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ABSTRACT The generation of 3D models from a single image has recently received much attention, based
on which point cloud generation methods have been developed. However, most current 3D reconstruction
methods only work for relatively pure backgrounds, which limit their applications on real images. Mean-
while, more fine-grained details are required to provide finer models. This paper proposes an end-to-end
efficient generation network, which is composed of an encoder, a 2D–3D fusionmodule, and a decoder. First,
a single-object image and a nearest-shape retrieval from ShapeNet are fed into the network; then, the two
encoders are integrated adaptively according to their information integrity, followed by the decoder to obtain
fine-grained point clouds. The point cloud from the nearest shape effectively instructs the generation of finer
point clouds. To have a consistent spatial distribution from multi-view observations, our algorithm adopts
projection loss as an additional supervisor. The experiments on complex and pure background images show
that our method attains state-of-the-art accuracy compared with volumetric and point set generationmethods,
particularly toward fine-grained details, and it works well for both complex backgrounds and multiple view
angles.

INDEX TERMS 3D reconstruction, nearest shape retrieval, point cloud generation, single image, projection.

I. INTRODUCTION
With various approaches to obtaining point clouds, 3D recon-
struction has witnessed great achievements, particularly in
a wide range of applications of deep learning. Considering
the ambiguous correspondences between pixels and 3D space
points, the projection from 2D to 3D remains notably difficult
and intuitive. A single-view image of an object gives incom-
plete information of a 3D object, for example, the back infor-
mation of RGBD images is usually missing. One route is to
use an existing large dataset to reconstruct 3D objects. How-
ever, when taking the various presentations of 3D vision, for
example, meshes and volumetric or other regular structures,
into account, the reconstructions fail to show more subtle
details and extensive sampling resolutions with incremental
requirements.

Three-dimensional point clouds, whose characteristics are
simple and accessible, become a type of original data format
without specific manipulation. In this paper, we propose a
new generation network, RealPoint3D, to establish an end-to-
end solution of 3D object reconstruction from a single image
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based on a large-scale existing dataset [1], [2]. Volumetric
methods [3]–[6] account for the majority of methods and suc-
ceed in addressing the application of 3D scene segmentation,
3D object classification and detection [7]–[9]. Among them,
the OGNs (octree generating networks) [5] achieve the best
behavior because most existing 3D methods are based on
2D images, which particularly maintain high computational
efficiency, low storage requirements and high resolution.
However, some revolutionary works related to point cloud
processing using deep learning methods appeared in the past
1-2 years. The most significant ones are PointNet [10] and its
follower PointNet++ [11]. Point cloud generation methods
have been developed based on a single image, such as PSGN
(point set generation network) [12].

The current point cloud generation methods have some
main limitations: pure backgrounds, the fixed viewpoint
and specific distance, which result in poor performance of
the model at different views with distortion and loss of
details, and the need for a relatively pure background, which
causes difficulties in the actual image reconstruction. We
are devoted to designing a new architecture and an effective
learning paradigm, as shown in Figure 1. The pipeline is
goal-oriented: with a given 2D image, we directly project
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FIGURE 1. A 3D point cloud reconstruction from a real single image with
a complex background. It is visualized from two viewpoints.
No segmentation mask is required.

the pixel information of the object into the 3D space as a
point cloud, and calculate the Chamfer distance and projec-
tion differences of the generative model and the real model.
Specifically, a most similar point cloud from ShapeNet is
adopted as an additional input together with the image, which
has been proven to be effective and practical for generating
finer models.

It is challenging to eliminate the obscurity of diverse views
in the projection. Our solution is to render one perspective
image for each object and feed the image and similar point
cloud into the network in the training phase. At testing stage,
a rendered image from different views or a real photo together
with a retrieved model is attainable to produce the entire
model. Another imminent matter is the complex background
in real images. In our experiments, most generative works
are strongly affected by the background. We explore the
nearest shape templates from a 3D shape database, which
can be used to determine the general outline to address the
fear of severe distortion. Unlike other RGBD reconstruction
tasks, our method can recover the back information from the
viewers. We summarize our efforts as follows:

We design a novel network, which is capable to integrate 2d
and 3d features adaptively based on a feature fusion module,
and our method could reconstruct a 3D object from a real
image with a complex background.

A projection supervision scheme is proposed for observing
consistent spatial distributions.

Our approach achieves state-of-the-art performance in
comparison to volumetric and point cloud generation meth-
ods such as OGN and PSGN.

II. RELATED WORK
A. THREE-DIMENSIONAL RECONSTRUCTION FROM
SINGLE IMAGES
Lately, the use of generative methods to reconstruct 3D object
from a single image has been high profile. However, the prob-
lem of 3D structure recovery from a single projection is
ill-posed [12], [13]. To address this problem, many early

attempts, such as the massive SFM and SLAM [14], [15]
methods, were made, all of which required strong pre-
sumptions and abundant expertise. ShapeFromX [16]–[20],
in which X can be the texture, specularity, shadow, etc., also
requires priors on natural images. Boosted by the large-scale
dataset of 3D CAD models such as ShapeNet [1], generative
methods based on deep learning are emerging. They can be
roughly divided into voxel-based methods and point-cloud-
based methods. Most generative methods for 3D reconstruc-
tion are based on voxel reconstruction.

The 3D-GAN [3] embedded generative task in genera-
tive adversarial nets outperforms other unsupervised learn-
ing methods by a large margin. Reference [21] explored
autoencoder-based networks to learn the latent feature. Refer-
ence [22]–[24] added a projection layer to learn the projection
from 3D to 2D. In addition, the 3D recurrent neural net-
work (3D-R2N2) [4] and octree generating networks (OGNs)
[5] are the most impressive methods. 3D-R2N2 uses long
short-term memory (LSTM) to infer 3D models, taking in
several images from different perspectives. Derived from
the octree representation, an OGN relieves the storage and
calculation burden, making it the first generative method
applied to large scene reconstruction. The common limitation
of such methods is that they are based on the regular struc-
ture mimicking 2D convolution operation, which results in
inevitable computational waste and loss of original character-
istics. In contrast, our method is directly based on raw point
clouds to generate and reconstruct the 3Dmodel from a single
image.

The work most similar to ours is PSGN [12], which can
also directly generate point clouds based on a single image.
First, the authors use the Chamfer distance (CD) to calculate
the distance in reconstruction, and CD is also used in this
paper. The requirement of a pure background, an estimated
viewpoint and a specific distance are the restrictive factors
of PSGN, whereas our solution eliminates them to some
extent.

B. FEATURE EXTRACTION FROM A 3D MODEL
A 3D presentation of both regular and irregular types is
usually in a massive format. A main line of research is to
extract features from a collection of 2D images using tradi-
tional CNNs [25]. Voxels are regular space grids that can be
manipulated by, for example, the 2D convolutional operation.
Currently, the mainstream approach is to use voxels to slice
the space and then apply the 3D convolutional operation.
Reference [6], [26] are the pioneers, but their work is con-
fined to a relatively small resolution, leading to a sparse vol-
ume. Some works [27] use specific networks on meshes but
face difficulties on manifold meshes and for non-isometric
shapes.

In contrast, raw 3D data are irregular in that they dis-
play discrete points. Few works focus on raw point clouds,
which preserve the original information. Reference [28]
adopted the attention mechanism and sort point numbers,
but this approach lacks the geometry information of the sets.
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PointNet [10] is an innovative architecture that can directly
distill features from raw point cloud data, and it can
be resorted for the classification and segmentation tasks.
PointNet++ [11] uses and adjusts on multiple layers or reso-
lutions to extend the receptive fields of PointNet and become
elevated. For irregular domains, there is another line of mas-
sive works aiming to represent or describe them based on
meshes, termed geometric deep learning [29], such as spectral
graph CNN [30], Geodesic CNN (GCNN) [31], Laplacian
operation [32] and the followers [33], [34].

III. PROBLEM STATEMENT
Our purpose is to generate the complete 3D model of an
object from a single image while remaining immune to the
disturbance of background and viewpoint. A point cloud
model is a collection of scattered points, represented by P =
{(xi, yi, zi)}Ni=1, where N is the number of points. We set N =
1024 for convenience of comparison with PSGN and other
methods. Unlike the voxel-based methods, the original 3D
data can be put into our network with no manual handling
while benefiting from a superior ability to recover a 3D shape.
All points are on the surface of an object.

Our model can be considered a conditional function map-
ping from a 2D image and the nearest shape to its complete
model. The mapping process can be denoted as:

P = G{(I ,T ;8)}, (1)

where 8 is the network parameter, I is the 2D image,
and T is the nearest shape. During the training and testing
phase, we search templates for each object that instruct the
generation.

IV. APPROACH
A. OVERVIEW
In this section, we will introduce the proposed end-to-end
network, namely RealPoint3D, which can efficiently generate
a 3D reconstruction model from a single image. Unlike recent
single-view 3D reconstruction works, our task of reconstruct-
ing the object in complex context is challenging. The pro-
posed algorithm involves several steps: firstly, a nearest 3D
shape of the given image is obtained from ShapeNet. Then,
the network takes the retrieved point clouds and the image as
input and learns to generate the point clouds of the object.
In the remaining section, we will introduce this approach
in detail, which includes the nearest shape retrieval, novel
network RealPoint3D, spatial distance measurement, spatial
distribution measurement and implantation details.

B. NEAREST SHAPE RETRIEVAL
For a real image, it is difficult to distinguish the object outline
because of the complex background, thus inducing missing
details as the 3D point cloud is generated. Inspired by this
issue, our solution takes a distinct step from other generative
methods. The training dataset that we use is organized as the
image and point cloud pairs, thus doing of the combination

of 2D and 3D information can alleviate the complex back-
ground effect. We search for similar point clouds according
to the similarity of the images, measured by the feature maps
obtained from the pretrained VGG network. Like other image
retrieval practices, the process is instructed by the distance
of one or multiple feature maps. Specifically, we use the
penultimate feature map and cosine distance in our network.
The cosine distance is defined as follows:

sim(x, y) = cosθ =
Ex � Ey
‖x‖ � ‖y‖

. (2)

where x and y are two images to be compared. The Figures 3,
7 show the retrieval results.

C. REALPOINT3D
To solve the challenge of reconstructing a 3D object with
complex backgrounds, we design a novel network to predict
the object point clouds. To combine the 2D and 3D informa-
tion, RealPoint3D has two inputs: the image and the retrieved
3D shape, which closely matches the object in the image.
As shown in Figure 2, our network is divided into several
parts. In the encoding part, we use 2D CNNs to extract the 2D
feature from the image, and we use PointNet++ to obtain the
3D hierarchical feature from the retrieved point clouds. Then,
we combine the some 2D and 3D features by an attention-
based fusion module. Thus, we obtain more adaptive fea-
tures that include both image features and spatial features,
including 2D RGB, edges and 3D points distribution. Next,
the fused feature is fed into the decoding part, where we
use the convolutional layers and deconvolutional layers to
predict the 3D point clouds of the object. In addition, we learn
from the U-Net structure to provide details in the output.
The output is a N × 3 matrix, and each row contains the
coordinates of one point.

The encoder is a composition of a 2D encoding part and
a 3D encoding part. The 2D encoding part has convolu-
tional and ReLU layers, and a single image as an input is
stretched as a 1024-dimensional vector. In the 3D encoding
part, we take the retrieved shape as another input, which is
fed into PointNet++ layers composed by a number of set
abstraction layers, including the sampling layer, grouping
layer and PointNet layer. PointNet is suitable for unordered
point sets, consists ofMLP and pooling layers and is designed
for classification and semantic segmentation of point clouds.
However, PointNet lacks the ability to capture local struc-
tures. To overcome this drawback, PointNet++ that consists
of alternative hierarchical PointNet components was pro-
posed, which can efficiently and robustly learn deep point
set features. In our network, we adopt four set abstraction
layers and use the multi-scale grouping strategy to obtain a
global feature latent space of the retrieved shape. As a result,
we can also obtain a 2048-dimensional global point cloud
feature through the 3D encoding part. Then, we merge all fea-
tures together by feeding them through an attention module,
which consists of three fully connected layers to learn relative
weights to fuse the two parts. After obtaining the bottleneck
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FIGURE 2. Network architecture.

representations, we reshape the flattened feature to the size of
16×16×8, which is similar to the image size. The decoder is
made of convolutional, deconvolutional and fully connected
layers. Inspired by U-Net [7], the information of the encoding
part is added to the decoder so that we can recover the details
in the output. For example, the features of 2D RGB and
edges are preserved in low layers, proving important for 3D
reconstruction, also, the features from PointNet++ have an
abstraction representation of 3D spatial distribution. The last
layer is a fully connected layer; then, we reshape it to the
size of N × 3. We skip the connections between the last two
layers in the encoding part and the deconvolutional layers in
the decoding part.

The most different part from other single-view reconstruc-
tion works is the combination of 2D and 3D features, to have
a clear comparison, we design a simplified version of the
network, which is identical to the above structure without the
3D encoding part. Experiments have proven the effectiveness
of the 3D part especially in real images. The comparative
experiments of the two structures are given in Section V-C.

D. SPATIAL DISTANCE MEASUREMENT
To enable end-to-end training on RealPoint3D, a highly
efficient and differentiable loss function must be designed.
However, accurately measuring the topological similarity of
a 3D shape is notably difficult. In addition, unlike the recent
voxelized algorithm 3D-R2N2, in which a voxel including
points returns 1, RealPoint3D outputs point clouds directly so
that it cannot use the Intersection over Union (IoU) as the loss
function. For comparing the similarities between two shapes,
the Hausdorff distance metric is widely chosen to measure
their discrepancies, but it is not robust to outliers because a
single farthest distance can completely determine it. Inspired

by PSGN, we explore the Chamfer distance (CD) as the
distance function between S1, S2 ⊆ R3:

dCD =
∑
p∈S1

min
q∈S2
‖ p− q ‖22 +

∑
p∈S2

min
q∈S1
‖ p− q ‖22. (3)

CD is easily computable for two point sets under the
effective implementation, which is equal to the mean over
all nearest neighbor distances, and it induces a nice shape
space geometrically. Since CD is more robust to outliers, it is
a better choice as the loss function.

E. SPATIAL DISTRIBUTION MEASUREMENT
To guarantee similar spatial distribution of two shapes,
a nature way is to observe them from arbitrary views and
calculate the similarity, and it is obvious that two identical
objects have the same projection. In this paper, we adopt the
projection similarity to measure the consistence of spatial dis-
tribution between two shapes. Spatial points have their unique
2D locations on an plane, and they differ according to specific
parameters, such as the camera intrinsic and external matrix.
We can do the projection as in the 3D traditional computer
vision: given a point xi in a 3D space, the corresponding
location pi on a 2D plane is as follows:

pi = R−1 · (K−1xi − t) (4)

where R is the rotation matrix, t is the transform vector and
K is the camera intrinsic matrix.

At each iteration, the generated point clouds and ground
truth are rotated according to the same random transforma-
tion. Then, they are projected onto a 128× 128 pixel image.
For every pixel, the projection pixel and its surrounding three
pixels are labeled as foreground. See Figure 6 and Table 1 as
the results of projection.
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Compared with voxel-based projection, the projection of
point clouds delineates fine-grained parts. Also, there is a
recent work [35], which generates the multi-view projection
directly and is designed for dense point cloud generation.
On the contrary, RealPoint3D focuses on real images and
adopts the projection of the generated point clouds as an
additional supervisor. The projection loss is the per-pixel
discrepancy between the two projected images:

Lp =
∑
i

‖ pi − qi ‖22. (5)

where pi and qi are pixels from two projection respectively.
The total objective function in our model is:

Ltotal = dCD + Lp. (6)

F. IMPLEMENTATION DETAILS
We train the proposed network in TensorFlow and use Adam
as the optimizer. To improve the performance, we choose the
batch size of 32 and 200000 gradient steps. The learning rate
automatically decays based on the number of iterations. The
input image size is 128 × 128, and the last fully connected
layer produces 1024 points. In the encoding part, the kernel
size of convolutional layers is 3 × 3. In the decoding part,
we set the kernel size of convolutional and deconvolutional
layers as 5×5. In addition, themulti-scale grouping strategy is
applied to the PointNet++ layers; 0.2 and 0.4 are used as the
local regions of the ball radius. ReLU is used as all activation
functions.

V. EXPERIMENT
We conducted several experiments to demonstrate the effec-
tiveness of our method on real images and images rendered
from ShapeNet, which is a large CAD dataset. First, we con-
ducted the experiments on several types of objects, each with
rendered images and sampling point clouds on the surface as
described in Section V-A. Then, we trained and tested our
network on five categories and compared with other state-
of-the-art methods (Section V-B). Third, to demonstrate the
function of the fusion with 3D features and the projection
loss, we compared with a simplified version of the network
(Section V-C). Finally, we verified that the purpose of gen-
erating objects with multiple viewpoints and complex back-
grounds in real images was achieved (Section V-D).

A. DATASET
Composed of a huge number of objects, the ShapeNet dataset
is an ongoing large-scale 3D model source that is widely
used in 3D research fields, including 3D model retrieval and
reconstruction. Our experiment is based on one of its subsets:
ShapeNetCore55, which covers 55 common object categories
with approximately 51,300 unique 3D models. As we know,
it is notably difficult to generate 3Dmodels from real images:
if there is no real image dataset, there is no real image
baseline. To solve the issue, we rendered CAD models with
complex backgrounds to mimic the real world: each model

has one fixed viewpoint for training and fixed and random
viewpoints for testing, so we can more fairly evaluate the
network’s generalization to the real world. Simultaneously,
to obtain point clouds, we sampled the surface as the ground
truth. All point clouds are normalized. We split the dataset
into training sets (4/5 of the entire dataset) and testing sets
(remaining 1/5).

To evaluate the performance of our architecture on real-
world problems, first, we tested our pre-trained model
on ObjectNet3D, which is a large-scale dataset for 3D
object recognition with 100 categories, 90127 images,
201888 objects in these images and 44147 3D shapes. For our
task, we collected the images of the corresponding categories
and models. In addition, we prepared some real images of
four categories from cameras or the Internet: car, airplane,
bench and chair.

B. SINGLE IMAGE RECONSTRUCTION COMPARISON
Two mainstream approaches are compared in the section:
point set generation methods and volumetric reconstruction
methods.We compared ourmethod RealPoint3Dwith PSGN,
which is reported as the state-of-the-art 3D object generation
network based on the point set generation path. We evaluated
five common categories of fixed viewpoint images: chair,
bench, car, airplane and sofa. To make the measurement
more reliable, we trained and tested our model with relatively
sparse point clouds of 1024 points, which is sufficient to dis-
play the shape of an object. Then, to have a fairer comparison,
we re-trained PSGN following its experiment setups with the
dataset based on images with complex backgrounds. Then,
RealPoint3D was compared with OGN, which is reported as
the state-of-the-art volumetric method. OGN surpassed tradi-
tional volumetric methods relying on the changing from the
original organized voxel grids to the compact octree structure,
which significantly enhanced the computational efficiency
and reduced the storage. Five categories were trained and
tested using the pairs of a image and a retrieved point cloud.

As shown in Table. 1, we quantitatively analyzed the CD
scores for each of the five categories in the testing set. Our
approach outperformed PSGN in every category, particularly
the bench, but the result was close for cars. The possible
reason is that the retrieval accuracy of the bench is high,
so the similar point clouds can teach to generate more accu-
rate 3D models. Meanwhile, the retrieval accuracy of cars
is low mainly because there are various car shapes, so the
retrieval is difficult; a relatively wrong retrieval shape may
even mislead the generation. Nonetheless, our generation is
more accurate. Even though the projection is ambiguous,
additional 3D information that is not very similar still out-
lines the general shape of the particular category. These five
categories have higher shape variations and better details
than other classes, which strongly indicates that our approach
performs better, particularly for objects with fine details. In
addition, RealPoint3D has insufficient advantages in the car
and sofa categories possibly because these two categories
are rotund shapes and have fewer shape details, so PSGN
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TABLE 1. CD scores for different methods on complex background images. ‘Retrieval’ is the loss with the nearest shape. We achieve lower CD in all
categories (a smaller number represents better performance).

TABLE 2. IoU scores for different methods on complex background
images. ‘Retrieval’ is the loss with the nearest shape.

still performs well in these cases. Among them, RealPoint3D
with projection loss achieved best performance, proving the
promotion with the projection loss. The superiority is obvious
on chair due to its various outlines can have more supervision
on the generation model.

Considering the large difference between OGN and PSGN,
the IoU (intersection over union) was used for OGN evalua-
tion, and the CD distance was used for PSGN, in line with the
original papers. Considering the complex background setting,
the two networks were re-trained. The results with OGN are
shown in Table. 2, measured by the IoU.
For a fairer comparison, RealPoint3D was compared with

PSGN and OGN on pure background images as in their initial
works, and the results are shown in Table 2. We used the IoU
as the evaluation criterion, to be more convincing, the IoU
of PSGN and OGN was selected from the previous works.
The same five categories were tested, but the IoU values of
sofa for PSGN and OGN are missing because there is no
sofa in the original reports. RealPoint3D has the highest IoU
scores except for cars. The effective generative capability
was proven in the other four categories, i.e., RealPoint3D
has higher accuracy than OGN and PSGN. Tables 2 and 3
show that the same category has different IoU scores for
complex and pure backgrounds, and the former is commonly
much lower than the latter. Sofas and chairs with complex
backgrounds have the lowest IoU scores, whereas airplanes
have the highest scores. Backgrounds have strong effects on
the generation, particularly for objects with relatively com-
plicated structures such as sofas and chair; in this situation,
RealPoint3D can demonstrate its strong power because of the
instruction of the nearest 3Dmodel. In contrast, airplanes and
cars have similar shapes but no elaborate structures, so their
IoUs slightly differ.

To clearly sketch the details, we show a visual comparison
with PSGN in Figure 3. PSGN loses the fine details such as
the armrest and wings of the airplane, whereas RealPoint3D
provides more fine-grained details. In general, even when the

TABLE 3. IoU scores for different methods on pure background images.
PSGN and OGN have no reported sofa IoU scores.

FIGURE 3. Comparison with the state-of-the-art work. (a) Input image
with a complex background; (b) retrieval shape; (c) PSGN output;
(d) RealPoint3D output; (e) ground truth shape.

image has a notably complex background and the object is
ambiguous, RealPoint3D is robust and can generate a good
point cloud. This is attributed to the 3D shape retrieval, which
provides additional spatial information as the input. The 3D
encoder branch offers the class information of the object,
and the image features finally indicate that the output more
closely matches the real shape. In Section V-C, we prove the
importance of PointNet++ layers by comparing the differ-
ences of the two networks.

C. NETWORK STRUCTURE COMPARISON
We aim to design a network that can generate point clouds of
objects while remaining robust to real images with multiple
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FIGURE 4. Each method occupies one column, and the first column is the
2D image; the three methods are PSGN, simplified RealPoint3D and
RealPoint3D.

FIGURE 5. Results of RealPoint3D on real images from two viewpoints.

FIGURE 6. Two samples of projection. (a) Rendered images. (b) Projection
of ground truth. (c) Projection of generated shapes.

views and complex backgrounds. In this section, we will
verify the effective function of the fusion with 3D features
and the projection loss.

We perform a comparative experiment on the effective-
ness of 3D features, encoded by PointNet++, as shown
in Table 1. The branch of PointNet++, the 2D-3D feature
fusion module and the deconvolutional layer are cut off to
fit the dimension, and the result is illustrated in Figures 4,

FIGURE 7. Bench images from ObjectNet3D. The orders from left to right:
Retrieval, RealPoint3D and OGN.

FIGURE 8. Car images from ObjectNet3D. The orders from left to right:
Retrieval, RealPoint3D and OGN.

FIGURE 9. Car images from ObjectNet3D. The orders from left to right:
Retrieval, RealPoint3D and OGN.

10, 11 and 12. Unsurprisingly, the simplified RealPoint3D
structure performs worse because it lacks the 3D informa-
tion, whereas RealPoint3D uses the 3D encoder for the
generation.

The function of projection is to delineate the outline of
an object. Compared with volumetric methods [36], which
cannot delineate some fine-grained parts, our method can
make that delineation, thus promoting training quality, seen
in Table. 1. Shown in Figure 6 are two samples of the projec-
tion results with some fine-grained parts.

We also performed many experiments on the two struc-
tures on rendered and real images with different viewpoints,
displayed in Figure 13. The simplified RealPoint3D network
misses the details and even generates some incorrect small
parts of the objects, while RealPoint3D preserves most of
them.
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FIGURE 10. Each method occupies two columns, and the first column is the 2D image. The three
methods are PSGN, simplified RealPoint3D and RealPoint3D.

FIGURE 11. Category of cars. Each method occupies one column, the first
column is the 2D image, and the three methods are PSGN, simplified
RealPoint3D and RealPoint3D.

D. REAL IMAGE RECONSTRUCTION BASED ON
REAL IMAGES
Real images from ObjectNet3D and the Internet or cam-
eras are thoroughly tested, and the results are shown below.
Because of the lack of corresponding models, the rendered
images of 3D models are displayed.

The main drawback of previous generative works is their
limited ability to reconstruct from real images with diverse
viewpoints and complex backgrounds. To explain the strong
competence of our method in addressing this issue, we tested
three types of objects in comparisonwith OGN (Figures 7, 8).
As observed, because of the derivation from point cloud
generation methods, RealPoint3D demonstrates strong fine-
grained generative capability. For example, in the construc-
tion of benches in Figure 7, RealPoint3D can recover the

FIGURE 12. Each method occupies one column, the first column is the
2D image, and the three methods are PSGN, simplified RealPoint3D and
RealPoint3D.

legs, but OGN severely misses them. For cars, the wheels
are almost flattened and only the coarse shapes remain in
OGN, but RealPoint3D has better representation than OGN
even for slight flows on the car surfaces. There is a situation
with wrong retrieval in Figure 7, but the intact model is still
recovered. This result indicates that the images and nearest
models act interactively, finally achieving generation of the
exact models.

First, we made comparisons on cars. Our approach has
similar performance on simple structures as PSGN (Fig-
ures 11 and 12). Cars are approximately cuboids or cylinders.
As shown in Figure 11, the result from PSGN is not as smooth
as ours, particularly at the top and bottom, with some points
flying out from the structures. However, even in different
categories of cars (SUV, MVP, limousine, etc.) with different
heights and widths, RealPoint3D remains more fine-grained,
smooth and solid as usual.

The chair is the most difficult category to reconstruct
because of the significantly more fine-grained details (Fig-
ures 10, 12 and 13). For swivel chairs, PSGN shows a
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FIGURE 13. Results of RealPoint3D on rendering images from two viewpoints.

large cluster of unordered points on the legs, whereas the
reconstruction works well for RealPoint3D. In the middle
row, PSGN mistakenly generates four legs, and RealPoint3D
forms one leg with four feet, which is consistent with the
image. For airplanes (Figures 5, 12 and 13), recognizing the
engines, small structures, components on the wings and tails
is notably difficult. These parts are missing in the PSGN
results. However, these details are well preserved by our
network, which clearly shows these indistinguishable parts.
In the generation of benches (Figures 4 and 13), our model
can maintain a complete reconstruction of backs, legs, and
even small connections of different parts, most of which
are missing in PSGN results. Figure 4 compares several
methods for the bench category. We can easily find that our
method still has a good performance for the fine details. The
PSGN method is not smooth and has many discrete points.
In addition, PSGN lost the armrest of the bench. The sim-
plified Realpoint3D method can only obtain an approximate
outline and misses details. Then, we compared RealPoint3D
to the RealPoint3D simplified structure on four categories.
The simplified RealPoint3D structure performs worse than
RealPoint3D because of the lack of 3D features, and it is also
worse than PSGN. Because of the fusion of 3D features in the

RealPoint3D structure, the network works better than PSGN
in fine-detail generation.

E. TIME COMPLEXITY
In our current implementation, we set 500 epochs in the
training stage. We trained the data on 5 P100 GPUs in par-
allel, which cost approximately 10 hours. In the test stage,
the processing of 100 images consumes approximately 10 s
on a laptop with GPUs. The time efficiency is similar to
that of PSGN but is significantly more efficient than OGN.
Comparing the testing time, OGN took approximately 160 s
per 100 outputs.

VI. CONCLUSION
We designed a novel generation network that is more suit-
able for 3D fine-grained reconstruction from a single image.
The most different part with previous generative methods
is the adaptive fusion of nearest 3D features and the pro-
jection loss, which can prompt the results to obtain more
details with complex backgrounds and multiple viewpoints.
We achieved state-of-the-art performance in reconstruction
from pure background images and real images in comparison
with other generative methods.
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