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ABSTRACT In this paper, we study resource allocation problems for a two-tier cognitive heterogeneous
network in interweave spectrum sharing mode. Secondary users (SUs) in small cells (SCs) opportunistically
access the licensed spectrum resources. Non-orthogonal multiple access (NOMA) is used to boost the
number of accessible SUs sharing the limited and dynamic licensed spectrum holes. Practically, there
exists a tradeoff: an SC can increase its instantaneous sum throughput by accessing more idle bandwidth,
which creates higher liability due to the dynamics of licensed spectrum and contention among the multiple
SCs. Aiming to maximize the sum throughput of second-tier SCs network, we formulate a mixed integer
non-linear programming problem with the constraints of the available idle bandwidth, the successive
interference cancellation complexity, the transmission power budget, and the minimum data requirements.
To efficiently solve this problem, we decompose the original optimization problem into bandwidth resource
allocation subproblem, SUs clustering subproblem, and power allocation subproblem. Based on the scale
of SCs network and the activities of licensed spectrum, we introduce an optimal bandwidth configuration
to maximize the average sum throughput of SCs. By analyzing the derivation of the achievable rate
expression of a NOMA-enabled SU, we develop a novel SUs clustering algorithm which can improve the
throughput of a cluster by grouping SUs with more distinctive channel conditions. With the results of SUs
clustering, we propose power allocation within a NOMA cluster by using Karush-Kuhn-Tucker optimality
conditions. Furthermore, we perform power allocation across NOMA clusters by using the difference of
convex programming. The simulation results validate the performance of the proposed resource allocation
algorithms.

INDEX TERMS Cognitive heterogeneous network, interweave spectrum sharing mode, kmeans clustering,
non-orthogonal multiple access (NOMA), resource allocation.

I. INTRODUCTION
Recently, the demands of the forthcoming fifth-generation
(5G) communication system are expected to achieve
1,000 times the system capacity and 10 times the spectral
efficiency of fourth-generation (4G) networks [1]. It is easy to
understand that the conventional mobile network architecture
is not able to support the increasing requirements of the
communication system. To keep pace with the explosive
growth of mobile data, one of the promising solutions is
to deploy traffic offloading with the contemporary mobile
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networks [2]. The heterogeneous network is regarded as
a promising and convenient traffic offloading technology
approach where small cells (SCs) overlays with the macro
cell (MC) to improve the capacity of the whole network [3].

However, the additional deployment of SCs in a heteroge-
neous network inevitably brings the challenges in terms of
interference management and resource allocation. The het-
erogeneous cognitive network, whose infrastructures are cog-
nitive radio (CR) technologies enabled, is known as a promis-
ing option for interference mitigation and radio resource
efficiency improvement [4]. In a heterogeneous cognitive
network, the users inMCs are considered as the primary users
(PUs) who has the higher transmission priority, while the
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users in the SCs are considered as the secondary users (SUs)
with lower transmission priority. The cognitive SCs may
share the spectrum with primary MC by three paradigms,
the interweave mode, the overlay mode, and the underlay
mode. In interweave, the SUs can access to the licensed
channel if it is not occupied by PUs. In overlay mode, SUs
provide cooperation for the PUs to obtain access to the
licensed spectrum. Regarding to the underlay mode, SUs are
allowed to access the licensed spectrum coexisted with PUs
under the tolerable interference constraint. Among these three
paradigms, the interweave sharing mode is known to be an
interference limited spectrum sharing mode since SUs are
allowed to use the licensed channels which are not occupied
by PUs. Especially for a primary system which uses a rather
static spectrum, i.e., TV bands, the interweave spectrum shar-
ing approach is viable and spectrum-efficient [5]. Therefore,
the interweave spectrum sharing mode is adopted in this
paper. However, in interweave spectrum sharing mode, one
of the major challenges is to efficiently improve the spectrum
reuse due to the dynamics of PUs [6].

Besides CR, non-orthogonal multiple access (NOMA)
is another promising technology to enhance the spectrum
reuse and connectivity density [7] [8]. Comparing with the
conventional orthogonal multiple access (OMA) techniques,
NOMA allows multiple users to multiplex on non-orthogonal
resources, such as frequency channels or spreading codes [9].
NOMA can provide higher spectrum efficiency by support-
ing multiple users on the same resource block. The exist-
ing NOMA schemes can be classified into two categories,
namely, power-domain and code-domain NOMA. In this
paper, we focus on the power domain NOMA which serves
multiple users at different power levels and employs suc-
cessive interference cancellation (SIC) to detect the desired
signals.

Integrating NOMA into CR network has a huge potential
to further improve the spectrum efficiency by boosting the
number of users to be served [10]. Recently, the authors
in [11]–[16] discussed the performance of CR with NOMA
and demonstrated that CR-NOMA can achieve a better spec-
trum efficiency compared to CR with conventional OMA.
In [11], the CR-inspired NOMA has been proposed, and the
impact of users paring has been discussed. The authors in this
paper regarded the NOMA as a special case of CR system,
where the user with strong channel condition viewed as an SU
squeezed into the spectrum owned by the user with poor chan-
nel condition viewed as a PU. The authors in [12] discussed
the application of NOMA in underlay CR network with
stochastic geometry model and evaluated the outage proba-
bility of NOMA users. In [13], authors studied a joint antenna
selection problem in MIMO CR-inspired NOMA network.
In [14], the authors studied the optimal sensing duration and
power allocation for underlay cognitive NOMA-OFDM sys-
tem. In [15], the security of CR NOMA network was studied.
The authors of this paper proposed an artificial noise-aided
cooperative jamming scheme to improve the security of both
primary and secondary network. In [16], authors proposed

a new cooperative transmission scheme to exploit the spatial
diversity in multicast CR-NOMA system.

Different from the works mentioned above, in this paper,
we discuss the resource allocation problem in NOMA cogni-
tive heterogeneous network in the interweave mode. To the
best of our knowledge, this topic has not been discussed. The
main contributions of our work are summarized as follows:
• We formulate the resource allocation problem in NOMA
cognitive heterogeneous network in the interweave
mode. We introduce an optimal channel reconfiguration
scheme to improve the spectrum efficiency for the pro-
posed cognitive heterogeneous networkwith limited idle
spectrum resources.

• In multiple NOMA users scenario, we formulate a novel
NOMA SUs clustering algorithm to improve the sum
throughput of SUs multiplexing over the same spectrum
band by analyzing the derivation of a NOMA-enabled
SU’s sum throughput equation.

• With SUs clustering results, we derive optimal power
allocation which maximizes the sum throughput within
a NOMA cluster by using Karush-Kuhn-Tucker (KKT)
optimality condition. A difference of convex (DC) pro-
gramming based power allocation algorithm is proposed
to allocate power across NOMA clusters and further
enhance the system sum throughput.

The rest of the paper is organized as follows. In Section II,
we establish the system model for two-tier heterogeneous
NOMA cognitive network and formulate the optimization
problem. The optimal bandwidth configuration is discussed
in Section III. Section IV presents the SUs clustering algo-
rithm. The power allocation problem is described in section
V. Simulation results in VI are evaluated to assess the perfor-
mance of the proposed allocation. Finally, Section VII draws
the conclusion.

FIGURE 1. System Model.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
As shown in Fig. 1, consider a NOMA downlink two-tier
heterogeneous cognitive network, where K SCs are overlaid
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with a single MC. In the MC, a macro base station (MBS)
is located in the center of the circular region with radius Rm
as its coverage. Similarly, a small cell base station (SBS) is
located in the center of each SCwith radius Rs as its coverage.
All K SBSs are cognitive techniques enabled and NOMA
techniques enabled. Denote the index set of base station by
BS = {k|0 ≤ k ≤ K } where k = 0 and 1 ≤ k ≤ K represent
the MBS and K SBSs, respectively. There are M PUs and
Fk NOMA-enabled SUs uniformly distributed within the MC
and the kth SC, respectively. Denote the index set of M PUs
by M = {m|1 ≤ m ≤ M} and the index set of Fk SUs
by Fk = {f |1 ≤ f ≤ Fk}. There are S orthogonal licensed
channels in the system and the unit bandwidth isw. The index
set of the S channels is denoted by S = {s|1 ≤ s ≤ S}. At any
time, each licensed channel is either idle or busy state. Denote
the idle probability of the sth channel as Ps ∈ {P1, . . . ,PS},
which is calculated by

Ps =
E
(
T Is
)

E
(
T Is
)
+ E

(
T Bs
) , (1)

where E
(
T Is
)
and E

(
T Bs
)
denote the average idle and busy

time of the sth channel, respectively. In second-tier SC net-
work, there exists a fusion center (FC) that gathers the chan-
nel state information and performs the central resource allo-
cation actions. We also assume the sensing results obtained
at FC are perfect [17].

Due to the limited number of idle channels, the total
number of SUs in second-tier SC network is usually larger
than the number of SUs who acquire the transmission oppor-
tunities. Without loss of generality, we assume the round-
robin scheduling scheme for all SUs in the second-tier SCs
network. Considering the implementation complexity of SIC
at an SU receiver, we assume that Fc SUs can be multiplexed
over an idle spectrum block. Define SUs who are multiplexed
over the same channel form a NOMA cluster. Denote the set
of NOMA clusters of kth SC as Ck . A NOMA cluster of kth
SC Cnk ⊆ Ck , 1 ≤ n ≤ N , ∪Nn=1C

n
k = Ck ⊆ Fk , and

∩
N
n=1C

n
k = ∅. Besides, the bandwidth (in channels number)

allocated to Cnk is denoted by ω
n
k , where 1 ≤ ω

n
k ≤ S.

The normalized channel gain between the kth SBS and the
ith SU of kth SC is denoted by hk,i, which accounts for both
distance-based path-loss and shadowing. The transmission
power from kth SBS to the ith SU of the kth SC is denoted by
pk,i. The combination symbols transmitted from the kth SBS
to an SU of a NOMA cluster are expressed as

xk,n =
∑
i∈Cnk

xk,i
√
pk,i, (2)

where xk,i is the modulated symbol transmitted from the kth
SBS to the ith SU and E

[∣∣xk,i∣∣2] = 1. The received signal at
ith SU is

yk,n = hk,ixk,n + z0
= hk,ixk,i

√
pk,i

+

∑
j 6=i,j∈Cnk

hk,ixk,j
√
pk,j + z0, (3)

where z0 ∼ CN (0, δ20) denotes the additive white Gaus-
sian noise (AWGN). The received signal-to-interference-
plus-noise ratio (SINR) of the ith SU of NOMA cluster Cnk
can be represented as

γk,i =
pk,i

∣∣Hk,i∣∣2
ωnk + Ik,i

, (4)

where
∣∣Hk,i∣∣2 1

=
∣∣hk,i∣∣2/δ20 is the channel response normal-

ized by noise (CRNN) of the ith SU.

Ik,i =
∑

j 6=i,j∈Cnk

∣∣Hk,i∣∣2pk,j
is denoted as the interference which the ith SU receives from
the other SUs in the same NOMA cluster. Without loss of
generality, all SUs of the kth SC are sorted in descending
CRNNs order by∣∣Hk,1∣∣2 ≥ ∣∣Hk,2∣∣2 ≥ . . . ∣∣Hk,Fk ∣∣2 . (5)

According to the downlink NOMA principle, the ith SU is
able to decode signals of the jth SU for i > j and remove
them from its own signal, but treats the signals of j′th SU for
j′ > i as a interference. Define a indicator variable αnk,i as
follows:

αnk,i =

{
1, i ∈ Cnk
0, otherwise.

(6)

Based on Shannon’s capacity formula, the data rate of the ith
SU in NOMA cluster Cnk can be expressed as

Rk,i = αnk,iω
n
k log2

(
1+ γ̄k,i

)
, (7)

where

γ̄k,i =
pk,i

∣∣Hk,i∣∣2
ωnk +

i−1∑
j=1,
j<i

αnk,jpk,j
∣∣Hk,i∣∣2 . (8)

B. PROBLEM FORMULATION
The optimal resource allocation problem for throughput max-
imization in the SCs network can be formulated as

Rt =
K∑
k=1

N∑
n=1

Fk∑
i=1

αnk,iω
n
k log2

(
1+ γ̄k,i

)
=

∑
k∈K

∑
Cnk∈Ck

∑
i∈Ck,n

Rk,i. (9)

Accordingly, the resource allocation is performed under the
following constraints:
• The bandwidth constraints: The total number of idle
channels is no more than the total number of licensed
channels. Thus, we have

K∑
k=1

N∑
n=1

ωnk ≤ S ∀k, n, (10)
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and

1 ≤ ωnk ≤ S, ∀k, n. (11)

• SUs clustering constraints: An SU of the kth SC is
grouped into only one NOMA cluster. The entire set of
Ck is a subset of the setFk . In addition, the set of NOMA
clusters are disjoint. Thus, we have

N∑
n=1

αnk,i ≤ 1, ∀k, i (12)

and

∪
N
n=1C

n
k = Ck ⊆ Fk , ∩

N
n=1C

n
k = ∅, ∀k. (13)

• SIC implementation complexity constraint: Due to the
implementation complexity of SIC, at most Fc SUs can
be non-orthogonal multiplexed over an idle spectrum
block. Thus, we have∣∣Cnk ∣∣ ≤ Fc, ∀k, n, (14)

where
∣∣Cnk ∣∣ denotes the size of NOMA cluster Cnk .

• Total power budget of an SBS:

0 ≤
N∑
n=1

Fk∑
i=1
αnk,ipk,i ≤ pk , ∀k, (15)

where pk denotes the power budget of the kth SBS.
• SU’s minimum data rate requirement constraint: The
minimumdata rate requirement for individual SU should
be guarantee. Thus, we have:

N∑
n=1

αnk,iRk,i ≥R
min
k,i , ∀k, i, (16)

where Rmin
k,i denotes the minimum data rate requirement

of the ith SU in the kth SC.
Accordingly, the optimization problem can be formulated as

OP max
αnk,i,ω

n
k ,pk,i

∑
k∈K

∑
Cnk∈Ck

∑
i∈Cnk

Rk,i

s.t. C1 : αnk,i ∈ {0, 1} , ∀k, i, n,

C2 :
K∑
k=1

N∑
n=1

ωnk ≤ S,

C3 : 1 ≤ ωnk ≤ S, ∀k, n,

C4 :
N∑
n=1

αnk,i ≤ 1, ∀k, i,

C5 : ∪Nn=1C
n
k ⊆ F , ∩Nn=1C

n
k = ∅, ∀k,

C6 :
∣∣Cnk ∣∣ ≤ Fc, ∀k, n,

C7 : 0 ≤
N∑
n=1

Fc∑
i=1

αnk,ipk,i ≤ pk , ∀k,

C8 :
N∑
n=1

αnk,iRk,i ≥ R
min
k,i , ∀k, i,

where C1 is the indicator variable; C2 and C3 are the band-
width constraints according to (10) and (11); C4 and C5 are
the SUs clustering constraint according to (12)and (13); C6 is
the SIC implementation complexity constraint for SUs based
on (14); C7 ensures the power budget constraint at an SBS
based on (15); C8 guarantees the minimum data rate require-
ments for SUs according to (16). Since this optimization
problem is a mixed integer non-linear programming problem
and NP-hard, it is challenging to obtain optimal solutions
within polynomial time. Owing to the considerable complex-
ity of global optimum solution, we decouple OP to three
subproblem OP1, OP2 and OP3 to separately optimize the
bandwidth allocation, SUs clustering and power allocation.

III. OPTIMAL BANDWIDTH CONFIGURATION
In this section, we discuss the optimal bandwidth configu-
ration subproblem for limited bandwidth assignment in the
second-tier SC network.With the given SUs clustering results
and power allocation, the optimal bandwidth configuration
subproblem can be formulated as

OP1 max
ωk,n

∑
k∈K

∑
Cnk∈Ck

∑
i∈Cnk

Rk,i

s.t. C2,C3,C8. (17)

To solve OP1, the major challenge is to efficiently utilize the
limited idle bandwidths to K SCs according to the licensed
channel state activities. There exists a tradeoff in subproblem
OP1: an SC can occupy larger bandwidths to increase its
sum throughput, but the contention among multiple SCs cre-
ates higher accessing overhead for larger bandwidths. Based
on the study on SUs’ optimal bandwidth selection in [6],
we introduce an optimal bandwidth configuration by formu-
lating the average throughput for an SC of the second-tier SCs
network.
Since each SC has the same behavior based on the pro-

posed system model, each SC has equal idle spectrum access
opportunities. Therefore, we solve the OP1 by finding the
optimal bandwidth that maximizes the average sum through-
put of an SC. According to the optimal bandwidth selection
model in [6], we have the average sum throughput equation
for K SCs

Rk (�) =
Kavg (�)

K

∑
Cnk∈Ck

∑
i∈Cnk

Rk,i (18)

where � =
N∑
n=1

ωnk is the number of idle channels allocated

to the kth SC and Rk (�) is the average throughput of the
kth SC. Kavg (�) is the average number of SCs that the
system can support, which depends on �. We denote Kmax
and Kmin as the upper bound and lower bound of Kavg (�),
respectively. Kmax depends on both the number of SCs K
and the maximum number of SCs that S licensed channels
can support given�, b S

�
c. Therefore, Kmax = min

(
K , b S

�
c
)
.

We also note that the system can support Kmin SCs when the
number of idle channels is less than (Kmin + 1)� but greater
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than Kmax�. Therefore, the average number of SCs Kavg (�)
can be calculated by

Kavg (�) =
Kmax−1∑
Kmin=0

(Kmin−1)�−1∑
j=Kmin�

KminP̄S (j)

+

S∑
j=KmaxN

KmaxP̄S (j), (19)

where P̄S (j) =
(S
j

)
(Ps)j(1− Ps)S−j is the probability that j

channels are idle. Therefore, the optimal bandwidth configu-
ration �? for an SC can be calculated by

�? = max
(
argmax

Kavg (�)
K

)
. (20)

IV. SUB-OPTIMAL SUs CLUSTERING SCHEME
In this section, we investigate the SUs clustering scheme for
grouping SUs into several NOMA clusters in each SC. With
the given optimal bandwidth configuration result, the opti-
mization problem OP shows that the SUs clustering and
power allocation are coupled with each other in terms of
throughput optimization. Therefore, we formulate the SUs
clustering subproblem by assuming equal power is allocated
to eachNOMAcluster, in which each power of an SU is deter-
mined by fractional transmission power allocation (FTPA).
The FTPA is widely used in the orthogonal frequency division
multiple access (OFDMA) system and NOMA system due to
its low computational complexity [18]. In the FTPA scheme,
the transmit power of ith SU which is a cluster member of Cnk

is allocated based on its channel gain which is given as

pk,i =
pk
(∣∣Hk,i∣∣2)−θ

N
∑
i∈Cnk

(∣∣Hk,i∣∣2)−θ , (21)

where θ (0 ≤ θ ≤ 1) is the decay factor. With the optimal
bandwidth configuration result and the given power alloca-
tion, the SUs clustering subproblem can be formulated as

OP2 max
αk,n

∑
k∈K

∑
Cnk∈Ck

∑
i∈Cnk

Rk,i

s.t. C1,C4,C5,C6,C8. (22)

To solve the subproblemOP2, we propose a sub-optimal SUs
clustering scheme. The proposed scheme exploits the impact
of the CRNNs gaps between any two SUs of an SC on a
NOMA cluster’s throughput and aims to increase the sum
throughput of a NOMA cluster.

A. THE NUMBER OF NOMA CLUSTERS IN AN SC
According to the proposed systemmodel, the number of clus-
ters relies on the optimal bandwidths configuration result in
Section III. To boost the number of available SUs in second-
tier SC network, we assume that at most one idle channel can
be allocated to a NOMA cluster, which means ωnk = 1,∀k, n.
Therefore, the number of NOMA clusters N = �? in an SC.

B. THE CRNNs-GAP BASED SUs CLUSTERING SCHEME
In this subsection, we first discuss the impact of SUs clus-
tering on the sum throughput of an SC by analyzing the
derivation of a NOMA cluster’s sum throughput equation.

Rk,n = ωnk

Fc∑
i=1

log2

1+
pk,i

∣∣Hk,i∣∣2
ωnk +

i−1∑
j=1

pk,j
∣∣Hk,i∣∣2



= ωnk log2


(
pk,1

∣∣Hk,1∣∣2 + ωnk
ωnk

)((
pk,1 + pk,2

) ∣∣Hk,2∣∣2 + ωnk
pk,1

∣∣Hk,2∣∣2 + ωnk
)
· · ·


Fc∑
j=1

pk,j
∣∣Hk,Fc ∣∣2 + ωnk

Fc−1∑
j=1

pk,j
∣∣Hk,Fc ∣∣2 + ωnk




= ωnk log2




Fc∑
j=1

pk,j
∣∣Hk,Fc ∣∣2 + ωnk
ωnk


(
pk,1

∣∣Hk,1∣∣2 + ωnk
pk,1

∣∣Hk,2∣∣2 + ωnk
)
· · ·


Fc−1∑
j=1

pk,j
∣∣Hk,(Fc−1)∣∣2 + ωnk

Fc−1∑
j=1

pk,j
∣∣Hk,Fc ∣∣2 + ωnk




= ωnk log2




Fc∑
j=1

pk,j
∣∣Hk,Fc ∣∣2 + ωnk
ωnk


Fc∏
i=2


i−1∑
j=1

pk,j
∣∣Hk,(i−1)∣∣2 + ωnk

i−1∑
j=1

pk,j
∣∣Hk,i∣∣2 + ωnk


 (23)
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Then, we introduce the sub-optimal SUs clustering scheme
which is inspired by kmeans clustering [19].

For the sake of analysis, we firstly group the first Fc SUs
ordered by CRNNs in (5) into a NOMA cluster. According
to the achievable rate expression of the ith SU of the kth
SC in (7), the sum throughput of this NOMA cluster can be
represented by (23), as shown at the bottom of the previous
page, where Rk,n is the sum throughput of NOMA cluster Cnk .
We can observe in (23) that the sum throughput of a NOMA
cluster Rk,n can be increased by selecting SUs with larger
CRNNs gaps between each others into the same NOMA clus-
ter. That is, with a given power allocation, the sum throughput
of a NOMA cluster can be increased by selecting its cluster
member whose CRNNs are more distinctive. Based on the
aforementioned analysis, we propose a sub-optimal SUs clus-
tering scheme based on CRNNs gap. The procedure of the
proposed SUs clustering scheme is as follows.

The FCfirstly constructs a CRNNs gap graphGk (V ,E,H)
for the kth SC, where vi ∈ V denotes the vertex set whose
elements represent SUs,

(
vi, vj

)
∈ E denotes the edges set

whose elements represent the edge between two vertices, and∣∣|Hk,i|2 − |Hk,j|2∣∣ = hk,(i,j) ∈ H denotes the CRNNs gap set
whose elements represent the weights for associated edges.
With the CRNNs gap graph Gk (V ,E,H), we formulate a
CRNNs gap maximization problem for SUs NOMA cluster-
ing as following:

max
∑

vi∈Cuk ,vj∈Cu
′

k
i 6=j

hk,(i,j)

s.t. ∪Fcu=1C
u
k = V ,

Cuk ∩ C
u′
k = ∅,

u, u′ ∈ {1, 2, . . . ,N } ,∀k. (24)

Since (24) is an NP-hard problem which is intractable,
we propose a sub-optimal SUs clustering scheme which
consists of SUs pre-clustering and NOMA SUs clustering.
The SUs pre-clustering algorithm is proposed to group SUs
into Fc disjoint pre-clusters based on kmeans clustering.
Denotes the pre-clusters set as

{
Ĉ1k , Ĉ

2
k , . . . , Ĉ

Fc
k

}
. The pro-

posed SUs pre-clustering algorithm groups the SUs whose
CRNNs gaps are relatively small into the same pre-cluster.
In other words, the CRNNs gaps of SUs in different pre-
clusters are larger compared with the CRNNs gaps of SUs in
the same pre-cluster. Then, based on the SUs pre-clustering
results, we obtain the SUsNOMAclustering results by group-
ing SUs from different pre-clusters into the same NOMA
cluster.

The procedure of SUs pre-clustering is initialized by set-
ting up the CRNNs gap graph. There are Fc SUs of the
kth SC being set as pre-cluster centers (pre-CCs), which are
denoted by

{
ck,1, ck,2, . . . , ck,Fc

}
, and other SUs being set

as the per-cluster members (CMs). To maximize the optimal
problem (24), the sth SU belongs to uth per-cluster whose
CC is ck,u if hk,(s,u) ≤ hk,(s,u′). After that, we obtain Fc

Algorithm 1 Kmeans Based SUs Pre-Clustering Algorithm
1: Construct the CRNNs gap graph Gk (V ,E,H ).
2: Initialize U = Fc CCs for SUs of the kth SC to be

assigned, ck =
{
ck,1, ck,2, . . . , ck,Fc

}
.

3: Initialize the parameter It,D, dĈuk
.

4: for every cluster u do
5:

Ĉuk := argmin
∥∥vs − ck,u∥∥2

6: for every CC ck,u do
7:

ck,u :=

U∑
i=1

1
{
Ĉik = u

}
vs

U∑
i=1

1
{
Ĉik = u

}
8: Update
9:

d̄Ĉuk
=

1∣∣Ĉuk ∣∣
∑
n∈Ĉuk

hk,(n,ck,u)

D̄ =
1
|U |

∑
u∈U

d̄Ĉuk

10: end for
11: end for
12: Map SUs into clusters.
13: while it < It do
14: Update ck , Ĉuk d̄Ĉuk ,
15: it = it + 1
16: end while
17: Return the SUs pre-clusters

{
Ĉ1k , Ĉ

2
k , . . . , Ĉ

Fc
k

}
and the

CCs ck =
{
ck,1, ck,2, . . . , ck,Fc

}
.

TABLE 1. Parameter description.

disjoint pre-clusters of kth SC. Algorithm 1 on this page
describes the detailed description of the proposed SUs pre-
clustering algorithm. The description of the parameters is
given in table 1 on this page.

Then, based on the pre-clustering results, we proposed
a sorting based NOMA SUs clustering algorithm. Due to
the optimal bandwidth configuration results and the SIC
implementation complexity, there are FcN SUs can obtain
transmission opportunities in an SC. Therefore, the FC selects
N SUs from each SUs per-cluster by round robin scheduling
scheme and then, sorts these selected SUs by their CRNNs.
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Algorithm 2 Sorting Based NOMA SUs Clustering
Algorithm
1: Select N SUs from each pre-cluster by round robin

scheduling scheme, respectively.
2: for every pre-cluster Ĉuk do
3: Sort SUs of Ĉuk by CRNNs:

4:

∣∣∣∣H Ĉuk
k,1

∣∣∣∣2 ≤ ∣∣∣∣H Ĉuk
k,2

∣∣∣∣2 ≤ . . . ≤ ∣∣∣∣H Ĉuk
k,N

∣∣∣∣2.
5: Group the SU with CRNNs order index n into nth

NOMA cluster:

6: Cnk =
{∣∣∣∣H Ĉ1

k
k,n

∣∣∣∣2, ∣∣∣∣H Ĉ2
k

k,n

∣∣∣∣2, . . . , ∣∣∣∣H ĈFck
k,n

∣∣∣∣2
}
.

7: end for
8: Return NOMA clusters

{
C1k , C

2
k , . . . , C

N
k

}
.

Denote

∣∣∣∣H Ĉuk
k,i

∣∣∣∣2 as the CRNN of an SU in pre-cluster Ĉuk .
According to the CRNNs orders of pre-clusters, the proposed
NOMA SUs clustering algorithm groups the SUs with same
index of a pre-cluster into a NOMA cluster. The detailed
description of the sorting based NOMA SUs clustering algo-
rithm is described in Algorithm 2.

C. COMPLEXITY ANALYSIS
The asymptotic complexity of the proposed scheme is ana-
lyzed in this subsection. In Algorithm 1, for K SCs, a worst-
case complexity can be calculated as O(

∑K
i=1 FkFcIt ), where

It denotes the iterations, Fk is the number of SUs to be clus-
tered in the kth SUs, tand Fc denotes the proposed clusters
number of each SC [19]. In Algorithm 2, a worst-case com-
plexity can be calculated asO

(
FcN 2

)
, whereN is the number

of SUs to be sorted. Therefore, the total complexity of the pro-
posed SUs clustering scheme is O

(∑K
i=1 FkFcIt + FcN

2
)
.

Compared with the exhaustive search for SUs clustering,
which has a worst-case complexity of O(

∑K
k=1 (Fk)

Fc ),
the proposed SUs clustering scheme has a much lower
complexity.

V. POWER ALLOCATION
To further improve the throughput of the SCs network,
we consider power allocations algorithm in this section.
According to the optimal bandwidth configuration results and
NOMA clustering results, the power allocation subproblem
can be represented as

OP3 max
pk,i

∑
k∈K

∑
Cnk∈Ck

∑
i∈Cnk

Rk,i

s.t. C7,C8. (25)

Since the power allocations are independent across the
SCs, we simplify theOP3OP3OP3 to the power allocation problem for
an SC with the given bandwidth configuration result and SUs
NOMA clustering results. Considering N given NOMA clus-
ters of the kth SC, the power allocation vector of theseNOMA
clusters is denoted by pppk =

[
p̂1k , p̂

2
k , . . . , p̂

n
k , . . . , p̂

N
k

]>
,

where p̂nk represents total power allocated to NOMA cluster
Cnk . In NOMA cluster Cnk , the CRNNs order of SUs are
sorted by∣∣Hn

k,1

∣∣2 ≥ ∣∣Hn
k,2

∣∣2 . . . ≥ ∣∣Hn
k,i

∣∣2 . . . ≥ ∣∣Hn
k,Fc

∣∣2.
The minimum data rate requirements of these SUs are
denoted by R̄nk,1, R̄

n
k,2, . . . , R̄

n
k,i, . . . R̄

n
k,Fc . Denote the power

proportional factor matrix of SUs in kth SC as βββk =[
βββnk ,βββ

2
k , . . . ,βββ

N
k

]
, where βββnk = [βnk,1, β

n
k,2, . . . , β

n
k,Fc ]

> rep-
resents the power proportional factor vector of NOMA cluster
Cnk and β

n
k,i ∈ (0, 1). Therefore, OP3 is simplified to

OP′3 max
βββk ,pppk

N∑
n=1

Fc∑
i=1

log2

(
1+

βnk,ip̂k,n
∣∣∣Hn

k,i

∣∣∣2
1+

i−1∑
j=1
βnk,jp̂k,n

∣∣Hk,i∣∣2
)

s.t. C1′ : βnk,i ∈ (0, 1) ,∀i, n, k

C2′ :
Fc∑
i=1

βnk,i ≤ 1,∀n, k

C3′ :
N∑
n=1

p̂nk ≤ pk ,∀k

C4′ : log2

(
1+

βnk,ip̂k,n
∣∣∣Hn

k,i

∣∣∣2
1+

i−1∑
j=1
βnk,jp̂k,n

∣∣∣Hn
k,i

∣∣∣2
)
≤ R̄nk,i,

∀i, n, k,

where i ∈ {1, . . . ,Fc}, n ∈ {1, . . . ,N }, and k ∈ {1, . . . ,K }.
C1’ and C2’ are the power proportional factor constraints
for SUs within a NOMA cluster; C3’ guarantees the total
transmit power constraint of the kth SBS according to C7;
C4’ ensures the minimum data rate requirements according
to the C8. In the following subsections, we derive closed-
form expressions for the optimal power allocations within a
NOMA cluster by using KKT optimality conditions. After
that, we perform power allocation across the NOMA clusters
by using DC programming.

A. POWER ALLOCATION WITHIN A NOMA CLUSTER
In this part, we investigate the power allocation within a
NOMA cluster. To obtain the power proportional factor vec-
tor of each NOMA cluster, we formulate the optimal power
allocation within a NOMA cluster by assuming equal power
is allocated to each NOMA cluster. Therefore, the optimal
optimal allocation problem within a NOMA cluster can be
expressed as

max
βββnk

Fc∑
i=1

log2

(
1+

βnk,ip̂
n
k

∣∣∣Hn
k,i

∣∣∣2
1+

i−1∑
j=1
βnk,jp̂

n
k

∣∣∣Hn
k,i

∣∣∣2
)

s.t. C1′,C2′,C4′. (26)
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∂L
∂βnk,1

=

p̂nk

∣∣∣Hn
k,1

∣∣∣2
ln 2

(
1+ βnk,1p̂

n
k

∣∣∣Hn
k,1

∣∣∣2) −
Fc∑
l=2

βnk,l p̂
n
k

∣∣∣Hn
k,l

∣∣∣4
ln 2

(
1+

l∑
q=1

βnk,qp̂
n
k

∣∣∣Hn
k,l

∣∣∣2)(1+ l−1∑
q′=1

βnk,q′ p̂
n
k

∣∣∣Hn
k,l

∣∣∣2) ,

−λ+ µ1p̂nk
∣∣Hn

k,1

∣∣2 − Fc∑
l=2

µl p̂nk
∣∣Hn

k,l

∣∣2 (2R̄nk,l − 1
)
,

(29)

∂L
∂βnk,i

=

p̂nk

∣∣∣Hn
k,i

∣∣∣2
ln 2

(
1+

i∑
j=1
βnk,jp̂

n
k

∣∣∣Hn
k,i

∣∣∣2) −
Fc∑

l=i+1

βnk,l p̂
n
k

∣∣∣Hn
k,l

∣∣∣4
ln 2

(
1+

l∑
q=1

βnk,qp̂
n
k

∣∣∣Hn
k,l

∣∣∣2)(1+ l−1∑
q′=1

βnk,q′ p̂
n
k

∣∣∣Hn
k,l

∣∣∣2) ,

−λ+ µip̂nk
∣∣Hn

k,i

∣∣2 − Fc∑
l=i+1

µl p̂nk
∣∣Hn

k,l

∣∣2 (2R̄nk,l − 1
)
,

(30)

∂L
∂λ?
= 1−

Fc∑
i=1

βnk,i, (31)

∂L
∂µ?i
= βnk,ip̂

n
k

∣∣Hn
k,i

∣∣2 − (2R̄nk,i − 1
)( i−1∑

j=1

βk,jp̂nk
∣∣Hn

k,i

∣∣2 + 1
)
. (32)

C4’ can be converted to a liner inequality constraint with
respect to βnk,i as

βnk,ip̂
n
k

∣∣Hn
k,i

∣∣2 ≥ (2R̄nk,i − 1
)( i−1∑

j=1

βnk,jp̂
n
k

∣∣Hn
k,i

∣∣2 + 1
)
,

i ∈ {1, . . . ,Fc} , n ∈ {1, . . . ,N } , k ∈ {1, . . . ,K }. (27)

According to [20], it is easy to prove that the optimal problem
(26) is convex under the linear constraints C1’, C2’, and C4’.
Therefore, we can obtain the closed-form optimal solution for
it. The Lagrange function for the optimal problem (26) can be
expressed as

L
(
βββnk ,λλλ,µµµ

)
= λ

(
1−

Fc∑
i=1

βnk,i

)
+

Fc∑
i=1

µi

{
βnk,ip̂

n
k

∣∣Hn
k,i

∣∣2
−

(
2R̄

n
k,i − 1

)( i−1∑
j=1

βk,jp̂nk
∣∣Hn

k,i

∣∣2 + 1
)}

+

Fc∑
i=1

log2

(
1+

βnk,ip̂
n
k

∣∣∣Hn
k,i

∣∣∣2
1+

i−1∑
j=1
βnk,jp̂

n
k

∣∣∣Hn
k,i

∣∣∣2
)

(28)

where λλλ = [λ]> and µµµ =
[
µ1, . . . , µFc

]> are the lagrange
multiplier vectors. Taking derivatives of (28), we can write
KKT conditions on the top of this page.

Theorem 1: Closed form solution for optimal power allo-
cation in terms of βββnk for SUs within an SUs cluster is
obtained as:

βnk,1 =
1

Fc∏
j=2

2
R̄nk,i

−

Fc∑
j=2

(
2
R̄nk,j−1

)
∣∣∣Hn

k,j

∣∣∣2( j∏
l=2

2
R̄nk,l

) , (33)

and for i = 2, 3, . . . ,Fc,

βnk,i =

(
2R̄

n
k,i − 1

)
Fc∏
j=i

2R̄
n
k,j

+

(
2R̄

n
k,i − 1

)
∣∣∣Hn

k,i

∣∣∣22R̄nk,i
−

Fc∑
j=i+1

(
2R̄

n
k,j − 1

)
∣∣∣Hn

k,j

∣∣∣2 ( j∏
l=i

2R̄
n
k,l

) (2R̄nk,i − 1
)
. (34)

Proof: see Appendix A.

B. POWER ALLOCATION ACROSS NOMA CLUSTERS
With the power proportional factor vector βββnk , the optimal
problem in (26) can rewritten as

max
pppk

N∑
n=1

Fc∑
i=1

log2

(
1+

βnk,ip̂
n
k

∣∣∣Hn
k,i

∣∣∣2
1+

i−1∑
j=1
βnk,jp̂

n
k

∣∣Hk,i∣∣2
)

s.t. C3′,C4′. (35)
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Therefore, the optimal power allocation across NOMA
clusters can be expressed as

max
pppk

N∑
n=1

Fc∑
i=1

[
log2

(
1+

i∑
j=1

βnk,jp̂
n
k

∣∣Hn
k,i

∣∣2)

−log2

(
1+

i−1∑
j=1

βnk,jp̂
n
k

∣∣Hn
k,i

∣∣2)]
s.t. C3′,C4′. (36)

In order to solve the optimal problem (36) by DC program-
ming [21], we convert the objective function in (36) to DC
representation as

max
pppk
−{(F (pppk))− (G (pppk))} = min

pppk
{(F (pppk))− (G (pppk))}

= min
pppk

Q (pppk)

s.t. C3′,C4′, (37)

where

F (pppk) = −
Fc∑
i=1

N∑
n=1

log2

(
1+ p̂nk

i∑
j=1

βnk,j

∣∣Hn
k,i

∣∣2)
and

G (pppk) = −
Fc∑
i=1

N∑
n=1

log2

(
1+ p̂nk

i−1∑
j=1

βnk,j

∣∣Hn
k,i

∣∣2),
and both terms are convex functions and with respect to pppk
because ∇2F (pppk) and ∇2G (pppk) are positive semi-definite
matrixes. The constraint C4′ can be converted to the linear
function of pppk which is expressed as

p̂nk ≥

(
2R̄

n
k,i − 1

)
{
βnk,i −

(
2R̄

n
k,i − 1

) i−1∑
j=1
βk,j

}∣∣∣Hn
k,i

∣∣∣2 . (38)

Therefore, we can solve problem in (37) and find the ppp?k by
DC programming approach in Algorithm 3 on this page.

Algorithm 3 DC Programming for Power Allocation

1: Initialize ppp(0)k , set iteration number it = 0. The objective
function Q (pppk), the convex function F (pppk) and G (pppk).

2: while
∣∣∣Q(ppp(it+1)k

)
− Q

(
ppp(it)k

)∣∣∣ > ε do

3: Define convex approximation of Q
(
ppp(it)k

)
as

Q(it) (pppk) = F (pppk)− G
(
ppp(it)k

)
−G>

(
ppp(it)k

)(
pppk − ppp

(it)
k

)
4: Solve the convex problem

ppp(it)k = argmin
C3′,C4′

Q(it) (pppk)

5: it ← it + 1
6: end while

VI. SIMULATION RESULTS
In this section, a series of numerical experiments are pre-
sented to evaluate the performance of proposed resource
allocation algorithms. For the simulations, we consider a two-
tier NOMA cognitive HetNet where the K small cells are
randomly distributed in the macro cell coverage areas. The
coverage radius of a macro cell and a small cell are 400 m
and 50 m, respectively. The unit bandwidth is ω = 0.2 MHz,
and δ20 = ωN0, where N0 = −174 dBm/Hz is the AWGN
power spectral density.We assume that theminimum rate data
requirements of all SUs are equal and set as Rmin

k,i = 1 Kbps.

FIGURE 2. The number of idle channels for an SC versus the average
number of accessible SCs with different total number of licensed
channels. K = 3.

First, we evaluate the performance of the proposed opti-
mal bandwidth configuration for the proposed system model.
We set the number of total licensed channels as S = 35,
40, 45, respectively, and the ratio of a single channel idle
time to its busy time as 1. The number of idle channel for
an SC ranges from 1 to 10. Fig. 2 shows the average number
of SCs the proposed system can support as a function of
the number of idle channels an SC can obtain. Fig. 2 shows
that the average number of accessible SCs decreases by the
increase of the number of idle channels an SC obtains. This
is because that, in the proposed scenario, an SC accessing
more idle bandwidth results in higher liability which will
decrease the average bandwidth for SCs. Besides, the optimal
bandwidth for an SC rise by the increase of the total number
of licensed channels. In Fig. 3 on the next page, we can
observe that the optimal bandwidth decreases nonlinearly by
the increase of the number of accessible SCs. For example,
for the total number of licensed channels S = 45, the optimal
bandwidth per SC are �? = 5 for K = 3 and �? = 2
for K = 6. This indicates that, the scale of the second-tier
SCs network has impact on the performance of the proposed
optimal bandwidth configuration.

Fig. 4 on the next page shows the pre-clustering results of
the proposed pre-clustering algorithm. We set the number of
SUs in an SC asFk = 50. In Fig. 4, all 50 SUs are divided into
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FIGURE 3. The number of idle channels for an SC versus the average
number of accessible SCs with different number of SCs.

FIGURE 4. Results of kmeans based pre-clustering algorithm. Fk = 50 and
Fc = 4.

four pre-clusters according to the NOMA cluster size Fc = 4.
We can find that our proposed pre-clustering algorithm is
reasonable and convincing intuitively. We also investigate the
throughput performance of a NOMA cluster by the proposed
NOMA clustering algorithm and the proposed power allo-
cation within a NOMA cluster. The sum power per NOMA
cluster ranges from 0.1W to 0.9W. Fig. 5 on this page shows
that the total sum rate of a NOMA cluster increases by the
increase of the sum power per NOMA cluster. As the power
grows larger, the total sum rate continues to increase, but the
rate of growth becomes slower, as expected from Shannon’s
formula in calculating sum rate. Besides, the total sum rate
of a NOMA cluster increases by the increase of the mean
CRNNs gap of pre-CCs. It verifies that a NOMA cluster
whose members with more distinctive CRNNs can offer a
higher sum rate.

Fig. 6 on this page shows the sum rate of SC net-
work versus the power budget per SC with different mul-
tiplex access mode and different power allocation scheme
across the NOMA clusters. Note that NOMA-DC uses
DC-programming based power allocation across NOMA

FIGURE 5. Total sum rate of a NOMA cluster versus the sum power per
NOMA cluster with different mean distance of pre-cluster centers. Fc = 4.

FIGURE 6. Total sum rate of small cell network versus power budget of
per SC. K = 6, N = �? = 6, and Fc = 4.

clusters and NOMA-EQ uses the equal power allocation
across NOMAclusters. It can be seen that the total sum rate of
SC network increases by the increase of power budget per SC.
In the proposed SC network with NOMA, our proposed
spectrum allocation algorithm using DC programming for
inter NOMA clusters power allocation outperforms the equal
power allocation for inter NOMA clusters power allocation.
Both algorithms perform better than the proposed SC network
with OFDMA.

VII. CONCLUSION
In this paper, we studied optimal resource allocation in a
two-tier downlink NOMA cognitive heterogeneous network
in interweave spectrum sharing mode. Due to the complexity
of the proposed optimization problem, we decoupled it into
three subproblem. To improve the spectrum efficiency in
interweave cognitive network, we introduce an optimal band-
width configuration to secondary SC network. By analyzing
the derivation of the achievable rate expression of a NOMA-
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enabled SU, we develop a novel SUs clustering algorithm
which groups SUs with more distinctive CRNNs into the
same NOMA cluster. With the results of NOMA clustering,
we derived closed-form optimal power allocation within a
NOMA cluster by KKT optimality conditions. To further
improve the sum throughput of an SC, we applied the DC
programming to approximate the non-convex inter NOMA
cluster power allocation problem to convex problem which
can be solved by convex optimization. Simulation results
showed that the optimal bandwidth configuration is affected
by the scale of the second-tier SC network.Moreover, the pro-
posed NOMA clustering algorithm improved the throughput
performance of NOMA clusters and the proposed power
allocation algorithm further enhanced the throughput of SCs.

APPENDIX
PROOF OF THEOREM 1
In this part, we prove that µi > 0 for i ≥ 2, where µi is non-
negative Lagrangian multiplier associate with the inequality
constraint in (27). Thus, we use the following equation that
holds for optimum βββnk ,

∂L
∂βnk,i

= 0,
∂L

∂βnk,i+1
= 0

with itself leads to KKT points of βββnk :

µi+1
∣∣Hn

k,i+1

∣∣22R̄nk,i+1 − µi∣∣Hn
k,i

∣∣2
=

(
1
/
ln 2

)(∣∣∣Hn
k,i+1

∣∣∣2 − ∣∣∣Hn
k,i

∣∣∣2)(
1+

i∑
j=1
βnk,jp̂k,n

∣∣∣Hn
k,i

∣∣∣2)(1+ i+1∑
j=1
βnk,jp̂k,n

∣∣∣Hn
k,i+1

∣∣∣2).
(39)

Since
∣∣∣Hn

k,i

∣∣∣2 ≥ ∣∣∣Hn
k,i+1

∣∣∣2, the right side of (39) is always pos-
itive. Thus, µi+1

∣∣∣Hn
k,i+1

∣∣∣22R̄nk,i+1 ≥ µi∣∣∣Hn
k,i

∣∣∣2. Since µ1 ≥ 0

and µ2

∣∣∣Hn
k,2

∣∣∣22R̄nk,2 ≥ µ1

∣∣∣Hn
k,1

∣∣∣2, µ2 is always non-negative.

Therefore, we have µi ≥ 0 for i ≥ 2.
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