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ABSTRACT We investigate the emergence of localized activity states, so-called bumps in Wilson—Cowan
type two-population neural field model under the influence of transient spatio-temporal external input
with smooth a-type temporal function. This two-population model is composed of two coupled nonlinear
differential equations derived for the dynamics of spatially localized populations of both excitatory and
inhibitory model neurons. The model with no external input corresponds to at most two bump pair solutions.
Such a system can be interpreted as a minimal cortical model for short term working memory, that is the
ability of the brain to actively hold stimulus-related information for some seconds in short term memory and
discards once it becomes irrelevant Initially, if there is no activity in the system, persistent activity state can be
evoked by switching on a suitable transient excitatory external input. This activity remains stable even though
external input is switched off. The effect of external input on the emergence of bumps for different spatial
and smooth «-type temporal functions of external input is investigated and found that certain parameters play
a key role in the generation of persistent activity states in the network, e.g., relative inhibition time constant,
total duration, and the amplitude of external input. It is found that the minimum values of the amplitude
and active time to evoke the activity in the network is smaller than those observed in Yousaf et al. showing
that the present choice of temporal function in the external input is more effective and more close to natural
behavior.

INDEX TERMS Two population neuronal networks, stationary symmetric solutions, integro-differential
equations, Runge-Kutta Fourth order method.

I. INTRODUCTION
The brain has a basic ability to transiently hold stim-
ulus related information so-called working memory It
has been observed experimentally, that persistent evok-
ing of groups of neurons in prefrontal cortex were iden-
tified as a neural correlate underlying this short-term
memory [5], [11], [12], [22], [23].

In last decade studies have been done where various mod-
els have come across on how cortical networks can possi-
bly generate and sustain the selective activation of group of
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neurons (subpopulations), e.g. attractor states in the network,
persistent activation of thalmo-cortical and cortiocortical
loops [12], [13]. Especially, the idea of network attractor
states in framework of neural field models investigated inten-
sively in many studies (e.g., [3], [4], [6], [14], [16], [18],
[20], [25], [27]) Working memory are generally discussed
the disjoint classes on how the persistent states of activity is
generated. One most popular mechanism, in the cell assembly
the activity is persistent through strong recurrent excitatory
connections [21]. Another idea is that activity circulates in
form loops (called synfire chains ) [22], which consists of
feed-forward connected subgroups with no direct feedback
links between succeeding groups of neurons. These models
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can also be distinguished on the basis of discrete attractor
states associated discrete memory items and models that sup-
port persistent attractor states associated continuous variables
like space.

Sufficient excitatory feedback is an important element for
stable persistent activation in the network, while the role
of inhibition is required in order to keep the system from
entering a state of run-away excitation [31]-[33]. This can be
achieved by assuming a Mexican hat type connectivity func-
tions in neural field models. Such systems with the assump-
tion of translation invariant coupling property can sustain a
stable activation of a localized subpopulation of the network
(bump attractor) [1], [8], [14], [16], [27], [29]. A large num-
ber of modeling studies have been made to investigate the
generation of coherent structures such as stationary bumps,
their existence, uniqueness and stability [7], [24]-[26], [28],
[36], [38], [40]. However the key property of these models
is to explain the emergence of persistent activity in response
to external stimulus and neural field models have provided a
powerful tool to investigate these properties.

In 1970’s Amari [27] investigated the stability and exis-
tence of bumps in a simplified rate model of lateral inhibition
type subject to uniform external input in one spatial dimen-
sion. Latter on Kishimoto and Amari [37] also addressed
the same issues with a different firing rate functions.
Laing et al. [29] extended the work of Amari [27] by using the
connectivity function in replace of Mexican hat connectivity
function. They also proved the non-existence of multi-bump
solutions for Mexican hat shape connectivity function. A sta-
ble multi bump solution is generated for the two dimensional
case.

Rubin and Troy [32] have shown the existence of bumps
and linear stability in one population neuronal models with-
out recurrent excitations. They use alternate approach of
recurrent excitation is off-center synaptic architecture subject
to the constant external input. They investigated the existence
of bumps (Stationary symmetric solution), shapes and the
mechanism that forms the bumps.

Olyanic et al. generalized this work for more class of
temporal kernels [16]. Yousaf ez al. [3] investigated bump pair
formation under the effect of spatially dependent and tem-
porally transient external input in two-population neuronal
model. In this new scenario, different properties of model
e.g. boundedness, existence, uniqueness and the necessary
condition for emergence of the activity were studied. These
investigations are performed under the influence of spatio-
temporal external input with triangular temporal part.

The triangular type external input is also observed by [34]
but the smooth external input is more realistic choice for
temporal part as observed in Roth et al. [2], where axonal
calcium imaging technique is to measure the information
provided visual cortex by the pulvinar equivalent in mice,
the lateral posterior nucleus (LP), as well as the dorsolateral
geniculate nucleus (dALGN). In [2], they have discussed the
thalamic inputs. Mathematically, these inputs can be depicted
by the Alpha function. The main objective of this study is
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to investigate the effect of spatio-temporal external input
on bump solutions with more smooth and more commonly
observed temporal part. In order to have a control of the
Alpha function we slightly modify it and name it as «-type
function which is given by (26). In order to investigate the
effect of each part of the external input on the self-sustained
activity states, we split the external input into three parts
amplitude, spatial profile and the temporal one. In view of the
observations of [2] and the fact that stationary symmetric
solution serves as a working memory in the network, it will
be of great interest to investigate the emergence of these states
for the present choice of temporal function in the external
input. The paper is organized in the following way:

« In section two, we elaborate the two population neural
field model with external input and discussed in detail
the general properties of the model e.g the boundedness
property, and the necessary condition for the present
choice of the external inputs

« The next one is main section, here we focus on the emer-
gence of persistent activity states under the influence of
external input with smooth temporal part. The role of
different important parameters such as relative inhibi-
tion time, spatial and temporal functions of the external
inputs is investigated in detail. It is found that the total
duration of the external input and the relative inhibition
time constant pays an important role on emergence of
the activity in the network.

« In the final part of this study results are discussed and
conclusions are drawn accordingly. Numerical simula-
tions in this study are derived on the scheme based on
Runge-Kutta fourth order method using MATLAB.

Il. MODEL

In the two-population neural field model of co-localized
excitatory and inhibitory neurons, we suppose that all these
neurons receive synaptic input in the network. This synaptic
input depends on the synaptic weights which are dependent
of the type and absolute distance between pre-synaptic &
post synaptic neurons. The net activity levels in each neurons
depends on the weighted sum over the post firing activity
in presynaptic neurons. The firing rate of each population
at certain time is applicable particular non-linear functions
(firing rate function) to the activity levels at the same time.
The non-local model in excitatory activity v, and inhibitory
activity level v; is given as [16], [18], [19]

Ve = O¢ % Wee @ Fe(Ve — @e)

—a; * wie ® Fi(vi — ¢) + G, (1a)
Vi = O % Wi @ Fe(Ve — @e)
—a; x w;i @ Fi(vi — ¢i) + Gi (1b)
where the functions G,,, for m = e, i model the spatio-

temporal external inputs. The temporal kernel o, for m =
e, i expresses the impact of past neural firing on the present
activity levels in the network. The parameters ¢, and ¢;
are threshold values for firing and the parameter t stands
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for the relative inhibition time (ratio between inhibitory and
excitatory time constants).

The functions F,, (in = e, i) stands for firing rate func-
tions. These functions constitute one parameter family of
smooth and non-decreasing functions mapped R (the set of
real numbers) on to the unit interval [0, 1]. The functions F,,,
(m = e, i) are parameterized by a positive steepness parame-
ter B,- As an example of firing rate function Fy,, (m = e, i),
we have

1
Fu(v) = 5(1 + tanh(B,v)) (2)
For B, — o0 (m = e,i), the firing rate function F,,
approaches the Heaviside function ®:
0, v<O
OWw) = 3
) {1’ b= 0 (3)

The functions wy,;,, (m, n = e, i) in (1) are called the connec-
tivity function. These functions model the synaptic connec-
tion strength in the network and are assumed to be normalized
( ffooo Wmn(x)dx = 1), bounded, symmetric, positive and real
valued. The functions w,,, are parameterized by means of
synaptic footprints oy,(m, n = e, i), i.e

! \I"mn(émn)v “;:mn =
mn Omn

Here W,,;, is non-dimensional scaling function. For example,
the Gaussian connectivity function of the type (4) is given as

“

Wpp(X) =

1
Wy (En) = ﬁexm—s,in) Q)

The operator ® in (1) defines the spatial convolution integral,
given as

[wmn & Fin(vin — dm)](x, 1)
= / Wpp (X — x/)Fm((Vm(x/v 1) — ¢m))dx/ (6)

and the temporal convolution integral o, * f is given as

t
[am * f1(x, 1) = / om(t — 1)f (x, t')dt’ (7)

where the function «, for m = e,i represent tem-
poral kernels. The common choice for the functions o,
are [3], [14], [16], [18]:

1
ae(t) = exp(—1),  oit) = —exp(—1/7) ®)

The system of Volterra equations (1) with exponentially
decaying temporal kernels is transformed into the following
Integro-differential equations [14], [16], [25]

8ve o /
3_ = —Vv, + Wee(x — X )VFo(ve — e)dx
t —o0

- /OO wie(x — XVFi(vi — ¢pi)dx’ + Ge(x, 1) (92)

—00

aV[ © ’ /
Ta_ = —vi+ Wei(X — X )Fe(Ve — Pe)dx
t —00
o0
- / wii(x — x")Fi(vi — ¢pp)dx’ + Gi(x,1)  (9b)
—00
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by mean of linear chain trick [15]. Finally, the functions
G, m = e, i model the spatio-temporal external inputs. The
general form for the external input is:

Gm(x, 1) = CuRy(xX)gm(1),  m=e,i. (10)

We have split the external input into three parts, this way we
can investigate each part of the external input separately; Here
the temporal function g,,(¢) shows the time evolution, spatial
part R,,(x) with amplitude C,,. Schematically, the model (9)
is illustrated in Figure 1.

Excitatory

G Population

Inhibitory

twee(x) Population E

+wei(x)

w

FIGURE 1. Sketch of Two population model (1) with spatio-temporal
external input (Ge and G;).

A. GENERAL PROPERTIES OF THE MODEL

For properly designed connectivity functions, firing rate func-
tion and external input functions, for population models one
can prove that the initial value problem of (9) is locally
wellposed in the space of bounded and continuous functions
in a way analogous to Potthast and Graben [35] and Faye
and Faugeras [17] for multi-population models with dendritic
delay effects and axonal incorporated. The boundedness of
solutions to Wilson-Cowan type models have been studied
in several papers [3], [14], [35]. Here we prove that the
solution of (9) are uniformly bounded subject to both the
initial conditions and the external input functions are bounded
and continuous.

BOUNDEDNESS

The normalization condition imposed on the connectivity
functions wy,, for m = e, i and the function imposed on firing
rate functions 0 < F,, < 1 reveals the uniform bounds for
the convolution integral. By proceeding in a similar way as in
Blomquist ez al. [14] and Potthast and Graben [35] the explicit
bounds for the solution v, and v; are computed in this subsec-
tion. The lower and upper bound functions for excitatory and
inhibitory terms for the present choice of temporal function
will be same as found in the Yousaf et al. [4], which are given
as under

Ly = ae()(Ue(x) + 1) = 1 + [ae * Gel(x, 1) (11a)
Ly = ae()(Ue(x) = 1) + 1 + [ae * Gel(x, 1) (11b)
M; = ta;(OUi(x) + 1) — 1 + [a; % Gil(x, 1) (1lc)
M, = tai()(Ui(x) — 1) + 1 + [oi * Gil(x, )" (11d)

where U, and U; are the initial conditions of the system (9),
for more detail read the article Yousaf et al. [4]. The temporal
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convolutions is given as

t
[o * Gpl(x, t) = / oyt — $)Gp(x,8)ds m=e,i (12)
0

The functions «;, and G, are given by (8) and (10), respec-
tively. This convolution for the general temporal function

Gu(x,t) = Cpy Rp(x) gt — tmo), m=e,i (13)
is transformed into
[am * Gul(x, 1) = CuRp(X)sm(t — tp) m=e,i (14)

where the function ¢, is given as

t
Sm(t) = / exp(s/Tm)gm(s)ds m =e,i (15)
'm0
In this case, we put the value of g,,(¢) using as «-type tempo-
ral function defined in (26), solve it for the value of ¢. where
T, 1S given as
m=e

T = {1’ (16)

T, m=1

t
(1) =/ exp(s/tm)(d1s exp(—as))ds a7
1

0
t

Em(1) = di f sexp(l/ty — a)sds (18)
fo

Here d is the normalization constant with respect to area and
is given as
o? exp(aT)

d| = 19
! exp(aT) —oT — 1 (19

To solve the equation (18), using integration by parts, we end
up with the following:

dl#[(t(l— ) — Tm) exp(t(l — aTi)/Tm)
0 a2 ATy, Tm) EXP AT)/ T

— (to(1 — aty) — ) exp(to(l — aty)/Tm)]  (20)

After this calculation we end up with

é—m([) =

_ 0, t <ty
Enlt) = { o o @1)
where
d1tm
<:,}1<r>=‘A—Z[r(x—wexp(rx/rm>—ro(x—rm>exp(rox/rmn
(22)

where A = 1 — a1y,. It is to be noted that these boundedness
results are not confined to the Heaviside function only, they
holds true for any firing rate function satisfying 0 < F,, < 1.
The corresponding bounding functions are ploted in Fig. 2.
These estimates hold true for continuous external input func-
tions Gp(x, t) with respect to time. The only thing which
differs in g.(z), which also satisfies the same conditions as
does in Yousaf et al. [4]. Further notice that the arguments
produced here hold true even for the case of mutli spatial
dimensional neural field models.

59084

(@) (b)

L T

t=3 0 0

-1 -0.5 0 0.5 1

t=20

FIGURE 2. boundedness of solutions of the model (9). The black solid,
dotted and dash lines represent activity levels, upper and lower bounds,
respectively. The left column (a & c) represents excitatory, while the right
column (b & d) stands for inhibitory activity and their bounds.
Corresponding parameters are shown in table 1 and rest of the
parameters are same as used in Fig.3.

TABLE 1. Parameter set for the boundedness property of the solution
in Fig.2.

T C T d)e sz
2.5 4 9 12 .08

B. GENERAL CONDITION ON EMERGENCE OF ACTIVITY
The activity in the network is evoked by the excitatory con-
tribution only. Therefore, we explore the excitatory external
input effect only to evoke the activity in the network. In the
following Theorem proved in Yousaf et al. [3]. “The nec-
essary condition for the external input G,(x, t) to evoke the
activity in the network for model (9) is Ge(x, t) > ¢.” also
holds true for the present choice of external input. Next we
elaborate in detail about the external input.

C. SPATIO-TEMPORAL EXTERNAL INPUT

The external input is splited into three parts, so that the effect
of each part of external input on bumps can be investigated
separately, the external input is given as:

Gu(x, 1) = Gy Rip(x) gm(t — tino),

where g,,(¢) for m = e, i represent temporal function, R, (x)
represent the spatial and C,, is the amplitude of the external
input. The spatial functions R,,(x) for m = e, i are continuous
and symmetric i.e. R,;,(—x) = R,;(x). Symmetry is not neces-
sary for spatial functions, we have not yet tried for it but that
can be discussed in future work. The bumps solutions in Fig.3
are two attractor states in present scenario. We have used the
set of parameters as used by Bloomquist er al. [14], which
means that we are in the parameter regime where we have
two bump pair solutions. The only objective of this study is
to recall or emerge these solutions even though the external
input is switched off.

m=e,li (23)

D. SPATIAL FUNCTIONS OF EXTERNAL INPUT

In this work, we have investigated the effect of external input
on emergence of the activity using three different spatial
functions:
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FIGURE 3. Two bump pair solutions with no external input. The first row
(a) broad excitatory bump (b) broad inhibitory bump and in the second
row (c) narrow excitatory bump (d) Narrow inhibitory bump. The
corresponding threshold values are ¢e = .12 and ¢; = .08 and the
connectivity functions are assumed to be gaussian as defined in (24). The
rest of parameters are shown in Table 2.

TABLE 2. Parameter set for the stationary symmetric solution in Figure 3.

Oce Oei Tie Tii Pe Pi
.35 48 .60 .69 .18 1
a (b) (©
15 @
- —=h® Excitatory Excitatory
e, (0 = = = Inhibitory — ~ ~ inhibitory
1 0.1 0.1
05/ | 0.05 N 0.05
v )
A AN
\ RN 0
0 0 - >
0 5 10 -1 -05 0 05 1 -1 1

FIGURE 4. The temporal and spatial functions of external input. where
dashed and solid curves represent excitatory and inhibitory functions,
respectively. (a) a-type temporal function is defined in (26) (b) Gaussian
function given by (24). (c) Exponential function given by (25). The
corresponding parameters are given in Table 2.

1) One of the stationary symmetric solutions (broad or
narrow bump ), given in Figure 3.
2) Gaussian function of type (4) given in Figure 4c

Ru(x) = ew(@ﬂ% m=e,i (24

m\/_
where p,, (m = e, i) is the width parameter.
3) Exponential decay function given in Figure 4b

Ry(x) = -GXP(—I D, m=e,i (25)

m

E. TEMPORAL FUNCTIONS OF EXTERNAL INPUT

The temporal functions g,,(¢) for m = e, i shown in Figure 4
used in this study to investigate the emergence of the activity
are given as:

1) «-type function g(¢) is shown in Figure 4a

0 r <ty
1) = 26
80 dit exp(—at) t >ty (26)
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where dj is the normalization constant with respect to
area and is given as

_ o? exp(aT)
B exp(aT) —aT — 1
The function defined in (26) is «-type function. In order

to have a control on the total duration of external input,
we assume that

27)

1 e
gT)y=¢, = a= 7 10g(;) (28)

where ¢ = 0.001 and T > 0. This extra condition (28)
makes it easier to compare the results with the other
type of temporal functions. This type of function is not
exactly an «-function but we modified it little bit to
control its end point. We have used some conditions
e.g. this function is normalized and also satisfy the
condition (28). This function will be used as a tem-
poral behavior of the external input. In the study of
Roth et al. [2], a-type function fits best to sinusoidal
input as observed in the experimental data which is
more smooth and realistic behavior as compared to
triangular one used [4].

Ill. RESULTS
This is the main section of this study where we investigate the
effects of different types of spatio-temporal external inputs
(23) the emergence of self-sustained activity states. It is
very important to mention here that for case two-population
model with no external input [14], there exists two stationary
symmetric solutions (bumps) for the present choice of the
parameters, one is named as narrow and other is broad. The
narrow bump is generally unstable, although the broad bump
is stable for suitable values (small and moderate values) of
the 7 (relative inhibition time) [3], [14]. The stability of these
bumps are dependent on relative inhibition time constant t,
The narrow one is unstable for all values of t, whereas the
broad bump is stable if T < t,, = 3.01 [14]. Since the
narrow bump solution is unstable and the appearance of
the stable activity is actually the broad bump solution of the
Wilson-Cowan model with spatio-temporal external inputs.
We investigated the emergence of activity in the network.

A. EMERGENCE OF THE ACTIVITY

Initially, if there is no activity in the network with
Gp(x,t) =0, the addition of suitable non-zero excitatory
external input (G.(x, 1)) can evoke the stable activity, even if
the external input is transient, the activity still remains stable.
This phenomenon is expressed in Figure 5, which shows the
emergence of activity using «-type temporal function and the
spatial function R,,(x) of the external input is assumed to be
the broad bump. The corresponding excitatory external inputs
are given in Figure S5c. The emergence of the activity in the
network depends on the spatio-temporal external input. In the
next subsection we will explore in detail the effect of each part
of the external input separately on bump solutions.
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TABLE 3. Parameter set demonstrate the Figure 5, emergence of activity
in terms of the amplitude and active time for the external input G.

€ Ce Te Pe Pi
0.001 3 6 18 1
1 (a) 1 (b) 1 ()
02
< 0 x 0 < 0
0
o 50 o 50 o 50

t t t

FIGURE 5. Emergence of the activity using o-type function defined in (26)
as the temporal part in the external input. The spatial function is
assumed to be broad bump. (a) Represents inhibitory activity. (b) stands
for excitatory activity in the network. (c) explains corresponding transient
excitatory external inputs. The corresponding parameters are: ¢ = 0.001
and Te = 6, Ce = 3. The rest of parameters are same as used in Figure 3.
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FIGURE 6. Activity appearance as a function of active time T and
amplitude C of the excitatory external input(23) for different spatial
functions, while the temporal function is assumed to be the «-type
function defined in (26). (a) Broad bump as spatial function (b) Narrow
bump as spatial function, (c) and (d) Corresponding temporal functions
for smallest amplitude to evoke the activity, while (e) and (f) corresponds
to temporal functions for smallest activation time T to evoke the activity.
Corresponding parameter set is given by Table4. Red color stands for
successful activation whereas green color represents no activation.

1) DEPENDENCE ON SPATIAL FUNCTION

OF THE EXTERNAL INPUT

The emergence of activity varies for different spatial func-
tions R.(x) of excitatory external input. In this subsection,
we will investigate the emergence of activity for four different
types of spatial functions to fixed temporal part (modified
a-type function g(¢)). Fig. 6 and Fig. 7 illustrates the relation-
ship between amplitude and active time of temporal function
for the choice of different spatial functions. In the case of
broad and narrow spatial functions similar type of behavior
is observed. Since broad bump solution is very close to the
desired activity (broad bump), which makes it easier to evoke
the activity in the network as shown in Fig. 6b, whereas,
for narrow bump, larger amplitude and active time 7 of the
external input is required to evoke the activity Fig. 6a. The
emergence of activity as a function of amplitude and total
duration for exponential and gaussian spatial functions are
given in Fig. 7a & Fig. 7b respectively. Both spatial functions
shows similar relationship between C and T but for gaussian,
it requires smaller value amplitude and 7 to evoke the activity
as it is more similar to the required activity pattern.
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FIGURE 7. Activity emergence as a function of active time 7 and
amplitude C of the excitatory external input (23) for different spatial
functions, while the temporal function is assumed to be the «-type
function g(t). (a) Exponential function as a spatial part of external input
and is given by (25) and (b) Gaussian function as a spatial part given

by (24), (c) and (d) Corresponding temporal functions for smallest
amplitude to evoke the activity, while (e) and (f) correspond to temporal
functions for smallest active time of the external input. Red color stands
for successful activation whereas green color represents no activation.

TABLE 4. Parameter sets used to demonstrate the emergence of the
activity for Fig. 6.

Parameter Broad BP Narrow BP
Ce 2.526 4.898
Te 5.8509 8.163

The corresponding temporal function for lowest amplitude
to evoke the activity for each region (amplitude vs Total
duration) is shown in Fig.6¢ & Fig. 6d and in Fig.7c & Fig. 7d,
and for lowest active time 7 is shown in Fig. 7e & Fig. 7f.
The spatial functions are even lower than threshold value
showing that it is not necessary to have R(x) > ¢ to evoke
the activity in network. Whereas it is necessary the external
input Go(x,t) > ¢, to evoke the activity. This behavior is
obvious in the Fig. 7 and mathematically this property has
already been proven in Yousaf et al. [4].

The minimum value of amplitude and active time required
to evoke the activity in network is observed also. In case of the
broad bump, the larger range of successful region as compare
to narrow bump as a spatial part. The most important fact
which we have found in the present work, the minimum value
of amplitude C, is 2.5 and active time is 7, = 5.8 required
to evoke the activity is less than observed in the previous
work [4] this phenomenon is shown in Fig. 6b and parameter
set in Table 4. This result strengthens our claim that smooth
temporal function is a better choice.

2) DEPENDENCE ON TEMPORAL FUNCTION

OF THE EXTERNAL INPUT

Now we investigate the dependence of temporal part g.(z)
of the external input, the spatial part R,(x) is assumed to be
broad bump solution.

The emergence of self sustained activity states are shown in
Fig. 8. The red color shows the continual activation of activity
states whereas green color shows no activity in the network.

The amplitude vs active time span the axis shown in Fig. 8.
We observed the strong dependence of continual activity state
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TABLE 5. Parameter sets used to demonstrate the emergence of the
activity for Fig.7c & Fig.7d.

Parameter Gaussian Exponential
Ce 4.04 6.263
Te 7.475 11.72

TABLE 6. Parameter sets used to demonstrate the emergence of the
activity for Fig. 7e & Fig. 7f, in terms of the amplitude Ce and smallest
active time T for the external input G.
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Parameter Gaussian Exponential
Te 3.465 8.409
Ce 19.27 18.79

FIGURE 8. Generation of activity as a function of amplitude Ce and
stimulus duration time T of excitatory external input. Green color
represent failure of activation, while red color indicates successful
generation. The spatial part Re(x) of the external input Ge(x, t) is chosen
to be broad bump. (a) = 1.5, (b) T =2, (c) T = 2.5 and (d) t = 3. The
rest of parameters are same as used in Fig.3. Red color stands for
successful activation whereas green color represents no activation.

TABLE 7. Parameter sets used to demonstrate the emergence of the
activity for Fig. 8b & Fig. 8c denoted values of points A, B, C,A’, B’ and C’

respectively.

Sr. No. C T T
point A 1.01 7.071 2
point B 3.636 7.071 2
point C 9.495 7.071 2
point A’ 1.01 7.071 2.5
point B’ 3.636 7.071 2.5
point C” 9.495 7.071 2.5

for different values of relative inhibitory time constant t,
for the choice of smaller values of 7 than 7. e.g. 7 =
1.5 and 7 = 2.5, the parameter-plane looks similar shown
in Fig. 8a & Fig. 8b. When 1 increases 2 to 2.5, there is a
wide difference in amplitude vs total duration plane shown
in Fig. 8.

Now for one active time 7,, we have three different
C,-regimes in which two of them represents the failure of
generation of bump state (marked by A’ and C’ in Fig. 8c)
and one regime between them represents to successful gen-
eration (marked by B’). The successful generation region is
minimized, when t is closer to 7., (see in Fig. 8d), the cor-
responding pulse width coordinate planes (PWC) planes are
shown in Fig. 9. The plot of pulse width coordinates plane
in Fig. 9 corresponds to each point A, B, C in Fig. 8b and
A’, B', C’ in Fig. 8c of the temporal evolution of the activity
can help to understand this observation. The unsuccessful
region indicates by A and A’ in Fig. 8b & Fig. 8c respectively
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FIGURE 9. Pulse width coordinate evolution in time denoted by points
A, B and C in Figure 8b and for points A’, B’ and C’ in Figure 8c. The left
column shows PWC for = = 2 and right column for v = 2.5.

10

FIGURE 10. The behavior of persistent bump state for three intermediate
values of relative inhibitory time constant <. (a) r = 2.2, (b) = 2.3 and
(c) T = 2.4. The remaining parameters are same as in Figure 3.

and the corresponding PWC are shown in Fig. 9a & Fig. 9d
respectively. The red diamond shows the initial condition,
which we take the C, — T, pair outside the BOA (basin of
attraction), approaches to trivial point (ag, bg) = (0, 0), here
we have different choices of pair no evolution (ag, bg) from
(0, 0) even external input G,.(x, t) in the system but below
threshold ¢,.

The successful activation indicated by points B and B’
in Fig. 8b and Fig. 8c and corresponding PWC behavior
is shown in Fig. 9 by blue lines as the excitatory pulse
width coordinates becomes greater than or equal to 0.3
(approximately), (blue curve) Fig. 9b & Fig. 9e. At this
point inhibitory activity is also evoked, then we observe
the inhibitory pulse width coordinate b increasing quickly
and move towards the attractor (red *). Then establish the
persistent activity in the network and the slow inhibition for
large value of 7, the behavior seen in Fig. 9e(blue curve).

For the values of points C and C’ in Fig. 8b & Fig. 8¢
observe the prominent difference in two cases for different
values of t Fig. 9c & Fig. 9f. The little bit expedition for the
small value of t in Fig. 9c around the red * and it leave the
BOA for large value of 7, coming back to fixed point shown
in Fig. Of.

If we choose the value of r = 2.2 in Fig. 10a, we have
similar view as in Fig. 8b, but for the value of t = 2.3 failure
of activation in small island for larger values of amplitude C,
and smaller values of active time T,. This region is enlarge,
when we increasing the value of r shown in Fig. 10c for
v = 2.4. The green region shows failure of activity merging
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for any amplitude if time duration is small. Our numeri-
cal simulations resemble some of the results obtained in
Yousaf et al. [4] and Folias and Bressloff [30]. In com-
parison with Folias and Bressloff [30], we investigated the
two-population neural model analogous to Wilson Cowan
type model [1] subject to spatio temporal external input.
Blomquist et al. [14] has also studied the same type of model
with no external input and found the conditions for existence,
uniqueness and stability of stationary symmetric solutions.
The generic picture consists of two stationary symmetric
solutions (bump pairs), first named as narrow bump pair and
the second is named as a broad bump pair. The narrow bump
pair is unstable while the broad bump pair is stable for small
and moderate values of relative inhibition time constant 7.

IV. CONCLUSIONS AND FUTURE WORKS

The persistent activation of population of neurons in the
cortex during the active memory task is one of the best studied
neural correlates of higher cognitive function, so called work-
ing memory [39, Goldman,1995]. A possible way underlying
this type of activation of subpopulations of neurons in the
network is the switching between the attractor states, which is
found in the neural firing rate models by means of the external
input [1], [19], [27], [29].

In this study, Wilson Cowan type two-population neural
field model extended with different spatio-temporal exter-
nal input has been investigated. The model with no exter-
nal input corresponds to at most two bump pair solutions
named as broad and narrow bumps [14]. Narrow bump is
generally unstable whereas the broad is stable for suitable
values (small and moderate) of relative inhibition time con-
stant t. The parameters for this study are same as used by
Bloomquist et al. [14] which means that we are in the parame-
ter regime where we know that there are attractor states (broad
and narrow bump pairs) in the network. Initially, if there is no
activity in the network, activity (broad bump) can be evoked
by switching on suitable transient excitatory external input.
This activity remains stable even though external input is
switched off this phenomenon is illustrated in Fig.5.

In Yousaf et al. [4], the emergence of persistent activ-
ity states is explored under the influence of spatio-temoral
external input with triangular temporal function. The selec-
tion of triangular external input is motivated by the work
of Pinto et al. [34]. The present work is the continuation
of previous work [3] for more smooth temporal function
which is more natural behavior of inputs as observed by
Roth et al. [2] in the visual cortex. The o function fits best
for this smooth behavior. In order to have a control on the
total duration of the external input, we slightly modified it,
that is why we name it as the a-type function given 26. It is
more evident and natural behavior that sinusoidal inputs are
more likely smooth as compare to triangular. Here, we have
investigated the emergence of persistent activity states in
response to spatio-temporal external input for different spa-
tial and smooth (a-type) temporal function. The results are
summarized as under:
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In the first part, we have investigated the boundedness
property of the solutions under the influence of external input.
Mathematical form for bounds are calculated 21 and is shown
numerically in Figure 2. This result shows that the solutions
are bounded for finite external input which means that any
instability detected has to be saturated. The necessary condi-
tion for emergence of the activity discussed in [4] also holds
true for the present choice of external input. In the second
part, the emergence of persistent activity states is investigated
for different choices of spatial functions while keeping «-type
as a temporal function in the external input. Four types of
spatial functions investigated such as Gaussian, Exponential,
narrow and broad bump functions. One can also investigate
the emergence of the activity for some other spatial functions.
The choice of these functions is made on the basis of their
similar behavior to stationary symmetric solutions (persistent
activity states) of the model. Fig. 6 shows the emergence of
activity as a function of amplitude and total duration of the
external input for broad and narrow bumps as spatial func-
tions. In case of broad bump, activity in the network is evoked
for smaller values of parameters (C and T) as compare to case
where narrow bump function is used as a spatial function.
Similar behavior is observed for the case of Gaussian and
exponential spatial functions, this result is illustrated in Fig. 7
which shows that the emergence of the activity is easier for
Gaussian function in comparison with exponential one. In all
four cases of spatial functions, the broad bump function is a
better choice for spatial function in the external input to evoke
the activity in the network. Since broad bump is the attractor
state in the network, therefore this may be one of reasons that
broad bump as a spatial function evokes activity more quickly
as compare to others spatial functions.

In the next part, emergence of the activity is investigated
as a function of temporal part («¢-type function) by keeping
broad bump as a fixed spatial part of the external input.

In the systematic variation in external input (spatial func-
tion R.(x) and temporal function g.(¢) ), the amplitude C,
and total duration time 7, exceed certain threshold values
to evoke the persistent activity. It is observed that relative
inhibition time constant T plays an important role in shaping
total duration time versus amplitude. It is easier to evoke the
activity in network for smaller values of T as shown in Fig. 8a
and Fig. 8b.

The strong dependence of v on emergence of persistent
activity states is observed for our case, the parameter-planes
(Amplitude versus total duration) show similar behavior for
much smaller values of t than the critical time t... When
the values of t approaches to 7., a remarkable change in
amplitude versus total duration plane is observed.

In comparison with triangular type spatio-temporal exter-
nal input discussed in Yousaf et al. [4]. It is found that
minimum values of the amplitude and total duration required
to evoke the selective persistent states in network is much
smaller as found in [4]. This result is shown in Fig. 6b and
corresponding parameter set in Table 4. Similarly, the min-
imum value of total duration 7, required to evoke the
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activity in network is (Table 4) also smaller as observed in
Yousaf et al. [4]. All these results empowers our claim that
the temporal behavior (o — type) of the external input is more
natural behavior observed and more efficient to evoke the
activity in the network.

In future work, we intend to investigate the annihilation
of persistent activity states for the «-type temporal function.
The different aspects of the external input to the model will
be investigated to annihilate the activity in network.
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