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ABSTRACT Many applications are hosted on cloud databases where several applications share the same
database instance. Such database management system exhibits periodic behavior in terms of data references.
For example, U.S. customers access data at a particular time while Japanese customers access data at some
other time. The periodicity of data references is translated into periodic block references. This periodicity of
block references can be used to improve cache performance by improving the block replacement policy. This
paper proposes a novel cache replacement policy by considering periodicity of references of database blocks.
It also proposes how to estimate the probability of a block reference in a specified time interval using ““Parzen
Windows,” and determines a working set based on this probability and defines the cache management
policy using this working set. The experimentation shows considerable improvement of the hit ratio as the
performance measure of the buffer cache management as compared with the other state-of-art algorithms.

INDEX TERMS Cloud databases, databases and data warehouses, data mining, intelligent information

systems, decision support systems.

I. INTRODUCTION
Generally, database management systems efficiently reduce
the number of disk accesses by using a buffer pool. The
efficiency of the buffer management policies, usually mea-
sured by hit ratio is key to the performance of database
applications [1]. Poor hit ratio results in serious performance
degradation even if the database queries are optimized. High
buffer hit ratio can be achieved, by avoiding the replacement
of cached blocks having a high probability of access in
the near future. Thus for high performance, blocks having
lower probability of getting referred in near future needs to
be evicted. Only those blocks with relatively high access
probability deserve to stay in the cache for a longer time.
High probability blocks or hot blocks are often called as the
working set blocks. Most of the existing buffer management
policies under-perform due to their inability to predict future
access patterns [1], because of lack of information about the
past access patterns.

Most of the existing buffer management policies use recent
references of the blocks present in the cache, which may
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not be sufficient to predict future access patterns. In this
regard, we propose to capture the periodicity in block access
patterns and use it as an additional feature in improving cache
performance. Periodicity means block access patterns which
are getting repeated in a particular period of time (a particular
time interval). The information about the time period-wise
hot blocks can be used in optimizing cache performance.

To achieve this, we propose to use recent week’s block
access history and obtain the working sets from it correspond-
ing to different time intervals. These working sets should be
referred along with the recent access patterns to make block
replacement decisions. The 24 hours daytime is statically
partitioned to obtain 24-time intervals each of 60 minutes
duration, and a working set is computed for each one of
them. The time interval can be set arbitrary but it will make
algorithm harder than NP-hard problem because of addition
of more degree of freedom and infinite search space; because
time interval belongs to domain of real numbers. The best
way to tackle complexity and increase accuracy is to reduce
time interval but it will add additional replacement overheads
because a historical working set will be loaded more fre-
quently. To keep the overheads to the minimum we decided
to keep all the intervals of fixed length.

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 7, 2019

Personal use is also permitted, but republication/redistribution requires IEEE permission. 54343

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-3897-5973
https://orcid.org/0000-0003-4051-4666

IEEE Access

A. O. Thakare, P. S. Deshpande: Novel Adaptive Database Cache Optimization Algorithm

A Working set for a particular interval of time is prepared
by examining the block reference patterns in that interval
from the last seven days history. For example, a working set
for time interval 10.00 am —11.00 am is defined by analyzing
the block references between 10.00 am —11.00 am of the
last seven days. Defining the working sets needs computing
access probabilities of a block in a particular time interval.
We have used the 'Parzen Window’ density estimation to
find historical access probabilities of different blocks within
different time intervals [15]. For each time interval, we rank
the blocks based on their probabilities and the top K blocks
based on ranks will find the place in its working set.

In order to keep the working sets synchronized with the
changes in the block access patterns, periodically they need to
be recomputed. At each re-computation, last 7 days historical
data will be analyzed. As this task of refreshing the working
sets is computationally intensive, it needs to be performed
off-line once every week. This procedure of mining historical
data is totally offline procedure and can be done on some
other machine. Hence it will not have any impact during
execution of replacement algorithm. Refreshing the work-
ing sets (by exporting the recently computed to the online
database system) will tune them with the latest historical
patterns and is termed as the off-line adaptability of the buffer
management scheme. Each Database Block joining the cache
can be classified into two types:

1) The block which belongs to the working set of the
current time interval (hot blocks).

2) The block which does not belongs to the working set of
the current time interval (called as normal blocks).

Working set theory adapted here, prolongs the stay of hot
blocks once cached so that they should not be replaced as
long as they exhibit access frequency around their historical
access patterns. To give some additional stay to hot blocks,
the working set principle enforces quick replacement of the
normal blocks. But it needs to adopt a different policy for
handling random blocks (outliers). Outliers can be described
as the blocks whose current access patterns are reversed or
not consistent with their historical access patterns. The buffer
management scheme has to change its behavior (adapt), for
handling these outliers and this is termed as on-line adaptabil-
ity of the buffer management scheme. Here outliers can be of
two types. They are

1) Hot blocks whose current access pattern is not frequent
or less frequent as compared to most of the other cached
blocks.

2) Normal blocks whose current access pattern is frequent
or more frequent as compared to most of the other
cached blocks.

In cloud databases, multiple clients across various regions
share same database instance resulting in periodic behavior
of references. The proposed methods provides replacement
policy considering periodicity of references so it is more
suitable for cloud databases [31]—[33].
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The rest of the paper is organized as follows; section 2
describes the commonality amongst different well-known
cache algorithms along with their distinctive features, fol-
lowed by section 3 which describes the architecture of
proposed algorithms. Section 4 describes working of pro-
posed algorithms, its advantages over the existing algo-
rithms and their efficiency in terms of time complexity.
Section 5 describes the experimentation and results and
section 6 has the conclusion and future work.

Il. RELATED WORK

In conventional database systems, the buffer management
policy has evolved over the years. The recency and/or fre-
quency based policies like LRU, LFU, Clock etc. works well
with the suitable workloads but all of them suffer from perfor-
mance degradation when tested on non-friendly workloads.
Following is the listing of merits and demerits that an existing
buffer management policies have:

A. RECENCY BASED POLICIES
LRU work well with many applications but it has serious lim-
itations when tested on non-suitable workloads. Moreover,
it is expensive, as it requires that the recency sequence be
re-ordered at each access. In addition, it is not scan-resistant
and has high lock contention. Workloads in which locality of
time accesses exhibits many different patterns for different
localities, LRU performs poorly as it is static in approach
of giving importance to recently accessed blocks over less
recently accessed blocks [5]. Another of its limitation is it
lacks the ability to differentiate between blocks that have
frequent references and blocks that have infrequent refer-
ences [3]. The most common complaint with LRU algorithm
is that, a burst of references to infrequently used blocks,
such as sequential scans through large files, may cause the
replacement of frequently referenced blocks in cache.

CLOCK and DUELING CLOCK is a close approximation
of LRU but unlike LRU both are scan resistant. Still, they
suffer from other drawbacks of LRU [11].
Mid-point

insertion policy of touch count algorithm enables it to
perform better than LRU on LRU non-friendly workloads.

B. FREQUENCY OR COUNTING BASED POLICIES

LFU (Least Frequently Used) takes a decision based on fre-
quency parameter but, situations in which some blocks are
accessed extremely frequently in a certain period and never
requested again will lead to cache pollution with LFU policy.
LFU has no means to discriminate recent versus past refer-
ence frequency of a block and is therefore unable to cope with
evolving access patterns. Some examples of LFU like algo-
rithms are FBR (frequency-based replacement algorithm),
MQ (Multi-Queue) and 2Q. Robinson and Devarakonda
proposed a frequency-based replacement algorithm (FBR)
which maintains reference counts to ““factor out” locality [2].
Zhou et al. proposed Multi-Queue (MQ) algorithm, which
sets up multiple queues and uses access frequencies to

VOLUME 7, 2019



A. O. Thakare, P. S. Deshpande: Novel Adaptive Database Cache Optimization Algorithm

IEEE Access

determine which queue a block should be in [34]. Like
LIRS [7], 2Q also uses two linear data structures following a
principle that only re-referenced blocks deserve to be in cache
for alonger time. Similar to LIRS, 2Q identify blocks of small
reuse distance and hold them in a cache [35].

C. RECENCY AND FREQUENCY BASED POLICIES

Unlike LRU policy which considers only the recency
information while evicting pages, LRU-K also considers the
frequency information by evicting blocks with the largest
backward K-distance. In essence, the LRU-K algorithm tries
to approximate Least Frequently Used (LFU) cache replace-
ment algorithm in an efficient way [3].

Lee et al. proposed the LRFU policy which associates a
value called the CRF (Combined Recency and Frequency)
with each block. Using CRF it quantifies the likelihood that
the block will be referenced in the near future. CRF is com-
puted by using a weighing function. The weighing function
essentially reflects the influence of the recency and frequency
factors of a block’s past references in projecting the likelihood
of its rereference in the future [6]. However, LRFU is not
effective on workloads with a looping pattern because the
block reference frequencies in looping references are hard to
distinguish [6].

CLOCK-Pro boost CLOCK by adding to it all the per-
formance advantages of LIRS. Without any pre-determined
parameters, CLOCK-Pro protects its performance against the
changing access patterns to give high performance on a broad
spectrum of workloads [22].

D. RECENCY AND FREQUENCY BASED ADAPTIVE
POLICIES

There are few adaptive algorithms which refer to some of the
historical information related to the recently evicted blocks,
which is useful in finding the recent trends and the reversal
in those trends [18], [23].

Unlike LRU, LIRS (Low Inter-reference Recency Set) uses
reuse distance rather than recency for making block replace-
ment decisions. In LIRS, a page with a large reuse distance
will be replaced even if it has a small recency [7], [10]. For
example, a recently accessed one time used blocks will be
replaced quickly because its reuse distance is infinite, even
though its recency is very small.

With self-tuning parameter p which decides the division
and sizes of LRU lists T1 and T2, B1 and B2, algorithms like
CAR, CART, ARC adapts themselves effectively according
to changes in the block access patterns.

In response to evolving and changing access patterns,
Adaptive Replacement Cache (ARC) dynamically, adap-
tively, and continually balances between the recency and fre-
quency components in an online and self-tuning fashion [8].

Clock with Adaptive Replacement (CAR), maintain two
clocks, say, T1 and T2, where T1 contains pages with
“recency’’ or “‘short-term utility’” and T2 contains pages with
“frequency” or “long-term utility”’ [9]. New pages are first
inserted in T1 and promote to T2 upon qualifying test of
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long-term utility. By using a certain precise history mech-
anism that remembers recently evicted pages from T1 and
T2; CAR adaptively determines the sizes of these lists in
a data-driven fashion. CAR combines the best features of
CLOCK and ARC by removing all the disadvantages of
LRU [17], [18].

Panda er al. [24] presents a survey of classification of
replacement strategies in associative mapping schemes with
detailed discussion on their advantages and disadvantages.
Gupta et al. [29] attempts to improve the effectiveness of pre-
vious cache replacement policies by using sequential pattern
mining and clustering to predict accurately next location of
the mobile users.

Cherkasova [4] proposed a Greedy-Dual-Size-Frequency
caching policy which incorporates the attributes of the file
and its access such as file size, file access frequency,
access recency of the last access etc to maximize byte
hit ratios for WWW proxies. Ma et al. [30] proposes an
improved Greedy Dual Size Frequency (GDSF) algorithm
which adds weighted frequency-based time and weighted
document type to GDSF algorithm [4] in order to improve
hit ratio. He ef al. [12] presents clustering algorithm which
places the objects accessed near to each other in time into
the same page. Chiang et al. [13] proposes a periodic cache
replacement policy for dynamic web content at application
server.

E. FLASH SSD BASED BUFFER REPLACEMENT POLICIES
Flash Memory based Solid State Drive (SSD) is an emerging
storage technology based on semiconductor chips & plays a
crucial role in revolutionizing the storage system design. Cur-
rently, SSDs has been widely used for mobile devices, embed-
ded computing systems and portable devices such as PDAs
(personal digital assistants), HPCs (handheld PCs), PMPs
(portable multimedia players) etc. Recently due to continuous
decrease in price and increase in capacity (which gets double
every year), SSDs are also considered for replacing magnetic
hard disks in enterprise database servers. Few of the buffer
management algorithms for flash-oriented systems which are
largely influenced by the different I/O characteristics of the
flash disks are as follows:

Yang et al. [25] present a new buffering scheme for tree
indexes on SSDs which is based on the observation that
access patterns on index pages are much different from
those on data pages in tree index, e.g., B+ trees. It assigns
priorities to index pages and uses priority and recency to
detect the hotness of index pages. Authors in [19] proposed
a novel buffer replacement algorithm named FOR, which
stands for Flash-based Operation-aware buffer Replacement.
It propose operation-aware page weight determination for the
buffer replacement. The weight metric not only measures the
locality of read/write operations on a page, but also takes
the cost difference of read/write operations into account.
Park et al. [16] presents a new page replacement algorithm
for NAND flash memory based embedded systems that con-
siders asymmetric operation cost of each page.
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Adaptive Double LRU (AD-LRU) separates the buffer
pool into a cold LRU queue and a hot LRU queue, based
on reference frequencies [14], [20]. The sizes of the two
queues are adjusted according to the access pattern. PR-LRU
(Probability of Reference LRU) uses a reference probability
to predict the possibility of a page of getting referenced in the
near future. A page’s reference probability is calculated using
three variables, namely the reference times, the number of
reference pages from the last to the penultimate references,
and the number of reference pages from the first to the last
reference [28].

In this paper, we are aiming at the improvement in the
disk-based database buffer management. In general, in the
existing algorithms we found one thing in common that they
do not take into consideration the patterns that the blocks are
exhibiting or the workloads are repeating over a particular
period of the daytime. Instead, they work purely based on
the recent trends derived from recent past reference history
mostly available in the cache.

Here novelty of our approach can be stated as
follows:

By extracting frequent access patterns for different time
intervals from block access history of the recent week,
database system learns the periodic patterns in block refer-
ences and defines the working sets. Each working set cor-
responds to a particular time interval having the start time
and end time. Each working set will be used between the
start time and end time of its time interval, to optimize the
database performance in query processing. Using the work-
ing sets, our buffer management policy aims to distinguish
between the working set blocks and normal blocks. This clas-
sification is purely based on historical patterns. In addition,
it integrates the consideration of recent access patterns of the
cached blocks in making replacement decisions. It also has
off-line adaptability to cope up with the changing patterns
and on-line adaptability to handle the reversals in memorized
patterns.

To overcome most of the drawbacks of existing poli-
cies, and in order to satisfy most of the aims of the
above-mentioned approach, we define the following solution
characteristics of the buffer management scheme.

1) The buffer management scheme should be designed

based on a history of references and current references.

2) It should not give a degraded performance for
long-running infrequent queries.

3) It should take into account the periodic behavior of
block references generated by various types of clients
in cloud environment.

4) It should be simple and least computationally intensive.

5) The computationally intensive part should be calcu-
lated off-line by extracting frequent block referencing
patterns from historical data.

6) The designed solutions should be able to estimate the
size of the working set for different time intervals.

7) The buffer management scheme should be adaptive to
changing access patterns.
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STORING BLOCK
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FIGURE 1. Preparation of predictive buffer cache (PBC).

Based on the above solution characteristics we proposed two
novel algorithms for block replacement in the buffer manage-
ment.

F. CONTRIBUTION

1) We proposed a model to estimate future probabil-
ity of reference using ’Parzen Windows’ estimation
based on historical periodic references and recent
references.

2) We proposed a replacement policy based on future
probability of reference.

3) We have done exhaustive experimentation on stan-
dard and synthetic datasets and shown that the pro-
posed replacement policy gives better results in terms
of hit ratio which is considered as performance
measure.

Ill. PROPOSED WORK

A. ARCHITECTURE OF THE PROPOSED MODEL

The system architecture is described using the diagrams Fig. 1
to Fig. 3.

The components used in the architecture are described as

follows:

1) Database Buffer Cache: It holds the memory image
of disk blocks which are having high probability of
reference.

2) Buffer Cache Manager: It provides replacement pol-
icy for managing a buffer cache.

3) Data-warehouse: It holds the reference trace of the
blocks in the form of a list of < blockid, time_of
_reference >.

4) Predictive Buffer Cache (PBC) Miner: It mines the
list of blocks having high probability of reference in the
specified time interval.

5) Least Recently Used (LRU) list: It holds the list
of block ids according to time of reference sorted in
descending order.
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FORMAT OF PREDICTIVE BUFFER CACHE

WORKING SET WORKING SET

OF 00:00 HRS- OF 23:00 HRS-
01 : 00 HRS TIME 00 : 00 HRS TIME
SLOT SLOT
\\\ //
T ——— ___’/
24 [IIME STOTS OF|1 HR EACH
\ L/
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— | | L —

FIGURE 2. Format of Predictive Buffer Cache.

PROPOSED ARCHITECTURE OF CACHE MANAGEMENT

EEE—
CLOUD DATABASE

Always replace this flodk

FIGURE 3. Modified Model of Cache Management.

A buffer cache is to be monitored continuously 24 X 7
and the details about block references are collected in the
warehousing system. A buffer cache reader (invokes after
every 15 minutes) will examine all the blocks in the buffer
cache and will store these block identifiers along with the
time-stamp of reference in the data-warehousing system.
After every 7 days, a buffer Cache Miner (PBC) will be
scheduled offline which will analyze last 7 days data from
data warehouse to find the working set for each time inter-
val. Thus it defines the predictive buffer cache which con-
tains the working sets for all the time intervals as shown in
Fig 2. Each time interval is static, i.e., of the fixed length
of 60 minutes and there will be total 24-time intervals in
a 24 hours date-time. This process of finding the working
sets for different time intervals is done off-line. Database
System while processing the queries online will make use of
these working sets for making the block replacement deci-
sions. In general, a block which belongs to the working set
of the current time interval will not be replaced as shown
in Fig 3.
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Notation ~ Meaning

N Total number of block references in time period T.

T Total time period of data collection specified in small time units.
T Time instance when block B is referred in the specified interval.
S indicates set of time units where a block is referred.

P-value Periodicity of reference.

L-value Recency of reference.

o indicates the effect of reference on future pattern.

B. COMPUTING BLOCK ACCESS PROBABILITY USING
PARZEN WINDOW ESTIMATION
Each block in the working set is assigned the predictive value
termed as its rank. This value is based on the probability of a
block derived from the historical data. For finding probability
of access of a block Parzen Window Density Estimation is
used.

The block references are stored in following format.

S ={<bl,tl,dl >, < b2,t2,d2 >, < b3,13,d3 >,

..., <bn,tn,dn >}.

where b; is the block id, #; is the time of access and d; is
the date of access. This data is available in dynamic views in
most of the database management systems. We assume that
one week’s data gives us sufficient information to perform
our experimentation and to demonstrate the proof of concept.
Block reference patterns are governed by the patterns of user
access.

Using Parzen window classifier, probability density esti-
mation function of each block is estimated. (Parzen window
is used because the approximate estimation can be chosen
by changing distribution parameters), For experimentation,
we have used Parzen window with a normal distribution
[equations (1) and (2)] [15],

11 _—1<T_Ti)2
P(B):N—2n02e2 o 1

1 & 1 _—1(—T_Ti)2
P(B)=ﬁ§——2mzez o )

Let

N : Total number of block references in time period T.

T : Total time period of data collection specified in small
time units. For example if data is collected for 10 days and
time unit is minutes then T = 10 * 1440 = 14400 where 1440
is number of minutes for one day, i.e., 24 hours.

7;— Time instance when block B is referred in the specified
interval.

S =11, 1,13, T4, ..., T; indicates set of time units where
ablock is referred. For example if a block is referred at 11 am
onday 1 and 11.05 am on day 2 then S = {660, (1440+665)}

P : Periodicity of reference. For example block referencing
pattern is repeated for each day then P = 1440, i.e., number
of time units in one day.

o : This is user defined parameter. The more value of o
indicates more effect of reference on future pattern. In the
algorithm value of ¢ is chosen as 1.
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TABLE 1. Sample historical references.

Time  Block ID

2.11 10
21220
21330

2.14 20

Using Parzen window technique, the function of possibility
of reference of block B is estimated as,

-1 (T —17; mod P>2
o

3

k
1 1
P(B) = — e 2
N ; V2mo?
In equation (3), P(B) is not exactly probability density func-
tion because

+00 k
/ P (B)dt = N 4

—00

Equation (4) may not be equal to 1 in general case. For any
interval between T and T, the probability of reference of
block B is estimated by equation (5)

Ip)
f P(B) dt (@)
T

1

For example probability of referring block in time interval
11.00 am to 11.05 am is

665
/ P(B) dt (6)
6

60

IfM={By, B, B3, ..
then,

., B} is a block set under consideration

l
P{B1,B2, B3,....B)} =) P(B) (7)
i=1
Assuming there is periodicity of reference, modeling proba-
bility using above method offers following advantages:

o The above mentioned method gives way to estimate
probability in specified reference of time.

« The estimated probability is increased if block is referred
more in the specified interval.

o The accuracy of estimated probability is increased if T
is increased and it converges to actual probability.

« For any interval, the probability of reference is non-zero
unless the block is not referred in the interval T.

Sample historical references are generated as shown in
Table 1:

The probability of reference (P-value) of block ID 20 for
the time interval 2:15 to 2.20 is calculated as,

p /2'20 1 %1(:72412)2dt
bi = e o
l 215 ~2mo?

n /2'20 1 %1(:72.14)2dt ®)
e o
215 ~2mo?
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The probability value of each block is calculated and the
ranks are assigned using it. The value of o determines the
effect of reference on the probability of the future reference
of the same block and it is determined using experimentation
by choosing the value which gives minimum number of cache
misses.

C. SELECTING BLOCKS FOR THE WORKING SET

For each time interval, blocks are sorted in descending order
of historical probability and first K blocks are chosen where
K is selected between 10 % to 20 % of the buffer cache size.
The value of K decides the size of the working set based on the
historical data. If the historical data shows more repetitions
then K can be set to a higher value. The value of K cannot
be very high otherwise, effect of recent references will not be
considered.

D. ASSIGNING RANKS TO THE WORKING SET BLOCKS
Within each working set, a block(s) with the highest prob-
ability will be given rank 0. The block(s) with next highest
probability will be given rank 1 and so on. Blocks with equal
probability will be having the same rank. Rank indicates the
historical probability of a block which is derived from recent
weeks historical data. Lower the rank value higher is the
probability of a block of getting referenced in near future.
Every cached block will have two values associated with it.
They are

o P-value: P-value indicates the predictive value (impor-
tance) of a cached block which depends on its historical
rank union its reference behavior after joining the buffer
cache.

o L-value: L-value indicates recency value, i.e., LRU
sequence value of a cached block. In LRU sequence,
least recently referred block will be having sequence
value 0 and the most recently referred block will be
having sequence value N-1 in the cache full condition.
All other cached blocks will be having LRU sequence
values between 0 and N-1. For a particular block B,
this value depends on how many blocks in the cache is
having its last reference before B’s last reference. Here
N is the size of a cache. Unlike P-value, LRU sequence
value called L-value will be unique for each cached
block.

E. SNAPSHOT OF PORTION OF SAMPLE RUN OF GENERAL
PREDICTIVE POLICY WITH FIXED P-VALUE
Block Reference Trace:
309091 109290 3096 20 10 104097 20 25 30 10 40 50
ID’s of the Working Set Blocks
10 20 25 30
Ranks of the Working Set Blocks:
00 01 02 03
Buffer Cache Size: 5
Beta = 2 (Constant)
Buffer Cache
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Note: First 5 faults will fill the buffer cache. References till
the first 5 faults are not shown.

The following table demonstrates the working principle of
predictive caching which is using the fixed historical rank (in
this example) of each cached block along with recency value
to organize the cache.

Reference High Low Miss or Hit
92 10 30 92 91 90 Miss
P-value 1 3 4 4 4

L-value 3 0 4 2 1

90 10 90 30 92 91 Hit
P-value 1 3 3 4 4

L-value 2 4 0 3 1

30 10 30 90 92 91 Hit
P-value 1 2 3 4 4

L-value 1 4 3 2 0

96 10 30 90 96 92 Miss
P-value 1 2 3 4 4

L-value 0 3 2 4 1

20 10 20 30 90 96 Miss
P-value 1 2 2 3 4

L-value 0 4 2 1 3

10 10 20 30 90 96 Hit
P-value 1 2 2 3 4

L-value 4 3 1 0 2

10 10 20 30 90 96 Hit
P-value 1 2 2 3 4

L-value 4 3 1 0 2

40 10 20 30 90 40 Miss
P-value 1 2 2 3 4

L-value 3 2 1 0 4

97 10 20 30 90 97 Miss
P-value 1 2 2 3 4

L-value 3 2 1 0 4

20 20 10 30 90 97 Hit
P-value 0 1 2 3 4

L-value 4 2 1 0 3

25 20 10 25 30 90 Miss

P-value 0 1 2 2 3

VOLUME 4, 2016

L-value 3 2 4 1 0

VOLUME 7, 2019

30 20 30 10 25 90 Hit
P-value 0
L-value 2 4 1 3 0

—
[\
w

10 20 10 30 25 90 Hit
P-value 0 1 1 2 3
L-value 1 4 3 2 0

40 20 10 30 25 40 Miss
P-value 0 1 4
L-value 0 3 2 1 4
50 20 10 30 25 50 Miss

P-value 0 1 1 2 4
L-value 0 3 2 1 4

Total Block References : 19
No. of Faults : 12

No. of Hits : 07

Hit Ratio : 36.84 %

IV. PREDICTIVE CACHE MANAGEMENT ALGORITHMS

We have designed and implemented two novel cache man-
agement algorithms which are described in the following
sections. One of the common features amongst them is that
they both are based on predictive optimization and uses the
predictive working sets described in the above section. If the
system is currently working in time interval 10.00 am to
11.00 am then working set corresponding to time interval
10.00 am to 11.00 am will be used, If the system is currently
working in time interval 6.00 pm to 7.00 pm then a working
set corresponding to time interval 6.00 pm to 7.00 pm will be
used.

A. PREDICTIVE LRLFU ALGORITHM

Organization of a buffer Cache: The blocks in a buffer
cache are kept sorted with respect to P-value and L-value,
i.e., cached blocks are maintained in increasing order of their
P-value, and blocks having equal P-value are arranged in
decreasing order of their L-value. Here higher P-value means
lower predictive probability and higher L-value means more
recently referenced cached block. The sequence formed by
following the above conditions is termed as sorted sequence.
Every replacement occurs at the lowest end of this sequence
which is also called as low end or replace end of the cache.
This end always contains the least recently referred block
amongst cached blocks having lowest predictive importance
(;i.e., highest P-value). Few key features related to the orga-
nization of a predictive buffer cache are as follows.

The High, i.e., Safe end of a buffer cache contains a block
with lowest P-value. In case there are multiple blocks with
lowest P-value, High end contains the block with lowest
P-value and highest L-value (within lowest P-value blocks).
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In other words, the Safe end contains the most recently
referred block amongst the cached blocks with highest pre-
dictive importance (numerically lowest P-value).

The Low, i.e., Replace end of a buffer cache contains a
block with highest P-value or in case there are multiple blocks
with highest P-value, Low end contains the block with highest
P-value and lowest L-value (within highest P-value blocks).
In other words, the Replace end contains the least recently
referred block amongst the cached blocks with lowest pre-
dictive importance (numerically highest P-value).

The predictive importance (P-value) of a cached block
at any time instance is the union of its historical impor-
tance (Rank) and the relative access pattern it has exhibited
after joining the cache. Here relative means with respect to
access patterns of the other cached blocks.

Assumptions and Terminologies:

RefT: Reference Trace.

N-RefT: Number of references in a Reference Trace.

BC: Buffer Cache.

N: Buffer cache size.

Blk: Referred Block.

P-value: Predictive value indicating block reference prob-
ability of a cached block Blk.

L-value: LRU sequence value of a cached block Blk.

Rank: historical value (rank) of a working set block. WS:
A Working Set.

DefRank: Default historical value for every non-working
set block = N-1.

Beta: a scope variable; which is set to some algorithmic
constant indicating the amount of weight-age given to the
current reference pattern of a normal block (non-working set
block).

Isemptyframe (): a procedure which returns -1 if a buffer
Cache is full else return 0.

DeleteShiftandPlace (Blk): deletes the low end block and
insert new block at the sorted position, i.e., the resultant
sequence should have the ascending order on P-value and for
the blocks with same P-value, descending order sequence on
L-value.

ShiftandPlace (Blk): insert new block at the sorted posi-
tion.

WS(BIk).Rank: Rank of block Blk in WS

Move (Blk): Relocates the Blk according to its changed
P-value and L-value.

B. THE WORKING OF PREDICTIVE LRLFU ALGORITHM
When page fault is serviced, working set blocks will join the
cache at different points in the hot region based on its histor-
ical rank, after that based on the reference pattern it follows
relative to other cached blocks, it will either move towards the
safe end or towards the replace end. Hence P-value of a block
at any given point of time during its stay in the cache is the
union of its historical rank and the relative reference behavior
it exhibits after joining the cache.

Whenever a fault occur for a particular block X, X gets
cached and P-value is computed for it. For the first time,
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Algorithm 1 Predictive LRLFU Algorithm
1: Input: RefT, N-RefT, BC, N
2: for i=1;1i < N-RefT; i++ do

> processing a reference

trace
3: Blk = RefT(i)
4: if Blk € BC then > Cache Hit
5: if Blk € WS then
6: Blk.P-value = Max( 0, ceil (0.5 * Blk.P-value)
+ ceil (0.5 * WS(BIk).Rank) — Beta)
7: else
8: Blk.P-value = Max( 0, ceil (0.5 * Blk.P-value)
+ ceil (0.5 * DefRank) — Beta)
9: end if
10: Move (BIk);
11: else
12: if Blk € WS then > Cache Miss
13: Blk.P-value = ceil (0.5 * N) + ceil (0.5 *
WS(BIk).Rank) — Beta
14: else
15: Blk.P-value = ceil (0.5 * N) + ceil (0.5 *
DefRank) — Beta
16: end if
17: if isemptyframe () !=-1 then
18: ShiftandPlace (Blk);
19: else
20: DeleteShiftandPlace (Blk);
21: end if
22: end if
23: end for

P-value of a faulted block is initialized to its rank value in
case of a working set block and to a default rank value for any
normal block. Initialization of P-value of any block which is
brought to cache on fault occurrence is given below:

1) Block X belongs to the working set of T. In this case,
block X’s P-value will be initialized to the rank of X.

2) Block X does not belong to the working set of T. In this
case, block X’s P-value will be initialized to the default
rank (lowest possible rank) which is N-1. Here N is the
buffer cache size.

When any working set block joins the buffer cache, its ini-
tial P-value is computed by ceil (0.5 * N) + ceil (0.5 * Rank)
— Beta, where N is a buffer Cache Size, Rank is the rank of
a working set block and Beta is the value of a scope variable.
For normal blocks, P-value of block is computed by ceil (0.5 *
N) + ceil (0.5 * defRank) — Beta. Lower the numerical value
of the rank higher is the predictive importance of a block, and
more close to the safe end it will join the cache. Higher the
numerical value of the rank lower is the predictive importance
of a block, and more close to the replacement end it will join
the cache. When a working set block is re-referenced while
present in cache its P-value is recomputed, using its current
P-value and historical rank as follows:

P-value = Max(0, ceil (0.5 * P-value) + ceil (0.5 * Rank)
— Beta)
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For normal blocks P-value is recomputed as,
P-value = Max(0, ceil (0.5 * P-value) + ceil (0.5 * defRank)
— Beta)

C. USE OF SCOPE VARIABLE BETA

If Beta variable is set to LOW value (Beta value in the range
of 0% to 20% of Buffer Cache Size) algorithm ensures the
following things: (assuming buffer full condition)

o Normal blocks will join the buffer cache in its low
portion and will get quickly replaced due to the next new
blocks joining the cache.

o Usually a cached block move towards the safe end
after quick re-references to it. It can move close to the
safe end by scoring over other cached blocks based
on current access patterns. However, normal block may
find slow (small) transition towards hot end on each
re-reference. It may get locked after certain amount of
transition, and after that re-references will not be able to
displace it further towards safe end. Eventually, when the
access patterns changes and its percentage of references
gets reduced, it will flow towards the replace end and
will be replaced. This also protects stabilized working
set blocks in the cache, from getting replaced due to a
short burst of dense and large number of references to
normal blocks (Explained in Example 1 below).

Example 1

« Let B be a Working Set Block and X be a Normal Block.
For the sake of simplicity we assume that, between
references there is no alteration in location of block B
or block X due to references to other blocks.

For Block B:

Assume N (Buffer Cache Size) = 10, Rank of block, B
(R) =4, scope variable Beta = 2;

On first reference to block B, P-value = ceil (0.5%10) +
ceil (0.5%*4) —2=15;

On second reference, P-value = ceil (0.5%5) + ceil
(0.5%4) — 2 =3;

On third reference, P-value = ceil (0.5*3) + ceil (0.5*%4)

—2=2;
On fourth reference, P-value = ceil (0.5%2) + ceil (0.5%4)
—-2=1;
On fifth reference, P-value = ceil (0.5%1) + ceil (0.5%4)
—-2=1;

Now calculating the same for a normal block X

For normal blocks Rank = N.

As N = 10, Rank of block X (R) = 10;

N (Buffer Cache Size) = 10, scope variable Beta = 2;
For Block X:

for beta = 2;

On first reference to block X, P-value = ceil (0.5%10) +
ceil (0.5%10) —2=38;

On second reference, P-value = ceil (0.5%8) + ceil

(0.5%10) — 2 =17,
On third reference, P-value = ceil (0.5*%7) + ceil (0.5%10)
—-2=7;
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On fourth reference, P-value = ceil (0.5*%7) + ceil
(0.5%10) — 2 =7; and so on...

if we change scope variable Beta to 3;

For Block X:

for beta=3

On first reference to block X, P-value = ceil (0.5%10) +
ceil (0.5%¥10) —3 =7,

On second reference, P-value = ceil (0.5%7) + ceil
(0.5%10) — 3 =6;

On third reference, P-value = ceil (0.5%6) + ceil (0.5*%10)
—-3=5;

On fourth reference, P-value = ceil (0.5*%5) + ceil
(0.5%10) — 3 =5; and so on... For Block X:

for beta = 4

On first reference to block X, P-value = ceil (0.5*10) +
ceil (0.5%10) — 4 = 6;

On second reference, P-value = ceil (0.5%6) + ceil
(0.5%10) — 4 =4,

On third reference, P-value = ceil (0.5%4) + ceil (0.5%10)
—4=3;

On fourth reference, P-value = ceil (0.5*%3) + ceil
(0.5%10) — 4 = 3; and so on...

As demonstrated in the above example P-value of a
working set block is coming down to 1 after few ref-
erences to it irrespective of what the beta value is.

For normal block with scope variable Beta = 2, P-value
is not decreasing below 7 and with Beta = 3 it is coming
down upto 5 but not going below 5, with Beta =4 P-value
is coming down to 3 but not going below 3. For higher
value of Beta it may come further down towards O or 1.
Hence Beta decides the scope of normal blocks to move
to safe end. Moving towards the safe end increases the
stay of a block in the cache.

If Beta variable is set to HIGH value (Beta value in the
range of 21% to 50% of Buffer Cache Size) algorithm ensures
the following things: (assuming buffer full condition)

While joining the buffer cache, normal blocks will be
inserted around the middle of the cache, ensuring rela-
tively longer stay to them before replacement.

Normal blocks will find bigger scope for moving into
a high portion towards Safe End, by scoring over other
cached blocks (normal as well as the working set blocks)
based on its positive differences with their current access
patterns.

A normal block whose recent access patterns are rela-
tively more frequent as compared to some better posi-
tioned blocks, can move ahead of those blocks to further
increase its stay in the cache.

Based on the higher current access patterns, a normal
block may overtake a better positioned working set
blocks also.

A block whose current access pattern is frequent, its stay
will give more hits to the cache performance as long as its
access pattern stays frequent. In normal conditions, when
the working set blocks are exhibiting patterns close to their
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historical patterns they will remain stable in the cache in its
high portion. In case few of them lost their frequent patterns
for some period of time, they cannot be driven by the normal
blocks towards replacement. This is true only with Beta vari-
able set to LOW. In case Beta variable is set to a HIGH value,
the working set blocks with reversed patterns can be driven
to replacement by normal blocks with higher frequency of
access.

Other way, if B is a working set block, and between any
two references to block B if there are y number of references
to the other blocks, with Beta set to LOW, only a subset of y
(corresponding to a working set block references) may push
block B towards replace end. If B is a normal block then all
the y references to other blocks will push B towards replace
end till it gets replaced.

Sample Case Consider the cached blocks X and Y both
having high frequency of access as compared to other cached
blocks. Assume X to be a working set block and Y to be a
normal block. At the time of joining, X will be placed in the
HIGH portion of the cache whereas Y will be placed in the
LOW portion of the cache.

o Case 1: scope variable Beta set to LOW

— In this case, block X can cross all the cached blocks
due to its higher frequency of access.

— Block Y can cross only cached normal blocks due
to its higher frequency of access.

« Case 2: scope variable Beta set to HIGH

— In this case both blocks X & Y can reach the safe
end.

% If current access frequency of normal block Y
is more as compared to current access frequency
of a working set block X then taking some time,
block Y may cross block X. Time taken depends
on the difference in their ranks and the difference
between their current access patterns. In case if
the access frequency of block Y is less, then
block Y cannot move ahead of block X towards
safe end.

One of the important difference between a working set block

and a normal block is that at each re-reference a working

set block will take relatively larger steps (number of blocks

crossed) towards safe end as compared to normal block.
Significance of L-value of a cached block

« In the cache, each block has the unique L-value. Hence
it can be used to break the tie when there are multiple
blocks having lowest predictive importance.

« As the cache is ordered based on increasing P-value and
decreasing L-value, victim block is always present at the
low end.

o In case of multiple cached blocks having highest
P-value, low end of the cache always contains a block
with lowest L-value among the blocks with highest
P-value.
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« Hence replacing low end block means replacing the
least recently used block amongst the group of lowest
predictive probability blocks in the cache.

D. ADVANTAGES OF PREDICTIVE LRLFU ALGORITHM

e One of the problems in database cache optimization
is handling time consuming infrequent queries which
requires large amount of sequential disk block access.
While processing such queries, whole existing buffers
will be replaced with the blocks required for executing
these queries. This will lead to removal of the existing
and stable working set in the cache and can results in
lot of cache misses afterwards. The blocks of such long
infrequent queries will not appear in the working set due
to its infrequent access pattern and with the policy of
predictive LRLFU algorithm all of them will join the
buffer cache close to replace end (with parameter Beta
set around LOW value) and will be replaced quickly.
In case of quick re-references also such blocks will stay
in the LOW portion of the cache.

o Second advantage of LRLFU cache management pol-
icy is that it gives very high performance in handling
suitable workloads in which the historically frequent
blocks are having the frequent patterns in the current
trace.

E. DISADVANTAGES OF ABOVE IMPLEMENTATION OF
PREDICTIVE LRLFU ALGORITHM

o Slow-adaptability to reversals of historical patterns due
to static value of scope variable:
Predictive LRLFU algorithm can give considerable
improvement in the hit ratio especially when higher
percent of the current trace references are periodic
in nature. But this algorithm has some disadvantage
when the working set blocks gets cached but does not
deliver substantial number of hits. Additional stay of
such blocks may enforce some of the better access
probability blocks to leave the cache. To avoid this,
we can make additional provision in our algorithm
to improve the adaptability to handle the lost memo-
rized patterns or to maintain good performance despite
of less percentage of periodic references. Section 4.6
explains the new algorithm having a online adaptability
to reversal in the frequent patterns of the working set
blocks.

o Some computational overheads:
There are some computational overheads of comput-
ing P-value, updating L-value for each referred block
for its every reference, and maintaining the list sorted
according to P-value, L-value combination. These over-
heads can be controlled effectively by using suit-
able data structures like linked list and hash map as
described in the section 4.7. We can use the same
data structures to improve time efficiency of Adaptive
LRLFU.
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F. ADAPTIVE LRLFU ALGORITHM

Adaptive LRLFU is modified Predictive LRLFU with addi-
tional online adaptibility. Like Predictive LRLFU, in adaptive
LRLFU also scope variable Beta decides the division of
cache into two portions, which are, a working set portion
and a non-working set portion. Beta also decides the scope
of normal block in prolonging its stay in the cache based
on its current access patterns. Additionally, Adaptive LRLFU
algorithm keeps track of recently replaced data elements from
a buffer cache. It maintains this record in dummy LRU list.
The size of dummy list is equal to the size of a buffer cache.
In case of a reference to some working set block, if there is
a miss in a buffer cache and hit in the dummy list, then the
referred block is deleted from the dummy list and added to a
buffer cache with its P-value computed using its rank value
specified in the current time intervals working set. In case of a
reference to some normal block, if there is a miss in a buffer
cache and hit in the dummy list, then the referred block is
deleted from the dummy list and added to a buffer cache with
its P-value computed using Default Rank value overridden
with % of actual default rank value which is half the size of a
buffer cache.

Adaptability:

It alters the value of scope variable Beta by obeying the
following rules:

If a new block reference is a miss in a buffer cache but hit in
the dummy list and that reference is for the working set block,
then reduce the scope of the normal blocks by reducing Beta
by 1, provided Beta is more than 1% of the buffer cache size.
In case the new reference is for the normal block and it is a
miss in a buffer cache and hit in a dummy list then increase the
value of Beta by 1, provided Beta is less than 50% of a buffer
cache size thereby increasing the scope for normal blocks to
reach the safe end. Hence Adaptive LRLFU adjusts the scope
of normal blocks by examining a current buffer cache misses
in the history of recently replaced blocks, to minimize the
negative effect of reversed or lost memorized patterns. It also
gives improved position to normal blocks which are recently
replaced and referred again.

G. TIME EFFICIENT IMPLEMENTATION OF PREDICTIVE
LRLFU
Hashmap is a hashmap and Cachelinked List is a doubly
linked list of node type BLOCKNODE having HEAD and
TAIL node pointers pointing to first and last node respectively
in the CacheLinked List. BLOCKNODE has following fields:
BLOCKID, PREV, NEXT, P-value, L-value;

BLOCKID corresponds to key in hashmap.

CachelinkedList is always sorted on increasing P-value,
decreasing L-value. This order will be maintained at each
insertion of a new blocknode (in case of cache miss) and at
each updation of P-value, L-value of referred blocknode (in
case of a cache hit). Time efficient Predictive LRLFU works
as follows:

Terminologies used: Rank is the historical rank of the
referred working set blocks and DefRank is the default rank

VOLUME 7, 2019

Algorithm 2 Time Efficient Predictive LRLFU

1: Input: hashmap Hashmap, block reference trace RefT,
size of trace N-RefT, Buffer Cache Size N.
2: fori=1;i < N-RefT; i++ do > processing a reference

trace
3: if RefT(i) € Hashmap then > Cache Hit
4: Hits++
5: Blocknode = Hashmap.get(RefT (i))
6: Blocknode.recomputeP-value () > recomputes
P-value
7 Blocknode.recomputeL-value () > recomputes
L-value
8: Cachelinkedlist .updateposition(Blocknode)
9: else
10: Faults++;
11: if number of nodes in CachelinkedList == N then
12: Remove the tail of the Cachelinkedlist and the
corresponding blocknode from the hashmap. >

deletes block at replace end of the cachelinkedlist and the
corresponding entry in the hashmap

13: end if

14: Blocknode =  Cachelinkedlist.addnewblock
(RefT(1))

15: Hashmap.put (RefT(i), Blocknode)

16: end if

17: end for

used for normal blocks, Beta is scope variable. The various
procedures called in the algorithm works as follows:

o Cachelinkedlist.addnewblock (Bi) will create a new
node and sets Bi as BLOCKID, sets P-value field to ceil
(0.5 * N) + ceil (0.5 * Rank) - Beta; if it is a working
set block or to ceil (0.5 * N) + ceil (0.5 * DefRank) -
Beta; if the block is not in the working set. After that the
procedure will scan the sorted linked list from the head
node and will add the new node before a node whose
P-value is either numerically greater than or equal to that
of new node. If no such node was found till the end of
CacheLinked List then new node will become the TAIL
node of CacheLinked List. If head node has numerically
greater or equal P-value than the new node, then new
node will become the HEAD node. Procedure returns
the New Node which will be added along with its key to
HashMap.

o Cachelinkedlist.updateposition (Bi) will start from
referred Blocknode whose P-value & L-value is just
updated, scanning left towards head and relocates (if
required) the Blocknode at its appropriate position to
restore the sorted order. Due to recomputed P-value,
L-value, Bi might have get out of order in the otherwise
sorted list. Here we are scanning only left starting from
Blocknode Bi because only referred nodes P-value may
have changed (improved), hence it may be relocated to
more closer position to safe end.
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TABLE 2. Dataset characteristics for workloads set-A.

Sr.No. | Dataset | N Blks P HS R RA
1 DS1 612217 65321 14.45 % 21.48 % 37.69 % 26.38 %
2 DS2 625966 71529 21.24 % 26.00 % 24.51 % 28.25 %
3 DS3 831476 92079 2745% | 10.08% | 3031 % | 32.16 %
4 DS4 21221366 | 2597474 | 21.10 % 14.12 % 34.45 % 30.33 %
TABLE 3. Dataset characteristics for workloads set-B.
Sr.No. | Dataset | N Blks P HS R RA
1 DS5 671724 44605 04.05% | 87.15% | 04.11 % 4.69 %
2 DS6 451274 67783 03.21% | 7835% | 0544 % | 13.00 %
3 DS7 421561 111039 01.12% | 0147 % | 24.07% | 7334 %
4 DS8 24532574 | 2549518 | 10.84 % | 6.92 % 1420 % | 68.04 %

H. TIME COMPLEXITY OF TIME EFFICIENT PREDICTIVE
LRLFU

At each updation of P-value, L-value of cached block (due to
its rereference) only X+Y comparisons are required (6(n +
m)). Here X indicates the number of blocknodes whose
P-value is between the old P-value and the new P-value of
the referred block. Y is the number of blocknodes in the
CacheLinked List having same P-value as the new P-value
of referred block. Worst case complexity of our algorithm is
O(N) as in worst case N = X+Y. In best case, our algorithm
will have time complexity of O(1).

When a hit occurs. only referred block may get relocated
to a new position due to its recomputed P-value and changed
L-value. The only possibility is new position of a referred
block may be closer to safe end than its previous position.
Rest of the block sequence remains unvisited as there is
no change in P-value, L-value of any other cached block.
Here as we are doing insertion in a sorted linked list, the
time complexity of insert operation (which corresponds to
reading a new block in a cache) can be reduced to O(LogaN)
from O (N). The time complexity of delete operation (which
corresponds to creating a space for a new requested block
by removing a victim block from the cache) is O (1) as we
are deleting TAIL node at each deletion. Deletion happens at
each new Blocknode addition to cache when the cache is full.
Search complexity is also O (1) as we are using a hashmap
having time complexity of O (1) for get () and put () operation.

V. EXPERIMENTATIONS

A. DATASETS AND EXPERIMENTAL ENVIRONMENT

We have implemented the proposed methods and existing
methods in java using NetBeans IDE on UNIX platform.
We have performed trace based simulation to evaluate the
performance of proposed algorithms in comparison with the
implemented existing algorithms.

We have developed a data set generator application
DBGEN which generates reference traces having mixture
of periodic references, sequential and hierarchical refer-
ences, repeatable references and random references. Using
DBGEN we have generated total 8 datasets out of which
dataset]-dataset4 and datasetS-dataset8 contains one hour
reference traces for seven days. The first group contains the
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workloads with balanced mixture of different types of ref-
erences, whereas second group contain the workloads having
high percent of one type of references. Each reference in these
datasets are time stamped between time interval 10.00 am to
11.00 am. Dataset4 and Dataset8 contains 24-hours reference
trace for 7 days in which each reference is having a times-
tamp between 12:00 am - 11.59 pm. In implementation we
have used numbers between 1 to 1440 to uniquely identify
total 1440 minutes during a day-time. These numbers are used
to timestamp each reference in the datasets. The characteris-
tics of all the 8 datasets are given in Tables 2 and 3.

For the six 1-hour datasets, out of traces of seven days,
traces of six days are used as training datasets for finding
historical probability of referred blocks, defining the working
sets, and giving ranks to the working set blocks. Reference
trace of seventh day is used as test dataset for evaluating
performance of algorithms. For the two 24- hour datasets, the
working sets for all 24 time intervals is defined by consulting
reference traces of six days and seventh day’s trace is used
for performance evaluation purpose.

The existing algorithms and proposed algorithms are eval-
uated on test traces with different cache sizes. We have used
hit ratio as the performance measure to compare various
algorithms. Since hit ratio is affected by the buffer cache size,
for various sizes of buffer cache, hit ratio of the buffer man-
agement policies are recorded and comparison is shown for
all the 8 datasets. Additionally we have used Zipf synthetic
trace and Sprite network trace for evaluating the performance
of our algorithms.

Zipf follows a Zipf-like distribution where the probability
of the i block being accessed is proportional to (i/N)%,
where « is equal to log a/log b, where a and b are between 0
and 1, and N are the total number of distinct blocks referred.
This approximates common access patterns in web applica-
tions that a few blocks are frequently accessed and others
are accessed much less often. Zipf trace has 600000 1/O
operations and 781 MB of data size. Performance comparison
on Zipf is shown in Figure 14.

The Sprite network trace is a real workload trace containing
requests to a file server from a client workstation making
165,472 block references to 6,975 unique blocks with the
block size of 4 Kbytes is used for comparing the performance
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Performances on Dataset DS1
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FIGURE 4. Performance comparison on Dataset DS-1 (1 hour trace).

Performances on Dataset DS2
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FIGURE 5. Performance comparison on Dataset DS-2 (1 hour trace).

of AD-LRLFU with that of the other best performing algo-
rithms. The performance comparison is shown in Figure 14.
For all these experimentations, we have taken initial value of
Beta variable = 10% of the buffer cache size. We selected the
tunable parameters of LRU-2, 2Q, MQ and LRFU for the best
result for each cache size.

B. PERFORMANCE EVALUATION ON THE REAL AND
SYNTHESIZED TRACES
N : number of references in a reference trace.

Blks : number of unique blocks in a reference trace.

P : number of periodic references.

HS : number of sequential or hierarchical references.

R : number of repeatable references.

RA : number of random references.

The performance comparison of various algorithms along
with the proposed algorithms on Datasetl-Dataset4 are
shown below in Figure 4-7.

Dataset]-Dataset4 contains several looping patterns of
non-uniform repeat intervals mixed with references to peri-
odic, sequential and randomly accessed blocks. The perfor-
mance comparisons on these datasets are shown in Fig. 4
to Fig. 7. LRU and Clock considers recency, but recency
of a block depends on its own reference activity as well
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Performances on Dataset DS3
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FIGURE 6. Performance comparison on Dataset DS-3 (1 hour trace).
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FIGURE 7. Performance comparison on Dataset DS-4 (24 hours trace).

as the recent reference activities of other blocks. As both
these algorithms does not take frequency into consideration,
they suffers from poor performance on all these datasets.
Localities of several blocks will get dispersed due to reference
activities of sequential and random blocks. Hence blocks will
have varying access patterns, due to which reference fre-
quencies of many frequent blocks will be hard to distinguish
in several localities. Hence frequency based algorithms like
LFU and 2Q suffers from performance degradation. Most
of the adaptive algorithms CAR, LIRS, ARC and recency
and frequency based algorithms like LRFU quantifies the
likelihood of the block of getting accessed in the near future,
by using the historical information. Hence they are capable of
replacing the block with weak locality. However these algo-
rithms are unable to detect the access patterns of the historical
blocks because of which there performance is considerably
less than Adaptive LRLFU algorithm, especially for smaller
sizes of the buffer cache. The performance gain in terms of
hit ratio for the Adaptive-LRLFU compared to other best
performing algorithms LIRS, ARC, CAR was 9%, 8%, and
6% respectively on dataset DS-4.

The performance comparison of our algorithms along
with the some of the best performing other algorithms on
Dataset5-Dataset8 are shown in Fig. 8 to Fig. 11. All these
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FIGURE 8. Performance comparison on Dataset DS-5 (1 hour trace).
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FIGURE 9. Performance comparison on Dataset DS-6 (1 hour trace).

datasets either have long sequences of sequential scans or
long burst of random references separated by small percent-
age of other types of references. In general, all the scan
resistant algorithms like ARC, LIRS, CAR as well as Predic-
tive and Adaptive LRLFU performs well on these datasets.
Additionally, both the proposed algorithms outperforms the
best performing CAR and LIRS on these datasets. As all
these datasets are having either high percentage of sequential
references or high percentage of random references, with
the increase in number of buffers, the trends in the perfor-
mance improvement of adaptive algorithms gradually sta-
bilizes. On all the four datasets, Adaptive LRLFU has a
better hit ratio than the other algorithms, because in addition
to quick online adaptability for changing patterns, Adaptive
LRLFU takes localities of periodic/random/repeatable refer-
ences into consideration which gives it a best performance.
The dynamically changing parameter Beta gives ability to
Adaptive LRLFU to fluctuate from frequency to recency (of
periodic as well as non-periodic references) and back, all
within a single workload. The performance gain in terms of
hit ratio for the Adaptive-LRLFU compared to other best
performing algorithms LIRS, ARC, CAR was 6%, 4%, and
3% respectively on dataset DS-8.
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FIGURE 10. Performance comparison on Dataset DS-7 (1 hour trace).
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FIGURE 12. Pr.LRLFU Vs Ad.LRLFU Performance Comparison for Different
Scope, i.e., Beta Values (on dataset DS-6) Cache Size = 8K.

Sensitivity of Proposed Algorithms for scope parameter
Beta: We have checked the performance gain of Predictive
LRLFU and Adaptive LRLFU for different values of scope
parameter Beta ranging from 0.05 to 0.35. We have varied
the value of Beta from 0.05 * buffer cache size to 0.35 *
buffer cache size at a step of 0.05 on datasets DS6 and
DSS8. On the tested workloads, with the change in beta there
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FIGURE 13. Pr.LRLFU Vs Ad.LRLFU Performance Comparison for Different
Scope, i.e., Beta Values (on dataset DS-8) Cache Size = 1M.

is a moderate and stable change in the hit ratio. However,
Predictive LRLFU is clearly more sensitive to the change
in Beta value, as it is observed that the percentage of times
we get measurable change in hit ratio with the change in
beta is higher in Predictive LRLFU as compared to Adaptive
LRLFU.

In general, Increase in Beta value increases the perfor-
mance gain of Predictive LRLFU on workloads with high
percentage of random references. Whereas it gives its best
performance with minimum Beta value when tested on work-
loads with high percentage of periodic and repeatable refer-
ences. Against this, Adaptive LRLFU is very less sensitive
to the changes in value of Beta variable. This is because
value of Beta variable is implicitly and dynamically adjusted
in Adaptive LRLFU with the changing patterns of block
references. The results are shown in Fig. 12 and Fig. 13.
Performance comparison on Zipf and Sprite network trace are
shown in Fig. 14 and Fig. 15 respectively. Adaptive LRLFU
outperforms the competitor algorithms LIRS, ARC, CART
and CLOCK on these traces. The major difference between
adaptability of competitor algorithms like LIRS, ARC, CAR,
CART and our proposed algorithm is that the competi-
tor algorithms while adapting to changing access patterns,
do not distinguish between replaced-recently-and-referred-
again blocks based on their historical patterns. Whereas,
dynamically changing value of the beta and consideration
given to historical patterns enables Adaptive LRLFU to
recover quickly from the change in locality of working
set blocks as well as blocks which are not in working set
[explained in detail in section 4, subsection F]. Also due to
utilization of periodic reference patterns of the working set
blocks, our proposed algorithm is showing more gains (in
terms of hit ratio) particularly at smaller cache sizes as com-
pared to CART, ARC and LIRS algorithms which is demon-
strated in Fig. 14 and Fig. 15. The DB2 database trace used
in researches of papers [3], [35] contains 500,000 references
to 75,514 unique blocks. The OLTP trace contains references
to a CODASYL database for a one-hour period. This trace
consists of 914,145 references to 186,880 unique blocks [35].
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FIGURE 14. Performance comparison on Zipf trace.

Performances on Sprite Network Trace

Hit Ratio %
o n s RAioN
BNEesss23288 33838
s§§\§§§§§§§§\\

0 100 200 300 400 500 600 700 800 900 1,000
Number of Buffers

[= cLock - ARC - CART + LIRS — Ad.LRLFU|

FIGURE 15. Performance comparison on Sprite network trace.
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FIGURE 16. Performance comparison on commercial DB2 trace.

We have obtained these 2 database traces from the authors
of these papers and the experimental results are shown in
Figure 16 and Figure 17. On both traces Adaptive LRLFU
has the highest hit ratio for all cache sizes we simulated.

C. RESULTS ANALYSIS

We found that the Adaptive LRLFU algorithm gives the
best hit ratios in all the examined workloads. With test data
set in general containing less percentage of periodic refer-
ences, hit ratios of other best performing algorithms and
proposed algorithms differs in the small range but still Adap-
tive LRLFU above all others maintains the highest hit ratio.
With datasets containing more percentage of periodic refer-
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FIGURE 17. Performance comparison on OLTP trace.

ences especially more percentage of non-repetitive periodic
references, both Predictive LRLFU and Adaptive LRLFU
outperforms other recency and frequency based adaptive
algorithms like ARC, CAR, LIRS, CART etc. considerably.
The difference in hit ratio between Predictive LRLFU and
Adaptive LRLFU is preliminarily due to percentage and
distribution of random block references. As such blocks
have irregular time or space interval between any two ref-
erences to them, adaptability of Adaptive LRLFU is better
provisioned to give better results than results of Predictive
LRLFU.

On the workloads with higher percent of random workload
blocks Adaptive LRLFU outperforms other best perform-
ing algorithms like CAR, CART, LIRS by a small margin.
We also observed that increase in the percentage of random
block references have lowest negative effect on the perfor-
mance of Adaptive LRLFU algorithm as compared to any
other algorithm. The increase in the buffer cache size converts
some non-repetitive references to repetitive ones and decrease
in the buffer cache size converts some of the repetitive refer-
ences to non-repetitive ones. Keeping the workload constant,
change in the buffer cache size leads to change in the ratio
of number of non-repetitive references to working set blocks
(WS) / number of non-repetitive references to non-working
set blocks (NWS). The configurations of a buffer cache for
which this ratio is higher, i.e., WS is heavier than NWS,
Predictive LRLFU algorithm is close to Adaptive LRLFU
performance wise and considerably ahead than the best per-
forming known algorithms.

We also found that difference between hit ratios of
proposed algorithms and existing known algorithms keeps
increasing with the increase in the buffer cache size as long
as Buffer Cache Size is less than Working Set Size. After a
particular size of a buffer cache above the working set size
the difference in hit ratios between proposed algorithms and
existing known algorithms consistently decreases with the
constantly increasing the buffer cache size. We also examine
that after a particular size of a buffer cache above the working
set size, the ratio of increase in the hit ratio percentage with
the increase in the buffer cache size is lowest in Adaptive
LRLFU as compared to existing known algorithms. Sum-
marizing due to predictive and adaptive feature of Adap-
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tive LRLFU it provide better hit ratios for lesser sizes of a
buffer cache and allows more efficient utilization of memory
resource.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced new database buffer man-
agement algorithms namely predictive LRLFU and Adap-
tive LRLFU algorithms. The common novelty of both the
algorithms is using the periodicity in block access patterns
for improving buffer management. Experimental results per-
formed on the variety of datasets suggest that both the algo-
rithms have got the considerable performance advantages
over conventional algorithms considering hit ratio as the per-
formance measure. In general, the experimentations acknowl-
edge and demonstrate the following facts.

Due to a combination of predictive and adaptive approach
in our proposed algorithms, we believe that the potential
benefits of our algorithms, apart from cloud databases will
persist in other conventional or non-conventional databases.
Its adaptive nature [online and offline adaptability] helps
in protecting its performance leverage while dealing with
workloads having highly diversified access patterns. The
self-tuning property [refreshing the working sets periodi-
cally] keeps its performance effective with evolving access
patterns. Consideration of recent as well as historical access
patterns enables proposed algorithms to learn near to exact
future access probabilities of the cached blocks, due to which
it maintains the cache replacement sequence accurately.
This ensures that in majority of replacements, cached block
with the weakest chance of getting referenced soon will be
replaced.

We have used nine synthetic workloads, a real sprite
network workload and a real DB2 and CODASYL OLTP
database traces. in the experiments. The experimental results
demonstrate the superiority of our proposed algorithms in
comparison to the best of the known buffer management
algorithms, especially in the periodicity dominant traces and
for the smaller buffer cache sizes. Proposed AD-LRLFU
beats the best results of LRU, LIRS, ARC, CAR, 2Q, CART
and CLOCK on all the examined workload traces. In addi-
tion, the proposed PR-LRLFU and AD-LRLFU algorithms
is time efficient having low runtime complexity. From the
experimental results, we can conclude that our proposed algo-
rithms improve the performance of the cache in a better way
as compared to existing known algorithms. Considering the
consistent performance gains of the proposed algorithms in
the examined variety of cases we believe that they are good
candidates to be used in cloud databases [26], [27] where
several applications share the same database instance.

The proposed method uses the static intervals like 9-10 am,
10-11 am and so on for calculating predictive working set.
This will give simple and less computational algorithm for
replacement but it may not give optimal predictive working
sets. Calculating correct intervals to get optimized predictive
working sets and to further minimize the cache misses is in
the future scope of our work.
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