselves as below medium level.

In Fig. 17, total number of students with good under-
standing, i.e. number at the high level and above, increased
from 46% to 81% (the white bars) and is clearly greater
than before taking our system, thus clearly shows that our
system helped students improve their understanding of SQL
command.

Q5: Do you agree with the following statements?
Table 4 shows that knowledge suggestion really facilitated

learning and the system was easy to use. However, the diver-
sity of questions was perceived as mediocre: this may be
because students also learnt other more difficult commands in
laboratory class while we ran this experiment. Thus students
need more questions, which are linked to the same learning
objectives as the one they are currently studying in the labora-
tory class, so we need to modify question settings to generate
more diverse exercises.

VII. CONCLUSION
The study used reverse SQL question generation algo-
rithm (RSQLG) to solve some difficulties in setting up

adaptive e-learning systems, in particular suggestion of suit-
able questions for each student and insufficient numbers of
exercises available to students. Our algorithm reverses the
manual question writing process by starting with the answer.
The algorithm used a database as input to generate the SQL
query and, from the query, generated the text description.
We suggested and delivered questions to students using our
rule-based adaptation technique from data derived from pre-
vious answers. We evaluated our approach with 86 students,
who enrolled in a database system concept course. Our
adaptive e-learning system improved their skills and led to
better learning outcome than from students who did not use it.
The question adaptation module also produced a satisfactory
prediction of student SQL knowledge level. Moreover, a
survey on user satisfaction demonstrated that students agreed
that the system facilitated their understanding. In summary,
our main contributions are three-fold. First, our RSQLG algo-
rithm succeeded in automatically generating basic SQL ques-
tions. Second, the adaptive e-learning framework for SQL
practical course was novel. Third, the adaptive e-learning
framework using RSQLG improved student learning
outcomes.

In future work, wewill enhance the RSQL generation algo-
rithm with more exercise variety and complexity and, also
analyzing fields and table text descriptions without manual
input to database metadata. The complexity in SQL exercise
will include GROUP BY and JOIN clauses. We can also
improve the text explanation to support other languages with
more complex grammar.
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