
SPECIAL SECTION ON NEW TRENDS IN BRAIN SIGNAL PROCESSING AND ANALYSIS

Received March 21, 2019, accepted April 4, 2019, date of publication April 30, 2019, date of current version June 10, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2914071

Exact String Matching Algorithms: Survey,
Issues, and Future Research Directions
SAQIB IQBAL HAKAK1, AMIRRUDIN KAMSIN 1, PALAIAHNAKOTE SHIVAKUMARA1,
GULSHAN AMIN GILKAR2, WAZIR ZADA KHAN 3, (Senior Member, IEEE),
AND MUHAMMAD IMRAN 4
1Faculty of Computer Systems and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia
2College of Computer Science, Shaqra University, Shaqra 11451, Saudi Arabia
3Faculty of Computer Science and Information Systems, Jazan University, Jazan 82822-6694, Saudi Arabia
4College of Applied Computer Science, King Saud University, Riyadh 11451, Saudi Arabia

Corresponding authors: Amirrudin Kamsin (amir@um.edu.my) and Wazir Zada Khan (wazirzadakhan@jazanu.edu.sa)

This work was supported in part by the University of Malaya Research Grant (UMRG) under Project RP043A-17HNE & RP003A 14HNE,
and in part by the Deanship of Scientific Research, King Saud University through research group under Grant RG-1435-051.

ABSTRACT String matching has been an extensively studied research domain in the past two decades due
to its various applications in the fields of text, image, signal, and speech processing. As a result, choosing
an appropriate string matching algorithm for current applications and addressing challenges is difficult.
Understanding different string matching approaches (such as exact string matching and approximate string
matching algorithms), integrating several algorithms, and modifying algorithms to address related issues are
also difficult. This paper presents a survey on single-pattern exact string matching algorithms. The main
purpose of this survey is to propose new classification, identify new directions and highlight the possible
challenges, current trends, and future works in the area of string matching algorithms with a core focus on
exact string matching algorithms.

INDEX TERMS String matching, Boyer-Moore, Rabin-Karp, Knuth-Morris-Pratt, exact string matching,
pattern matching, pattern recognition, pattern analysis.

I. INTRODUCTION
String matching is a universal technique for solving problems
of different fields, such as text mining, natural language
processing, image processing, speech processing, computer
vision, and pattern recognition [1]. Natural language process-
ing is an integral part of multimedia information retrieval.
At present, information retrieval focuses on detecting and
recognizing texts in videos, images, documents, and social
media. After retrieval methods recognize text using an optical
character recognizer, they use string matching algorithms to
search for relevant words in the database. For digitized texts,
such as annotated data of images or videos, the methods
use string matching to define context for extracting relevant
words at a high level frommultimedia databases. In the meth-
ods in [2], string matching is used to index and retrieve infor-
mation from multimedia databases at a high level. A string
is a set of characters that can contain spaces and numbers.

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor Hugo Albuquerque.

A string can be ordered or unordered because the main task of
string matching is to find String A within String B regardless
of the order of alphabets. The concept of string matching is
illustrated in Figure 1, in which it finds all occurrences of a
pattern p in a given text t.

Figure 1 shows the search for a substring pattern of defined
length in a given string of defined length. This process
involves a large amount of computation and is therefore time
consuming. The best string matching algorithms should be
selected out of n number of algorithms in literature according
to application and complexity of the problems. Thus, we pro-
pose to survey string matching algorithms for investigating
their strengths and weaknesses. This survey helps future
researchers explore the strengths of different algorithms to
overcome the drawbacks of existing algorithms.

Previous researchers have developed algorithms in differ-
ent directions in dissimilar fields of various applications to
fully utilize string matching algorithms. Szeto and Wong [4]
used string matching algorithm to find patterns in musi-
cal databases. Srivastava et al. [5] proposed a framework

69614
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2796-3459
https://orcid.org/0000-0003-0819-4236
https://orcid.org/0000-0002-6946-2591

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

FIGURE 1. Definition of string matching [3].

for searching multimedia contents, such as text, image, and
audio. The authors used query-based algorithms that involve
string matching approach to search texts. Kim et al. [6] noted
that the demand for retrieval of multimedia contents, such as
text, image, and audio, is increasing rapidly with the devel-
opment of technology and suggested to develop newmethods
for facilitating searching and retrieval processes.
Motivation:
The main motivation of this survey is to overcome the lim-

itations of previous survey articles related to string matching
algorithms. Few works have summarized the algorithms used
for string matching. Navarro [7] reviewed different approx-
imate string matching algorithms in terms of pattern length
and time complexity. Michailidis and Margaritis [8], [9]
reviewed and experimentally examined online approximate
and exact string matching algorithms. The review aimed
to find the weaknesses and strengths of each algorithm.
Charras and Lecroq [10] presented the methodologies related
to working ideas of some exact string matching algorithms.
Faro and Lecroq [11] experimentally evaluated exact string
matching algorithms and classified them into four: character
comparison, automata-based, bit-parallel, and constant space
string matching approaches. Hendawi and Baharudin [3] sur-
veyed and experimentally explored five popular stringmatch-
ing algorithms. Two parameters, namely, text and pattern
sizes, were varied to check the efficiency of the algorithms
in terms of execution time. Ahmed and Khare [12] pre-
sented a survey based on the applicability of string matching
algorithms on hardware-based systems with prime focus on
Knuth-Morris-Pratt (KMP), Aho-Corasick, and brute-force
algorithms.

This backdrop reveals that existing surveys have focused
on experimental evaluations to analyze time complexity of
the algorithms. Whether the algorithms reviewed are based
on single or multiple patterns is also unclear [13]. No any new
taxonomy is presented, and no any future directions, chal-
lenges, and applications are discussed in detail. As a result,

FIGURE 2. Performance analysis of backward oracle algorithm.

the future scope of string matching algorithms becomes
uncertain. Choosing an appropriate algorithm for a particular
application is a research challenge that has not been addressed
yet by any of the existing studies. As shown in Figure 2,
backward oracle algorithm obtains different processing times
for dissimilar datasets or applications. The performance of the
methods shown in the figure changes when the dataset and
application change. Thus, all the above-mentioned factors
have motivated us to carry out the proposed survey. The
rest of the paper is organized as follows. Section 2 provides
the general classification of string matching algorithms and
proposes an extended classification of exact string matching.
Section 3 explains the survey work in the area of software-
based single-pattern matching algorithms along with an illus-
tration of three fundamental algorithms of Boyer-Moore
(BM), KMP, and Karp-Rabin. Section 4 describes the clas-
sification of single-pattern exact matching algorithms based
on applicability. Section 5 contains a summary of single-
pattern algorithms with their time complexity and limitations.
Section 6 highlights latest trends and issues with open chal-
lenges related to string matching. Section 7 elaborates the
conclusions.

II. CLASSIFICATION OF STRING MATCHING
ALGORITHMS
As mentioned in the previous section, several methods that
use string matching are available in different fields of lit-
erature. As a result, finding suitable methods for solving
new issues and choosing appropriate methods depending on
applications and requirements are difficult. Therefore, one
of the primary objectives of this work is to provide critical
analysis of basis or benchmark methods in terms of merits
and demerits, that is, strengths and weakness of the methods.
In this work, instead of focusing on n number of algorithms,
we focus on the basis on which general string matching
methods are developed. This way help readers find new
directions, choose appropriate string matching methods, and

VOLUME 7, 2019 69615

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

FIGURE 3. New Taxonomy of Exact Matching Algorithms.

combine or integrate strengths of different methods to address
new challenges. The analysis of different bases contributes to
the community. We propose a new class according to concept
and basis of the methods to save time in choosing an appro-
priate method depending on merits and demerits of the meth-
ods. For example, we categorize exact matching algorithms
as single and multiple-pattern matching methods. The two
categories are further classified as software and hardware-
based methods. This new taxonomy helps readers understand
the concept and suitability of the methods depending on their
requirements.

The methods can be broadly classified into two main cate-
gories: exact string matching approach that does not allow
any tolerance, and approximate string matching approach
(also known as k-mismatch approach) that allows tolerance
while matching. Exact string matching algorithms can be
further divided into single- and multiple-pattern exact match-
ing approaches, as shown in Figure. 3. Single-pattern exact
matching can be grouped into software and hardware-based
exact string matching algorithms. The software-based string
matching algorithms can be divided into character compari-
son, hashing, bit-parallel, and hybrid approaches. However,
this work focuses on software-based exact string matching
algorithms rather than hardware-based exact string match-
ing algorithms due to the vast scope of the latter, which
goes beyond the scope of the proposed work. We discuss

approaches that fall under software-based exact string match-
ing algorithms in the following section.

A. APPROXIMATE STRING MATCHING ALGORITHMS
Approximate string matching algorithm finds a substring
that is close to a given pattern string. This algorithm is
contrary to exact string matching algorithm that expects
a full match. In this case, deciding the degree of close-
ness is challenging but interesting, which depends on the
application and complexity of the issues. According to
Wu and Manber [14], this approach consists of finding all
substrings S with K or fewer differences within given text t
such that d(p, S ≥ K), where p denotes a short pat-
tern string with length m, d denotes distance function, and
K denotes an integer with value K ≥ 0. In other words,
the algorithms count the number matches and fix some
threshold as K while matching substring with the strings.
This approach is generally used when K mismatches are
found between the pattern and the given text. Two pop-
ular distance measures, namely, Hamming distance mea-
sure and Levenshtein distance function, are used in this
approach [15], [16]. These algorithms are introduced to
address spell errors present in patterns or texts, low qual-
ity of texts, and difficulty in searching foreign names [17].
Approximate string matching algorithms can be classified as
follows.

69616 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

• Filtration-based algorithms: These algorithms are
two-stage process algorithms. In the first stage, the loca-
tions of possible occurrence of patterns within the text
are identified. In the second stage, all those locations
are fully verified. Some of the recent algorithms that
follow this approach include those in [18]–[20]. How-
ever, these algorithms are insufficient for worst case
scenarios [21]. Most filtration indexes [19], [21], [25],
[29], [35], [37] usually differ in terms of text sampling,
pattern sampling, and alignment conditions [22].

• Back Tracking-based algorithms: These algorithms
are generally an extension of exact string matching algo-
rithms. In this approach, existing exact string matching
algorithms are modified to enable approximate search
using edit distance operations. The use of succinct (com-
pressed data) and suffix index-based data structures is
encouraged in these types of approaches. Some of the
recent works include those in [23]–[26].

In many cases, approximate string matching does not
work well, particularly in medical domain that expects 100%
matching to find a solution without any approximation. In this
context, exact string matching is more useful than approxi-
mate string matching.

B. EXACT STRING MATCHING
In exact string matching approach, all occurrences of a
given pattern p from a given text t are found [27]. In this
string matching, the characters present in a pattern win-
dow and a text window are compared. The length of both
windows must be of equal length during the comparison
phase. Shifting of characters in case of a mismatch is
necessary to develop efficient algorithms [27]. As men-
tioned earlier, exact string matching algorithms can be
classified as single- and multiple-pattern string matching
algorithms.

1) SINGLE PATTERN MATCHING
In single-pattern matching algorithms, the algorithm receives
only a single pattern as an input and searches for that specific
pattern from the target database. This group can be further
divided into two subgroups of hardware- and software-based
matching. Some applications require more than one pattern
to be searched, such as in analyzing mutations in DNA.
Multiple-pattern matching algorithms are proposed for such
applications [28].

2) MULTIPLE-PATTERN MATCHING
Multiple-pattern matching is an advanced version of single-
pattern matching. In multiple-pattern matching algorithms,
one input is received by the algorithm, and multiple occur-
rences of that input are searched from the target database [29].
Multiple-pattern matching algorithms are usually applied in
the area of bioinformatics, such as in DNA comparison
and protein sequence [30]. In DNA and protein sequences,
these algorithms are used to detect and analyze any anomaly
in the given sequence [31]. Similar to single-pattern string

matching algorithms, multiple-pattern algorithms can be
divided into hardware- and software-based string matching
algorithms.

3) HARDWARE-BASED PATTERN MATCHING
The implementation of hardware-based matching algorithms
requires hardware devices, such as graphical processing units
(GPUs) and field programmable graphical arrays (FPGAs).
These algorithms can be implemented using parallel pro-
cessing programming languages, such as CUDA, Open-MP,
and other specific languages. The implementation of
string matching algorithms in hardware devices, such as
GPU or FPGA, produces more overhead than that of
software-based pattern string matching algorithms, but the
former approach is faster than the latter approach. As men-
tioned above, hardware-based pattern matching needs differ-
ent hardware devices and is thus costly. In addition, after
the implementation of hardware-based patternmatching algo-
rithm, it cannot be applied on different data or applications
because changing the hardware design is impossible. By con-
trast, software-based pattern matching is flexible and can
be used for any number of times on different applications.
Therefore, software-based pattern stringmatching algorithms
are popular [32], [63]–[65].

III. ANALYSIS OF SOFTWARE-BASED SINGLE-PATTERN
MATCHING ALGORITHMS
In contrast to hardware-based string matching algorithms,
software-based algorithms use certain compilers and pro-
gramming languages for implementation purposes and
require less overhead. As shown in Figure 3, software-based
algorithms can be divided into character, hashing, suffix
automata, bit-parallel, and hybrid string matching algo-
rithms. The following section explains these algorithms in
detail.

A. CHARACTER-BASED APPROACH
Character-based approach is known as a classical approach
that compares characters to solve string matching problems.
This approach can be further divided into six subgroups:
brute force, BM, skip search, automata, Morris-Pratt, and
factorization [33]. In brute-force approach, each character is
compared from left to right individually at the cost of extra
time requirement. This approach does not involve any pre-
processing. Character-based approaches have two key stages:
searching and shift phases. Previous studies have attempted
to improve the processing of both phases. Among many
character-based approaches, BM algorithm [34] is the base-
line and is a standard and benchmark approach [27]. The key
step in the BM algorithm is that shift table sends information
about the number of characters that can be skipped to find a
match when a mismatch occurs [35]. Figure 5 shows different
versions of the BM algorithm, such as BM, turbo BM, tuned
BM, Horspool, Apostolico-Giancarlo, quick search, reverse
Colussi, optimal mismatch, and Raita [33].

VOLUME 7, 2019 69617

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

FIGURE 4. Working of Boyer Moore Algorithm.

1) BM ALGORITHM [34]
BM algorithm starts searching characters from right to left
of the given pattern. As shown in Figure 4, this algorithm
can shift as many m characters as possible in case of a
mismatch. BM algorithm involves two stages: pre-processing
and searching for a given pattern from the right side of the
window and using a bad-match table to skip characters in case
of a mismatch.
• Pre-processing: During the pre-processing stage,
a table is created to provide values regarding the amount
of shift required in case of a mismatch. This table is
also known as the bad-match table. Once a character
mismatch occurs, the algorithm shifts to the right of the
pattern in accordance with the value given in the bad-
match table.

• Searching for a given pattern:
Searching starts from the tail of the pattern (i.e., from
right to left of the text) unlike in the naive algorithm in
which the search starts from left to right. The algorithm
works by computing the length of the search string and
storing its value as default shift length. The time com-
plexities of this algorithm areO(n+m) andO(n×m) for
the best and worst cases, respectively. Here, m denotes
the length of pattern and n denotes the length of text
to be searched. This process is suitable for a moder-
ately sized alphabet with a long-length pattern [36].
However, not all characters within the text are com-
pared [37]. In addition, the size of pattern and alpha-
bet affects the pre-processing time [36]. To overcome
these problems, extended BM approaches are proposed,
as shown in Figure 5.

2) EXTENDED BOYER-MOORE APPROACHES
Researchers have optimized the BM algorithm on the basis of
bad character rule, fast loop, or any other related parameter.
The examples are discussed below. Horspool [38] proposed
an algorithm called Horspool algorithm in 1980. This algo-
rithm simplifies the BM algorithm by dropping the good
suffix rule. The shift is computed in such a way that the

rightmost character of the pattern gets aligned with the right-
most occurrence in the given text.

Apostolico and Giancarlo [39] proposed an improved ver-
sion of BM approach [34]. In Apostolico-Giancarlo algo-
rithm, character comparison is bounded by 3n/2. The logic
of the algorithm is the same as that of KMP, that is, it tracks
the pattern that matched successfully. In the pre-processing
stage, a priori knowledge regarding the structure of the pattern
is used. This algorithm accesses each character twice at most.
It does not work well for long-length patterns.

Boyer and Smith [8] proposed the Boyer-Moore-Smith
(BMS) algorithm, which is an extension of BM algorithm
and computes the shift with the text character. Given that the
character next to the rightmost character provides a short drift
in some cases, the approach works well. Maximum values
among the two variables are taken.

Raita [40] proposed a modified form of BM algo-
rithm called Raita algorithm, which takes advantage of
strong dependencies that arise between successive characters.
Dependencies can be extended up to 30 symbols. In this
algorithm, the last character of the pattern is compared with
the rightmost text character of the window for each attempt.
If amatch occurs, then the first character of the pattern is com-
pared with the leftmost text character of the window or the
middle character of the pattern is compared with the middle
text character of the window.

Crochemore et al. [41] proposed the turbo BM algorithm,
which is a modified version of BM algorithm and is based
on dynamic simulation technique. Turbo BM algorithm takes
longer shifts than BM algorithm and scans the text segment
until that segment is a suffix of the pattern. This algorithm
remembers the suffix of the last matched substring of the
pattern. Thus, this algorithm can jump over that substring and
execute turbo-jump, which is a memory match.

Berry and Ravindran [42] proposed the Berry-Ravindran
algorithm. This algorithm is an improvement of quick-search
algorithm, which is also a modification of BM algorithm.
Berry-Ravindran algorithm is based on bad character rule
using character unrolling cycle. The shift is performed for two
consecutive text characters that are immediate to the right of
the window.

Ahmad [43] proposed the BBQ algorithm to improve
search time by using two pointers in parallel approach. One
pointer starts the search from the left side, and the other
pointer starts from the right side. This way reduces the overall
search time. The above-mentioned discussion indicates that
different approaches based on BM algorithm are efficient in
terms of processing time. However, flexibility must be added
to ensure robustness of the BM algorithm. Therefore, hybrid
BM algorithms are developed.

3) HYBRID BM APPROACHES
Hybrid BM approaches are combined or integrated by con-
sidering advantages of other methods to enhance the perfor-
mance of each algorithm.

69618 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

FIGURE 5. Classification of Character Based Approach.

Sunday [44] proposed an algorithm popularly known as
Sunday algorithm, which is an improvement of BM algo-
rithm. This method uses three key steps to scan the given
pattern in three different orders. Sunday algorithm combines
the logic of BM and KMP algorithms. In the first algorithm,
a new function 41 is used to compute the index of the first
leftmost occurrence of a character from the end of the text
string. This way gives the absolute pattern shift required for
shifting the pattern. This feature is also found in BM, but
the shift in BM is relative to the position of p of the last
mismatch. For scanning in a specific order, another func-
tion 42 is defined. The same feature is used in KMP and
BM approaches. This function finds a position to shift from
current mismatch position.

Colussi [45] proposed the Colussi algorithm to improve the
efficiency of KMP algorithm. In Colussi algorithm, formal
correctness proof of KMP algorithm is proposed by defining
three assertions: Mch (b), which asserts that ’’the pattern
matches the text in position b’’; NMch (b), which asserts that
’’the pattern does not match position b’’; and Eq (b, i), which
asserts that ’’the first i characters of the pattern match the
text starting at position b.’’ On the basis of these assertions,
the value of ’’true’’ null statement is searched using Hoarse
axiomatic semantic proof rule. The results indicate some
information is lost. This lost information is utilized to reduce

the subsequent computational effort that is needed to attain
the final result.

Xian-feng et al. [46] proposed the KMPBS algorithm by
combining BM and KMP algorithms. The given pattern P
of length m is searched from left to right within the text T.
Searching is conducted by comparing the last character of P
with the corresponding character of text T, and KMP algo-
rithm is used to compare the rest of the characters in case of
a match. Different automata approaches have been applied
in character-based approaches, and a large amount of com-
putational time is required by character-based algorithms.
To reduce computational time, hashing-based algorithms are
proposed and developed.

Cao et al. [47] proposed a character-based string matching
algorithm, which calculates the statistical probability of each
English letter in the pattern string in accordance with its
special position in the pattern string. The proposed algorithm
uses optimization based on evolution strategies to calculate
the statistical probability and dynamic condition of each char-
acter in the pattern string. The main idea of the proposed
algorithm is to search for a character with the lowest proba-
bility (also called lowlight character) among all the characters
in the pattern string. After finding the lowlight character
in the pattern string, the whole text is compared with the
required lowlight character. If the lowlight character finds

VOLUME 7, 2019 69619

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

a match in the text, then the text is compared with target
pattern string for the remaining characters. The proposed
algorithm matches the target pattern string from the special
position rather than from left or right ends. The proposed
algorithm is compared with BM and KMP algorithms. How-
ever, the proposed algorithm requires more comparisons than
BM algorithm.

Hakak et al. [48] proposed an algorithm based on pattern
splitting. In this approach, the given pattern is divided into
two parts. Only the second part of the pattern is searched
using brute-force approach against the given text to enhance
the search process. Once the second part of the pattern is
found, the first part of the pattern is mapped directly on the
basis of the location of the second part. The experimental
results in the corpus of Arabic, English, Chinese, Italian, and
French texts are promising. However, the time complexity
of the algorithm may increase when searching for multiple
patterns in a given text.

Hakak et al. [49] enhanced their previous work by splitting
the given pattern. Similar to the previous work, the enhanced
algorithm also works by splitting the given pattern into two
parts. However, in this work, the split parts start the search-
ing process. If the distance between the two parts is 0,
then the pattern is found; otherwise, the searching process
continues. Although the proposed approach is promising
for non-unicode texts (e.g., Arabic), it may be time con-
suming for unicode texts because of the use of brute-force
approach.

B. HASHING-BASED APPROACH
The previous section indicates that character-based approaches
use characters to compare with the given string, whereas
hashing-based approaches find hash values for the character
to match rather than characters. The hashing-based approach
saves a large amount of computation as it compares integer
values instead of characters [27]. Karp and Rabin [50] used
this approach for string matching problem. Karp-Rabin algo-
rithm uses hashing value for matching process and conducts
comparison from left to right. This approach is limited by
hash collision, which occurs when two different strings map
to the same number. To understand the mechanism of the
hashing procedure, we present a basic version of hashing,
that is, Karp-Rabin.

Karp-Rabin string matching algorithm is based onmodular
hashing and is the first to introduce the notion of hash-
ing in string matching process. For a given pattern p with
characters m, the hashing values are calculated first. Then,
the hash values are used for matching between a given text
t and a pattern p. After a hash function is used, the search-
ing phase uses character comparison. Therefore, the algo-
rithm involves two key steps: pre-processing and searching
phases.

The pre-processing phase generally converts a string into a
decimal number. That is, a string of c characters is converted
into a string of d decimal numbers (Radix based). Hash
for all pattern characters is computed up to m − 1, where

FIGURE 6. Working of Karp-Rabin Algorithm.

m is a pattern window that comprises m characters. Hash
values are computed using Horners rule [51]. The pattern p is
divided by pre-defined prime number q. Modulus operation
is then used to calculate the remainder of pattern p with q.
For each shift that ranges from shift (s = 0 to n − m),
the remainders of pattern and text are compared for matching.
Once a match is found, brute-force approach is implemented
to verify the result of matching. Figure 6 shows an illustration
to understand this concept. In this example, a given text is t
and a pattern is p. The number of patterns to be searched
is 8628, which is divided by a pre-fixed prime number q to
obtain some specific remainder, that is, 4 in this example.
Thus, during the searching phase, each new pattern window
is divided by the same prime number to check whether the
remainder of that window and p is the same. If the condition
is positive, then brute-force approach is used to verify the
condition further.
• Given Text t = 12348628
• Pattern p = 8628
• q = 11
• Remainder (t) = 6
• Remainder (p) = 4
However, the following issues may arise due to division

operation.
1) If remainder r1 = r2 , then the match is successful.
2) If remainder r1 = r2 but r1 6= r2 after brute force,

then it is spurious hit occurs.
3) If remainder r1 6= r2, then the match is unsuccessful.
The estimated time complexity for pre-processing phase

is 2(m). For matching, the time complexities are 2(m + n)
and 2(mn) for average and worst cases, respectively. Here,
m denotes the pattern and n denotes the given text. How-
ever, the process of matching is relatively slow for long
pattern shifting [52]–[54], and large prime number can cause
overflow [54]. Hashing-based approaches can be classified
further as q-gram and non q-gram approaches, as shown
in Figure 7.

69620 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

FIGURE 7. Classification of Hashing-Based Approach.

1) Q-QRAMS APPROACH
The q-gram approach divides a given sequence into n subse-
quences for matching. On this basis, several approaches are
developed as described below.

Lecroq [55] proposed a modification to the method of
Wu and Manber [56]. The modification obtains a single
matching pattern to accelerate the matching process. For the
pattern of length l, the approach finds hash values using
h function for each substring. In other words, using the
window of string, w = t[s + m − l..s + m − 1]
with length l, the hash value is computed. If the value
of w of the substring is greater than 0, then the shift of
length [h(w)] is applied; otherwise, the pattern is naively
checked [57].

Boyer-Moore-Horspool with q-grams (BMHq) [57] is an
efficient modification of Horspool algorithm and is suitable
for DNA alphabet using q-gram approach. To inspect a single
character at each alignment, q gram is read and an integer
called fingerprint is computed. The idea consists of mapping
ASCII codes of respective characters in DNA alphabet to a
range of four characters, that is, r : {a, c, g, t} → {0, 1, 2, 3},
such that the computation can be minimized or limited. The
comparison for equality is performed by comparing the last
q gram of pattern with corresponding q gram (in current
window).

2) NON Q-GRAMS APPROACH
In non q-gram approach, the whole input pattern is encoded
and scanned. A few approaches that use this concept are
discussed as follows.

The algorithm of Wu and Manber [56] searches for
all the occurrences of the patterns in a finite set X =

[x0, x1, . . . , xk − 1] with a given text y and is based on
BM algorithm. Substrings are considered to be of length q.
The shift for all possible strings of length q is computed
during the pre-processing phase. From X finite set, all sub-
strings B of length q are hashed, followed by a shift. This
step is followed by searching phase, which consists of reading
substrings B of length q. Three tables are used in the pre-
processing phase (i.e., SHIFT, HASH, and PREFIX).

The algorithm of S. Kim and Kim [58] follows the hashing
approach and fully utilizes the encoding scheme. The input
pattern is encoded, and the given text is scanned from left
to right. S. Kim and Y. Kim claimed that the algorithm is
efficient for large patterns and suitable for multiple-pattern
strings.

Simone [59] proposed a condensed alphabet-based string
matching algorithm. The proposed algorithm is an enhanced
version of an existing skip-search string matching algorithm.
The proposed algorithm involves two phases: pre-processing
and searching. In the pre-processing phase for each substring,

VOLUME 7, 2019 69621

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

a numeric value called fingerprint is calculated and then
stored in the table. Similarly, subsequences for each pattern
are also stored in a table for searching purposes. In the
searching phase, similar to skip search, a numeric value (fin-
gerprint) for each position text is calculated and is matched
with the stored fingerprint of the pattern. If the fingerprint
matches, then the location is verified for possible matching.
If the fingerprint match results in empty location, then no
verification is required. The experimental results show that
the proposed algorithm performs well when the length of the
pattern is long. However, the performance of the proposed
algorithm decreases when the length of the pattern is short.

In summary, although hashing-based approaches are faster
than character-based approaches, hashing process still suffers
from certain drawbacks (e.g., hashing collision) and is unsuit-
able for short-length patterns. Hashing approaches are also
sensitive to capital and small case letters due to the use of
different encoding schemes. For these applications, hashing
algorithms may not perform well. For short-length patterns,
automata approaches work considerably better than hashing
processes according to our experiments.

C. SUFFIX AUTOMATA-BASED APPROACH
Suffix automaton/automation is an automaton that comprises
two related but distinct automata constructors: deterministic
acyclic finite state automaton (a data structure representing a
finite set of strings) and suffix automaton (a finite automaton
acting as suffix index) [60] for matching. It can be defined as
D(p) = {Q, q0,F, 6, δ}.

Here, Q = {q1, q2, q3.qm} is a set of states, F =
{qm} is set to accept states, and δ = Q × 6 → Q is
the transition function. This approach uses a directed acyclic
graph in which nodes/vertices are called states, and edges
between the nodes are considered a transition between the
states. This approach uses the suffix automaton data structure
that recognizes all the suffixes of the pattern. One of the
states (node) denoted by ′′q′′0 is called the ’’Initial state’’ of
the suffix automaton from where we can reach to all other
states in the automaton. One or more of these states are
marked as ’’Terminal states’’. Thus, if we go from ′′q′′0 to
any of these terminal states and note down the labels of the
edges, then we obtain a suffix of the original string ’’S’’. The
following example in Figure 9 explains the concept of suffix
automaton.

As shown in Figure 9, we have a pattern input ’’abbabb’’.
Each state represents one character, and searching starts from
state ′′q′′0 denoted by ’’0’’ in the example. The suffix automa-
ton while traversing from state 0 to terminal nodes (denoted
by double circles) must represent a suffix that is a substring of
the main pattern, that is, ’’abbabb’’. In this case, the possible
suffixes of ’’abbabb’’ are ’’b’’, ’’bb’, ’’abb’’, ’’babb’’, and
’’bbabb’’. Figure 9 show that each terminal node results in
the suffix that is a substring of the main pattern.

The final state is reached using the path given by the
terminal states. This process reduces the large number
of comparisons among patterns using the longest suffix.

Therefore, time efficiency is guaranteed [61]. The approaches
that use this concept are discussed below.

KMP string matching algorithm is a basic and fundamental
algorithm that uses the concept of automata in string match-
ing and was proposed by Knuth et al. [29]. The basic idea
behind the algorithm is that the text t is scanned from left
to right, and the algorithm decides the number of patterns p
to be shifted to avoid redundant comparisons during a
mismatch. Thus, this algorithm tracks information gained
from previous comparisons. This algorithm skips characters
depending on prefix and suffix rules and is illustrated using
the example below.

When i = 1, no possible prefixes and suffixes are available
for character ’’A’’. Thus, the value of prefix will be 0, and the
pointer will be moved to index 2.

When i = 2, the possible prefixes and suffixes for charac-
ter ’’C’’. C does not have a match. Thus, the value of prefix
will be 0.

When i = 3, the possible prefixes for character ’’A’’ are A
and AC. The possible suffixes are A and CA. A is prefix and
suffix. Thus, the value of prefix will be 1.

When i = 4 the possible prefixes for character’’C’’ are A,
AC, and ACA. The possible suffixes are C, AC, and CAC.
AC is prefix and suffix. Thus, the value of prefix will be 2.

When i = 5, the possible prefixes for character ’’A’’ are A,
AC, ACA, and ACAC. The possible suffixes are A, CA, and
CACA. ACA is prefix and suffix. Thus, the value of prefix
will be 3.

When i = 6, the possible prefixes for character ’’G’’ are
A, AC, ACA, ACAC, and ACACA. The possible suffixes are
G, AG, CAG, ACAG, CACA, and ACACAG.

The above-mentioned process of matching shows that this
procedure does not find the element with suffix and prefix.
This is the novel idea of automata-based string matching,

69622 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

FIGURE 8. Classification of Suffix Automata Based Approach.

which is different from other existing methods. Given that a
pre-generated prefix table is used, the procedure allows skip-
ping certain comparisons duringmatching. The entire process
requires search time complexityO(n), and the pre-processing
phase requires O(m) space. However, this approach is ineffi-
cient for a small set of data [62]. We discuss the algorithms
shown in Figure 8 that use this basis for string matching as
follows.

1) DIRECTED ACYCLIC WORD GRAPH-BASED APPROACHES
A directed acyclic word graph (DAWG) approach is a data
structure that allows fast word searches. In DAWG, each node
represents a character. The first character represents the entry
point. One can travel from one node to another to find a proper
match.

Backward non-deterministic DAWG (BNDM) match-
ing [67] is based on the concept of non-deterministic automa-
ton approach along with bit-parallel concept. A window of
length m is shifted over a given text t. For each alignment,
a pattern p is searched by scanning the current window back-
ward while automaton configuration is updated accordingly.

Double-forward DAWGmatching [69] uses two automata.
The key idea is to divide window into two parts, and each
window is scanned with a factor automaton of p. The two
positions for each text window are represented by α and β,
and the algorithm starts at position β and reads forward the
text in the current window for each attempt.

Backward oracle matching (BOM) algorithm [68] is based
on acyclic automaton and recognizes at least the factors of p
with m+ 1 states. The key idea is that, if back searching
fails on any letter (e.g., character c) after reading a partic-
ular word w, then cw is not a factor of pattern p and the
window can be moved after c. An intermediate structure,
which is called factor oracle, is built. Oracle is an automaton
to ensure that Q has exactly m+ 1 states. This intermediate
structure called factor oracle must satisfy four conditions:
1) automaton should be acyclic, 2) states should be as few
as possible, 3) factors of p should be recognized at least,
and 4) linear number of transitions should be used. Once a
window of size m is moved on text, a pattern is searched by
scanning the current window backward to realize a secure
shift.

BOM-based algorithms have different variants, such as
extended BOM, forward BOM, and simplified extended
BOM. Extended BOM [72] is a modification of BOM algo-
rithm by enhancing the speed of the algorithm through intro-
ducing a fast loop. The transitions are computed in one step
for two rightmost characters to determine an undefined tran-
sition with high probability. Forward BOM is an improved
version of extended BOM and combines the ideas of quick-
search and extended BOM algorithms. The idea of this algo-
rithm is to compute the shift advancement while focusing
on a character that follows the forward character (current
window).

VOLUME 7, 2019 69623

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

FIGURE 9. Working of Suffix automaton.

Simplified extended BOMalgorithm [73] replaces the two-
dimensional table with one-dimensional array and has the
same procedure as extended BOM. This algorithm saves
memory compared with its predecessor.

2) WIDE WINDOW BASED APPROACHES
He et al. [70] proposed the wide window (WW) algorithm,
which is different from the traditional window system used
in string matching. WW algorithm divides the text into n/m
overlapping windows (of size 2 m − 1). This algorithm
also uses suffix automaton approach. The suffix of text is
scanned frommiddle to right using forward suffix automaton.
Corresponding prefixes are scanned backward using reverse
prefix automaton if required. m rightmost characters are
scanned from left to right with the initial state q0 until a full
match or lack of transition is achieved. The remaining m− 1
leftmost characters are scanned from right to left.

Liu et al. [71] improved the WW algorithm proposed by
He et al. [70] by changing the parameters of the older version.
In the improved version, the second phase of WW algorithm
ismodified by changing the length of the longest remembered
prefix to more than 0 for the first improvement and m/2 for
the second one.

Hongbo et al. [75] proposed multi-window and integer
comparison based on three suffix string matching algorithms.
The proposed algorithms include the enhanced version of
three existing suffix string matching algorithms, namely,
quick search, tuned BM, and BMHq, by adding the func-
tionality of unaligned read integer comparison and multi-
window. The main objective of enhancement is to reduce the
comparisons (integer comparison) and accelerate the match-
ing process (multi-window). In multi-window (i.e., jump
distance calculation mechanism), the text is divided equally
into areas, and two windows belong to one single area. The
matching process starts in each area from both ends and
continues toward the center of the area and stops when two
windows overlap each other. The functionalities of integer
comparison and multi-window (continuous jump) are added
to the three existing algorithms (e.g., quick search, tuned BM,
and BMHq) for fast and cost-effective string matching.

3) AUTOMATA-BASED SKIPPING APPROACHES
Masaki et al. [74] proposed an automata-based skipping
algorithm for fast and efficient real-time pattern matching

in embedded online applications. The proposed algorithm is
a modified version of an existing string matching algorithm
called Franek-Jennings-Smyth (FJS). The above-mentioned
authors extend the skipping value functionality for timed
pattern matching from FJS string matching algorithm using
automata states by language, substring, and word over-
approximation. Two versions of the FJS-type algorithm (e.g.,
untimed and timed) are presented for offline and online
pattern matching. The FJS skipping value functionality is
the combination of two skip value algorithms, namely, ∇
(quick search) and β (KMP). For online versions of the FJS-
type algorithm, zone abstraction is combined with two value
skipping functionalities. The skipping value algorithms help
in unnecessary matching executions, and the proposed FJS-
type algorithm uses part of the pattern instead of the whole
target word for fast online pattern matching.

D. BIT-PARALLEL APPROACH
Automata-based string matching algorithms are excellent for
long-length patterns but are unsuitable for short-length ones.
Thus, bit-parallel approach, which involves parallel process-
ing, was proposed by Domolki in 1968 to accelerate the
matching process. This concept is based on parallel com-
puting. In this approach, the number of operations within
algorithm is decreased to the number of bits in computer
word [11]. This algorithm is fast and efficient, especially
when the length of the given pattern p is less than the
word length [27]. We classify bit-parallel algorithms depend-
ing on bit-level operations: Shift-OR (SO), Shift-AND, and
Single Instruction/Multiple Data (SIMD)-based instruction
approaches. The classification is presented in Figure 10.

The approaches that use bit operation are discussed as
follows. Shift-based algorithms use logical bitwise opera-
tions such as NOT, OR, AND, and XOR to compare strings.
Bitwise NOT performs logical negation for each input bit.
Bitwise OR performs bitwise OR operation, that is, it com-
pares two given inputs of equal length and outputs 0 in case
both input bits comprise 0; otherwise, it outputs 1. Bitwise
AND performs logical multiplication of two bit patterns and
outputs 1 in case both input bits comprise 1s; otherwise, it out-
puts 0. Similarly, logical bitwise XOR operation performs
exclusive OR operations and outputs 1 if two bit patterns
are different; it outputs 0 in case bit patterns are equal. The
following algorithms implement bitwise operations for string
matching.

SO algorithm [76] uses bitwise operation for string match-
ing unlike other approaches. The key idea is to perform the
parallel operation of NFA while searching. Here, NFA repre-
sents a vector of m different states, and each state i indicates
the state of the search between the positions of the pattern
and the positions of the text. The basic methodology follows
the concept of KMP and BM as discussed above. Non-active
states are represented by 1 and active states by 0.

Fredriksson [77] proposed an algorithm based on
SO algorithm [76] by improving average and worst case

69624 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

FIGURE 10. Classification of Bit-Parallel Approaches.

running times. The number of mismatches between pattern
and text is computed using bit parallel.

Popular algorithms [14], [76] normally take n[m/w] time
to find the occurrences of pattern P in text T (w denotes the
number of bits in machine word). Bit-parallel approach is
extended by using super-alphabets. The idea is to process
several characters using single step. The set of patterns is
processed in the same way as that in SO algorithm, but the
algorithm scans only qth factor of the text. qth factor is the
set of new patterns generated from original pattern P, which
is calculated during the pre-processing phase. The authors
claimed that using this technique has accelerated the speed by
a factor ofO(log n). However, the length of the input pattern is
dependent on the computer word size (i.e., the number of bits
that can be processed by the CPU). This method fails when
pattern lengths as input are more than the computer word size.

SIMD-based algorithms are developed to accelerate string
matching using hardware approach by utilizing the function-
ality of SIMD instructions. As in shift-based algorithms, logi-
cal operations are done in a parallel-wisemanner to accelerate
matching. However, in SIMD-based approach, the capability
of core pre-processor is utilized to also enhance searching.
For example, INTEL SSE4.2 instruction set can perform
256 comparison operations in a single instruction. The four
main string processing operations are listed as follows:

(i) PCMPESTRI - Packed compare explicit-length strings,
return index in ECX/RCX

(ii) PCMPESTRM - Packed compare explicit-length
strings, return mask in XMM0

(iii) PCMPISTRI - Packed compare implicit-length strings,
return index in ECX/RCX and

(iv) PCMPISTRM - Packed compare implicit-length
strings, return mask in XMM0 [78].

All these instructions can be utilized to enhance string
matching using different programming models. The algo-
rithms that utilize SIMD instructions are discussed as follows.

Peltola [79] proposed the bit-parallel length-invariant
matcher. In this approach, an alignment matrix is constructed
consisting of ω rows (size of the word in target machine)
such that, for each rowi, (0 ≤ i ≤ ω) contains a pattern
that is right shifted by i characters. The algorithm operates
by sliding the alignment matrix over the text and checks for
any possible placement of input text. The system must allow
hardware implementations to implement SIMD in real time
for practical applications.

Ulekci [80] proposed the streaming SIMD extension filter-
ing algorithm. The SIMD instruction is a feature of micropro-
cessors that supports parallel processing on multiple datasets.
Two phases, namely, filtering and verification, are used in
this algorithm. In the case of filtering, the most observable
probable pattern with fast heuristic is detected within portions
of text. The output of filtering is verified in the verification
step. This process requires worst time complexity of 0(nm),
best time complexity ofO(n/m), and average time complexity
of O(n/m) + n.m/216, where m represents the length of text
pattern and n represents the length of given text.
Ulekci [81] concluded that this algorithm is suitable for

long-length patterns. Two 16-byte blocks, namely, N =

[n/16] and M = [m/16], are created. Considering that this
algorithm focuses on long-length patterns, the lowest limit for
m is set to 32(32 ≤ m). This operation cannot be generalized
for different types of inputs because these approaches are

VOLUME 7, 2019 69625

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

FIGURE 11. Classification of Hybrid Approaches.

required to convert non-deterministic automata to determin-
istic automata.

Wu and Manber [56] proposed the Shift-AND algorithm,
which does not convert NFA to deterministic finite automaton
(DFA) but uses NFA directly for performing operations in
parallel. For NFA, the automaton is given by {Q, 6, δ, q0,F}
for the language P in which all words are recognized having
ending occurrence of p. Here, Q = {q1, q2, q3.qm},
where q0 is an initial state, F = (qm) is set to final states, and
δ : Q×6→ P(Q) is the transition function. The key idea is
to keep a record of all prefixes that matched the suffix of the
text read by creating a table that holds bit mask. In a bit mask,
the set of prefixes is kept and updated using bit parallel. Thus,
the algorithm builds a table and updates bit mask in scanning
the pattern.

Bit-parallel algorithms usually do not keep a record of pre-
vious alignments that have been checked. Shift-Vectormatch-
ing [79] is the first algorithm to introduce partial memory
for transferring information to subsequent alignments. A bit
vector S is maintained, which provides information regard-
ing the occurrence of the pattern at certain positions [69].
In the searching phase, the algorithm takes OR operation
with bit vector and updates Shift-Vector corresponding to text
character, which is aligned to the rightmost character of the
pattern.

The bit-parallel algorithm for small alphabets [82] is based
on the principle of matching matrix of the pattern and the
text. For matrix matching, a 2-base logarithm table is used
to locate the leftmost ’’1’’ bit. This bit indicates the recent
probable occurrence of the pattern in the text. The bad char-
acter approach of BM algorithm and 2-base logarithm table
value of the current flag are used to obtain shifts.

A single algorithmmay not work well for different applica-
tions because each application may pose different challenges.
Therefore, the strengths of different algorithms should be
determined to integrate their advantages in a hybrid approach
for solving complex issues.

E. HYBRID APPROACH
The hybrid approach operates well on a complex prob-
lem because it combines the advantages of different
algorithms and is better than individual algorithms [83].
Many approaches use the hybrid concept. The approaches
that combine one or more character-based methods are
placed under character-based approaches, and methods
that use one or more methods from automata-based
approaches are placed under automata-based approaches. The
approaches that use character- and automata-based meth-
ods are placed in between the two approaches, as shown
in Figure 11.

69626 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

Crochemore et al.’s algorithm [84] is a combination of
Aho-Corasick [85] and DAWG [41] and is also known as
the reverse factor algorithm. This algorithm makes at least
2n comparisons. Two theoretical tools, namely, Aho-Corasick
machine and DAWG, are used for implementation pur-
poses. Two processes, namely, PROCESS1 and PROCESS2,
are used in this algorithm. PROCESS1 scans the text from
left to right with a shift of ending position of the pat-
tern by m/2 (m denotes the length of the shortest pattern).
PROCESS1 remembers the position of each character i in
the string (ϒ) and passes control to PROCESS2, which starts
searching the string backward from i + SHIFT (SHIFT =
length of shortest pattern − |ϒ |). The feature of this algo-
rithm is that it can make long jumps compared with the
Aho-Corasick algorithm [85].

Navarro’s algorithm [86] is a modification of BDM algo-
rithm and skips characters using suffix automaton. The modi-
fication allows errors in searching the pattern in reverse order.

Wuu’s algorithm [87] is an extension of KMP algorithm
and uses tree-based approach for pattern matching. The main
difference from KMP algorithm is that the shift is moved
horizontally right or left similar to KMP and vertically up
and down. The traversal process is bounded for each node
within a subject tree. The time complexity of the algorithm
is O(n × log n), where n denotes the number of nodes in the
tree.

Yuebin’s algorithm [88] is a modification of Boyer-Moore-
Horspool algorithm [38]. The pattern is scanned from right to
left. In the pre-processing phase, an array NEXT is generated
to compute the shift position. The information in this array
is used to determine the number of characters to be skipped.
AKC algorithm [11], [89] is a modification of the algorithms
in [39]. Characters within windows are scanned from right
to left. For each search, the information regarding the factors
that match the suffix of the pattern is stored. Once pattern
is shifted after each search, this algorithm ensures that the
previously matched suffix and text factor remain the same.

Fast-search (FS) algorithms [11], [90], [91] constitute the
family of variant algorithms from BM. The basic mechanism
of all these algorithms is nearly the same as that of BM, that
is, shift is computed using bad character rule only during
comparison mismatch in the first attempt; otherwise, good
suffix rule is applied for other cases. FS is the first algorithm
of this family. The comparison of pattern with the window
is performed from right to left. At each attempt, the pattern
and current window is compared, and shift is computed using
bad character rule in case a mismatch occurs during the first
character comparison. In other cases, the suffix rule is used.
Backward FS is another algorithm of this family. It combines
bad character rule with good suffix rule to obtain backward
good suffix rule. Forward FS algorithm uses look-ahead char-
acter to compute large shift advancements.

Simplified BNDM (SBNDM) and long BNDM (LBNDM)
[11], [79] are proposed by the same authors and are based on
BNDM algorithm [92]. The main loop in SBNDM is made
faster than that in BNDM without memorizing the longest

prefix. This process makes its shift computation lighter than
that of BNDM. If current alignment position is A in the text
with u denoting updates are done, then the starting position
for next aligment will be A + m − u + 1. The functionality
of LBNDM to handle long-length patterns is improved com-
pared with that of BNDM. In LBNDM, pattern is partitioned
into subpatterns. The leftmost subpattern is scanned first.
Then, all the remaining subpatterns are examined when a
match is found.

Two-way non-deterministic DAWG matching (TNDM)
algorithm is also a variant of the BNDMalgorithm. Backward
and forward searches are made alternately. Once the pattern
is aligned with text window and a mismatch occurs, TNDM
initializes state vectorD in accordance with the two rightmost
characters compared with 1m in BNDM and scans in the for-
ward direction to examine text characters after the alignment
to look for any conflicting characters within the pattern. Fur-
ther improvement is made on TNDM in the form of forward
non-deterministic DAWG matching. When finding the suffix
using FNDM, BNDM backward check is substituted with a
naive check of occurrence [11], [27], [93].

Nebel [94] modified Horspool string matching algorithm
by increasing the searching speed using probabilities of dif-
ferent symbols. This algorithm is similar to Sunday’s algo-
rithm [43] except in the way symbols in the pattern are
compared with symbols in text. The relative number of occur-
rences of different symbols is used to represent probabili-
ties. Pre-processing is divided into two phases. In the first
phase, the positions of pattern P in which same symbols
occur are determined. In the second phase, the values of V
(V denotes an array) are set using min-heap depending
on needs. The algorithm takes O(mlog (n)) overall running
time.

SSABS and TVSBS algorithms [95] are examples of a
hybrid algorithm. SSABS is hybrid of quick-search and Raita
algorithms [39]. The comparison is carried out using Raita
algorithm. First, the rightmost character is compared. Then,
a further comparison is carried out using the leftmost char-
acter once a match is found. In this way, the resemblance
is established between the given window and pattern. The
remaining characters are compared from right to left until a
complete match occurs, or vice versa [95]. Thathoo et al. [96]
later improved this algorithm using a shift method from
Berry-Ravindran bad character rule [42]. This algorithm
requires a small number of character comparisons due to its
great shift advancements.

FJS algorithm [83] is a mixture of linear worst case time
complexity and sublinear average behavior of KMP and
quick-search algorithms, respectively [26]. The algorithm has
two phases. The first phase involves the use of two steps for
each attempt of comparison. The first comparison between
the given window and pattern is performed using the quick-
search algorithm and starts from the rightmost character of
the pattern. In the case of a mismatch, quick-search shift
is implemented; otherwise, FJS invokes the second step.
In the second phase, KMP pattern matching is used, which

VOLUME 7, 2019 69627

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

starts from the leftmost character, and shift is performed
accordingly followed by a return to first step [11], [27].

Alqadi et al.’s algorithm [97] is a multiple skip pattern
matching and is a modification of BM algorithm. To the best
of our knowledge, this algorithm performs skips depending
on index values. In this case, the comparison is based on the
index values of all substring occurrences of given text that is
equal to pattern p of length m. The skip value is calculated
using ranges from 1− (m− 1).
Huang et al.’s algorithm [98] aims to reduce the memory

requirements of Aho-Corasick algorithm [85]. The approach
of magic states is used in DFA. The algorithm rearranges
states in two steps: magic states are found in the first step, and
the transition matrix is partitioned depending on a threshold
in the second step. The magic state receives the same input
character resulting in the same next state. The transition
matrix has two submatrices: one with smaller state values
than the threshold, and the other is used to generate bitmap
matrix and state list matrix. In the search phase, all elements
in the second matrix are identified and bitmap matrix is set
to 1 in case no magic state is found; otherwise, it is set to 0.
Next state is inserted to the state list matrix.

Hudaib et al.’s algorithm [99] is a modification of
Berry et al.’s algorithm [42]. The algorithm divides the text
into two equal parts and scans two parts by using two win-
dows simultaneously. The left window scans from the left
part of the text, whereas the right window scans from right
to left in parallel. This process makes this algorithm suitable
for parallel processors [27]. This algorithm uses shift rule of
Berry et al.’s algorithm to compute shift values during the
searching phase.

Genomic-oriented rapid algorithm [100] uses Horspool
algorithm and filtering approach based on hash function.
In the pre-processing phase, the position of each character c
of the alphabet within the pattern is stored with the rightmost
character preceded by character c. In the searching phase,
Horspool bad character rule concept is implemented; in the
concept, fast-based loop is used to locate the occurrence of
the rightmost character of the pattern [27].

Cho et al. [101] used the bad character rule of Horspool
along with factorial number system to compute the shift
table for text search and found all the substrings with same
relative orders as pattern pwithin a given text t. The proposed
algorithm is more efficient than KMP with time complexity
of O(n+mlogm) in average case and O(n+mlogm) in worst
case.

Shivendra Kumar et al. [102] proposed a hashing with
chaining-based hybrid string matching algorithm to reduce
the time complexity of string matching algorithms. The idea
of hashing with chaining is combined in the proposed algo-
rithm. The proposed algorithm involves two phases: pre-
processing and searching phases. In the first phase of pre-
processing, the given string is divided into substring, and each
substring has a size equal to the pattern. After division, each
substring is assigned with a unique integer (ASCII value),
and the substrings are stored in a hash table along with

their location using a hash function. In the second phase of
searching, the integer hash value of the pattern is calculated,
and the hash value of the pattern and integer hash values
of substrings are compared in the hash table. If the hash
values of pattern and substring are matched, then the location
of the substring is returned. The proposed algorithm cannot
reduce the time complexity in most of the cases and requires
O(n−m) extra memory because it stores substrings in a hash
table.

Al-Ssulami [103] proposed a hybrid algorithm for string
matching called simple string matching. The proposed algo-
rithm is a modified version of Horspool algorithm with addi-
tional string matching conditions for scanning and matching
the text (from left to right) and string pattern (from right to
left). The proposed algorithm operates in two steps. In the
first step of pre-processing, the pivoting character in the
pattern is searched by computing the character distance and
its maximum safe shift. In the second step, the algorithm
compares the pivot character of the pattern with characters of
the text. If the pivoting charactermatcheswith the character in
the text, then the algorithm starts matching the pattern with
text from the right most character until the end of the text.
If the matching fails, then hybrid Horspool shift is used for
matching. If the pattern and text with equal character (bi)
length is mismatched (where 0 <= i < k and bj 6= bj + 1)
at any given positions (0 ≤ k < mor j) during the matching
process, then the position of the pattern must be shifted to
exactly (k − i + 1) or (k − j + 1) positions to accelerate
the searching process. The proposed algorithm achieves good
performance for pattern matching on human proteins, text of
natural languages (e.g., Arabic, English, Italian, French, and
Chinese), and E. coli genome. However, the efficiency of the
proposed algorithm decreases when the mismatches of the
patterns do not occur at the rightmost end.

In summary, we discuss and analyze different algorithms
of software-based pattern string matching in the past two
decades. The discussion and analysis indicate that each algo-
rithm has its ownmerits and demerits in terms of suitability to
applications and capability to handle complexity of problems.
We summarize the above-mentioned discussionwith different
parameters in the following section.

IV. COMPARISON ANALYSIS OF SOFTWARE-BASED
PATTERN STRING MATCHING ALGORITHMS
The literature review reveals that time complexity, limitation,
and dataset are important in deciding the performance of
the methods. We analyze the methods in terms of the three
parameters and show the results in Tables 1–5.

On the basis of the analysis reported in Tables 1–5, we sum-
marize the advantages and disadvantages of themethods from
1980 to 2018 in Table 6. This summary helps readers under-
stand the strengths and weaknesses of the methods. Accord-
ingly, a hybrid method or a unified method with advantages
of the methods can be developed to address new challenges.
Appropriate methods can also be easily selected depending
on strengths and requirements.

69628 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

TABLE 1. Comparative analysis of character based string matching algorithms.

TABLE 2. Comparative analysis of automata-based string matching algorithms.

As shown in Table 6, hybrid approaches are more flex-
ible than a single approach and can be extended to solve
any string matching problem. However, hybrid approaches

require comprehensive knowledge of different algorithms
and need to combine their features to obtain the opti-
mal output. Prior to designing an algorithm, other factors

VOLUME 7, 2019 69629

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

TABLE 3. Comparative analysis of bit parallelism string matching algorithms.

TABLE 4. Comparative analysis of Hashing based string matching algorithms.

that can affect its performance must be determined and
addressed.

V. CURRENT TRENDS, APPLICATIONS, CHALLENGES AND
FUTURE SCOPE
Analysis of the performance of string matching algorithms
until 2018 shows that they are popular and required in sev-
eral applications. Most of the algorithms are developed to
improve time efficiency because matching in string matching
algorithms involves complex operations. Thus, new algo-
rithms or extensions of string matching concepts are limited
to few applications and solving issues. However, the use
of string matching algorithms has increased because they
work well regardless of databases, scripts, and applications.
In this section, we explore the current trend of stringmatching
algorithms, new applications that require improved strengths
of these algorithms, new challenges, and the possible future
scope.

A. CURRENT TREND
We use a Web of Science citation report (from 1991 to 2018)
to determine the current trend of string matching algorithms,

as shown in Figure 12. The trend is increasing because the
scope of string matching is extended to big data analysis,
parallel computing, and distributed network [109]. The graph
is plotted by using various keywords, such as the application
of string matching algorithms, exact matching algorithms,
and other related keywords. The citation report is created
on the basis of a Web of Science tool. Our intention is to
show that string matching is still vital for new concepts,
such as big data and social media data. Figure 12 shows
the trend or importance of string matching over time. String
matching plays an important role, and an appropriate method
that can bemodified or used for new applications and datasets
should be selected.

B. APPLICATIONS
As discussed earlier, the scope of string matching algorithms
is limited to few applications. Based on the literature review,
we investigate the applications where exact matching algo-
rithms can be applied for deeper analysis. Figure 13 shows
the applications, namely, multimedia, networking, forensic,
and search engines. From this figure, additional applica-
tions or sub-applications can be identified in the future.

69630 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

TABLE 5. Comparative analysis of hybrid string matching algorithms.

FIGURE 12. Web of Science Citation Report [110].

1) MULTIMEDIA APPLICATIONS
Social media use multimedia information, such as texts,
videos, audios, images, and different scripts. Our analysis
reveals that most of the string matching algorithms focus
on English text, biological data but not different script data,

video data, and image data. The reason is that most of
these algorithms involve exact or approximate matching.
This matching is insufficient to handle multivalued and
multivariate data. Therefore, string matching algorithms
should be extended to the above-mentioned applications

VOLUME 7, 2019 69631

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

TABLE 6. Summary of string matching approaches.

because they require complex matching procedure [111],
[112], [117].

2) NETWORKING APPLICATIONS
The rapid advancements in technology have made security
a primary concern in all networks at present. The threats
of hacking and intruder attacks constantly exist. To solve
security issues, several methods have directly and indirectly
proposed encoding-decoding and encryption-decryption to
secure data. For example, most prominent methods include
encryption, virtual private networks, and firewalls. Among
these techniques, network intrusion detection (NID) is a new
technique that is used to detect suspicious activities at the
network and host level. NID systems are used to capture data
packets that travel through network media, such as cables and
wireless. In these cases, string matching algorithms can be
investigated to verify the packets. In other words, signature-
based intrusion detection and anomaly detection systems can
be introduced using string matching algorithms.

3) FORENSIC SCIENCE
String matching algorithms are explored for network security
and multimedia applications and can be extended to forensic
science applications that require matching to authenticate
data with the original data, such as blood and DNA samples
for large data. In the future, DNA sequence can be used as a
passport to identify persons in the centralized database of the
world.

4) SEARCH ENGINES
Indexing and retrieval methods may fail to retrieve actual
information based on user interest through recognition of text,
sound, image, or video. String matching plays a vital role in

FIGURE 13. The possible new applications of string matching algorithms.

solving such issues because it does not require recognition
of each character in the text or content in image or video.
Instead, string matching considers the entire input as one
pattern to find a match. This advantage is inherent to string
matching algorithms.

C. CHALLENGES
From the analysis of the literature review, it can be observed
that there are numerous challenges within the domain of
Exact matching algorithms that need to be addressed. We list
the challenges as follows:

1) REFINEMENT OF PROPOSED CLASSIFICATION
The performance of string matching algorithms varies in
different areas of applications, such as molecular biology,

69632 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

network intrusion detection, and text processing. Some algo-
rithms perform well for only short-length patterns, only long-
length patterns, and only average-length patterns. A string
matching algorithm that performs well for English text may
behave differently in DNA matching. Thus, the performance
of string matching algorithms must be analyzed on the basis
of different patterns and text formats. Analyzing the perfor-
mance of these algorithms on the basis of different appli-
cations (e.g., DNA sequencing, fingerprint detection, and
text processing) and classifying them depending on perfor-
mance in respective areas rather than methodologies used are
difficult. However, these tasks help researchers implement
and optimize only specific algorithms pertaining to speci-
fied area. For example, only algorithms that perform well in
DNA sequencing can be targeted for optimization rather than
selecting algorithms randomly.

2) PERFORMANCE ANALYSIS USING DIFFERENT
ENCODING TECHNIQUES
Encoding is the basis for string matching algorithms. Encod-
ing techniques have different types, such as ASCII, UTF-8,
and UTF-16. The performance of different string matching
algorithms can be checked using different encoding tech-
niques. This way is useful for texts that requiremore than 1 bit
for a single alphabet, such as Arabic, Chinese, and Persian
texts.

3) ANALYSIS TOOL
Considerable simulation, networking, and programming
tools are available, which aid in determining the behavior of
a particular model or application. However, no effective tool
exists that can aid in determining the performance of algo-
rithms. Although many mathematical models are available,
not everybody can efficiently determine the performance of
algorithms through those models. Those models depend on
the hypothesis. The main parameter for determining the per-
formance of the algorithm is execution time. However, other
factors, such as hardware and text size to be searched, play
a crucial role in determining the performance of algorithms.
The importance of these factors for an algorithm should be
determined.

4) EXECUTION TIME
Considerable overheads are associated with string matching
algorithms, such as pre-processing time followed by search-
ing time. The time and space complexities of these algorithms
increase with the increase in data size. Thus, efforts are
required to optimize these algorithms for fast execution with
minimum overhead.

5) LIBRARY
No authenticated library is available for string matching algo-
rithms to determine their efficiency. Although few libraries,
such as Faro and Lecroq [11], are used as a smart tool,
considerable efforts are needed to include many and existing
algorithms. Accordingly, future researchers can optimize the

previous algorithms without considerable efforts by keeping
time constraint in mind.

6) DEVELOPMENT OF EFFICIENT DATA STRUCTURES
Different data structures are used in string matching algo-
rithms. Some data structures use trees and arrays based on
suffix or prefix approach. Efficient data structures should be
developed, which can perform better than previously used
data structures regardless of applications and data.

7) OPTIMAL FILE SIZE
All algorithms do not perform well depending on different
text and pattern sizes. The performance of some algorithms
either linearly or exponentially decreases. The optimal file
size or number of words should be determined to enable an
algorithm to provide an efficient performance. This task is
challenging due to a large number of available algorithms to
be implemented and evaluated.

8) BENCHMARK STANDARD
Different developers implement string matching algorithms
depending on their logic. If two same algorithms are com-
pared for a given data set, then both algorithms will behave
differently depending on the different platforms used and log-
ics used. In this case, some benchmark methods are needed
to help researchers determine whether the algorithm devel-
oped by the developer is working in accordance with the
standard and is the correct version. This way helps devel-
opers identify the correct version of algorithms with ease of
implementation.

D. FUTURE SCOPE
Here, we discuss the possible future scope of software-based
pattern string matching algorithms.

1) FACTORIAL ANALYSIS OF STRING MATCHING
ALGORITHMS
The effect of different factors, such as text size, RAM, and
IDE, can be determined on string matching algorithms by
designing a factorial model based on factorial design. This
procedure helps determine the effect of different factors on
the execution time of an algorithm.

2) IMPLEMENTATION OF STRING MATCHING ALGORITHMS
IN MAPREDUCE ENVIRONMENT
MapReduce is a parallel programming paradigm used in
Hadoop for big data analysis. Current string matching algo-
rithms can be optimized for MapReduce framework. This
process increases the execution time of these algorithms
using parallel processing. The trend has already started.
Abdulrazzaq et al. [113] developed a new algorithm for DNS
sequence matching by using anMPI technique. The proposed
approach uses multicore processors for parallel processing.
The obtained DNA sequence shows the highest performance
among those of other serial versions of algorithms after par-
allelization [113].

VOLUME 7, 2019 69633

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

3) USE OF GPU AND FIELD PROGRAMMABLE GATE
ARRAY (FPGA)
CPU is optimized for sequential serial processing with few
cores. GPU comprises thousands of small, efficient cores
that can handle multiple tasks simultaneously [114], [115].
GPU is programmed using either CUDA or OpenGL. String
matching algorithms are usually written in C or C + +
programming languages. Thus, another future direction is to
implement string matching algorithms in GPUs and FPGAs
using CUDA or OpenGL or any other GPU/FPGA-supported
language. This way increases the efficiency of string match-
ing algorithms by manifolds.

4) SURVEY OF APPROXIMATE AND HARDWARE-BASED
APPROACHES
Another future work is to carry out a survey based on approx-
imate and exact matching algorithms implemented in hard-
ware devices. The proposed work will focus on evaluating
their weaknesses and strengths on the basis of a specific
parameter.

5) ARABIC PATTERN MATCHING ALGORITHMS
Arabic is the second most spoken language in the world after
English [116], [117], [118]. In Arabic language, connected
and unconnected words exist, which take considerable bytes
and processing time. Thus, development of multilingual exact
matching algorithms with suitable encoding techniques is a
promising and interesting future work.

6) MEMORY ANALYSIS OF STRING MATCHING ALGORITHMS
Existing string matching algorithms have been analyzed in
terms of time complexities and performance [66]. Analysis of
memory requirements of existing string matching algorithms
on heap during runtime is an interesting topic. Optimization
based on memory consumption on heap during runtime can
be a future research area as well.

7) OTHER FUTURE RELATED WORKS
Other possible future works related to stringmatching include
classification of multiple pattern-based algorithms depend-
ing on an application with performance analysis and survey
on image-based matching algorithms with a focus on time
complexities of algorithms and possible areas of application.
Determining whether a particular algorithm can be used in
multiple applications is also an interesting endeavor. The
need of proposing new algorithms even if the present hard-
ware can solve time complexity issues should be supported
as well.

VI. CONCLUSION
The field of string matching is vast due to the development
of numerous algorithms, and studying methodology, com-
plexity, and limitations of all those algorithms is a tedious
task. This work focuses only on software-based pattern string
matching algorithms and their applications. However, other

category of string matching algorithms can also be explored.
In this work, we analyze more than 50 string matching meth-
ods in terms of strengths, weaknesses, and efficiency with
respect to applications, which can help future researchers
identify suitable string matching algorithms depending on
their application and complexity of the problems. On the basis
of the analysis, we compare string matching algorithms of
respective category based on time complexity, limitation, and
databases. Furthermore, we identify new challenges, applica-
tions, and directions to expand the scope of string matching
algorithms. To the best of our knowledge, this comprehensive
survey on single-pattern exact string matching algorithms
is the first to discuss future directions, challenges, possible
applications, and new taxonomies. We extend the review on
approximate string matching algorithms in detail by consid-
ering implementation issues, real-time application, and future
vector-based matching algorithms.

REFERENCES
[1] A. A. AbdulRazzaq, N. A. Rashid, A. A. Hasan, and

M. A. Abu-Hashem, ‘‘The exact string matching algorithms
efficiency review,’’ presented at the 3rd World Conf. Innov.
Comput. Sci., 2013. [Online]. Available: http://www.world-education-
center.org/index.php/P-ITCS/article/view/2668/2228

[2] S. Hakak, A. Kamsin, P. Shivakumara, M. Y. I. Idris, and G. A. Gilkar,
‘‘A new split based searching for exact pattern matching for natural texts,’’
PLoS ONE, vol. 13, no. 7, Jul. 2018, Art. no. e0200912.

[3] K. M. Alhendawi and A. S. Baharudin, ‘‘String matching algoritms
(SMAs): Survey & Empirical analysis,’’ J. Comput. Sci. Manage., vol. 2,
no. 5, pp. 2637–2644, May 2013.

[4] W. M. Szeto and M. H. Wong, ‘‘Stream segregation algorithm for pattern
matching in polyphonicmusic databases,’’Multimedia Tools Appl., vol. 30,
no. 1, pp. 109–127, Jul. 2006.

[5] S. Shrivastav, S. Kumar, and K. Kumar, ‘‘Towards an ontology based
framework for searching multimedia contents on the Web,’’ Multimedia
Tools Appl., vol. 76, no. 18, pp. 18657–18686, Sep. 2017.

[6] Y.-H. Kim, H.-J. Kwon, J.-G. Kang, and H. Chang, ‘‘The study on content
based multimedia data retrieval system,’’ Multimedia Tools Appl., vol. 57,
no. 2, pp. 393–405, Mar. 2012.

[7] G. Navarro, ‘‘A guided tour to approximate string matching,’’ ACM Com-
put. Surv., vol. 33, no. 1, pp. 31–88, Mar. 2001.

[8] P. D. Smith, ‘‘Experiments with a very fast substring search algorithm,’’
Softw., Pract. Exper., vol. 21, no. 10, pp. 1065–1074, Oct. 1991.

[9] P. D. Michailidis and K. G. Margaritis, ‘‘On-line string matching algo-
rithms: Survey and experimental results,’’ Int. J. Comput. Math., vol. 76,
no. 4, pp. 411–434, Mar. 2001.

[10] C. Charras, and T. Lecroq,Handbook of Exact StringMatching Algorithms.
London, U.K.: H. King’s College, 2004.

[11] S. Faro and T. Lecroq, ‘‘The exact online string matching problem:
A review of the most recent results,’’ ACM Comput. Surv., vol. 45, no. 2,
Feb. 2013, Art. no. 13.

[12] G. F. Ahmed and N. Khare, ‘‘Hardware based string matching algo-
rithms: A survey,’’ Int. J. Comput. Appl., vol. 88, no. 11, pp. 16–19,
Jan. 2014.

[13] L. Otero-Cerdeira, F. J. Rodríguez-Martinez, and A. Gómez-Rodríguez,
‘‘Ontology matching: A literature review,’’ Expert Syst. Appl., vol. 42,
no. 2, pp. 949–971, Feb. 2015.

[14] S. Wu and U. Manber, ‘‘Fast text searching: Allowing errors,’’ Commun.
ACM, vol. 35, no. 10, pp. 83–91, Oct. 1992.

[15] D.Sankoff,Common Subsequences andMonotone Subsequences. Reading,
MA, USA: Addison-Wesley, 1983.

[16] V. Levenshtein, ‘‘Binary codes capable of correcting spurious insertions
and deletions of ones,’’ in Problems of Information Transmission. Cham,
Switzerland: Springer, 1965, p. 196.

[17] V. SaiKrishna, A. Rasool, and N. Khare, ‘‘String matching and its appli-
cations in diversified fields,’’ Int. J. Comput. Sci. Issues, vol. 9, no. 1,
pp. 219–226, 2012.

69634 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

[18] M. Farach-Colton, G. M. Landau, S. C. Sahinalp, and D. Tsur, ‘‘Optimal
spaced seeds for faster approximate string matching,’’ in Proc. Int. Colloq.
Automata, Lang., Program. (ICALP), L. Caires, G. F. Italiano, L.Monteiro,
C. Palamidessi, and M. Yung, Eds. Berlin, Germany: Springer, Jul. 2005,
pp. 1251–1262.

[19] J. Kärkkäinen and J. C. Na, ‘‘Faster filters for approximate string match-
ing,’’ in Proc. 9th Workshop Algorithm Eng. Exp. (ALENEX), 2007,
pp. 84–90.

[20] G. Kucherov, L. Noe, and M. Roytberg, ‘‘Multiseed lossless filtration,’’
IEEE/ACMTrans. Comput. Biol. Bioinf., vol. 2, no. 1, pp. 51–61, Jan. 2005.

[21] G. Kucherov, K. Salikhov, and D. Tsur, ‘‘Approximate string matching
using a bidirectional index,’’ in Theoretical Computer Science, vol. 638.
Amsterdam, The Netherlands: Elsevier, 2016, pp. 145–158.

[22] G. Navarro and R. Baeza-Yates, ‘‘A hybrid indexing method for approxi-
mate string matching,’’ J. Discrete Algorithms, vol. 1, no. 1, pp. 205–239,
2001.

[23] D. Belazzougui, F. Cunial, J. Karkkainen, and V. Makinen, ‘‘Versatile
succinct representations of the bidirectional burrows-wheeler transform,’’
in Algorithms—ESA, in Proc. Eur. Symp. Algorithms, H. L. Bodlaender, G.
F. Italiano, Eds. Berlin, Germany: Springer, Sep. 2013, pp. 133–144.

[24] T. W. Lam, R. Li, A. Tam, S. Wong, E. Wu, and S. M. Yiu, ‘‘High
throughput short read alignment via Bi-directional BWT,’’ in Proc. IEEE
Int. Conf.Bioinf. Biomed., Nov. 2009, pp. 31–36.

[25] L. M. Russo, G. Navarro, A. Oliveira, and P. Morales, ‘‘Approximate string
matching with compressed indexes,’’ Algorithms, vol. 2, no. 3, p. 1105,
Sep. 2009.

[26] T. Schnattinger, E. Ohlebusch, and S. Gog, ‘‘Bidirectional search in a string
with wavelet trees and bidirectional matching statistics,’’ Inf. Comput.,
vol. 213, pp. 13–22, Apr. 2012.

[27] A. A. AbdulRazzaq, N. A. Rashid, A. A. Hasan, and M. A. Abu-Hashem,
‘‘The exact string matching algorithms efficiency review,’’ Global J. Tech-
nol., vol. 4, no. 2, pp. 576–589, 2013.

[28] V. Alfred, ‘‘Algorithms for finding patterns in strings,’’ in Algorithms and
Complexity, vol. 1. Amsterdam, The Netherlands: Elsevier, 2014.

[29] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt, ‘‘Fast pattern matching in
strings,’’ SIAM J. Comput., vol. 6, no. 2, pp. 323–350, Jul. 1977.

[30] D. Suleiman, ‘‘Enhanced berry ravindran pattern matching algorithm
(EBR),’’ Life Sci. J., vol. 11, no. 7, pp. 395–402, 2014.

[31] D. Suleiman, A. Hudaib, A. Al-Anani, R. Al-Khalid, and M. Itriq, ‘‘ERS-
A algorithm for pattern matching,’’Middle East J. Sci. Res., vol. 15, no. 7,
pp. 1067–1075, 2013.

[32] S. Arudchutha, T. Nishanthy, and R. G. Ragel, ‘‘String matching with
multicore CPUs: Performing better with the Aho-Corasick algorithm,’’ in
Proc. IEEE 8th Int. Conf. Ind. Inf. Syst., Dec. 2013, pp. 231–236.

[33] A. N. M. E. Rafiq, M. W. El-Kharashi, and F. Gebali, ‘‘A fast string search
algorithm for deep packet classification,’’ Comput. Commun., vol. 27,
no. 15, pp. 1524–1538, Sep. 2004.

[34] R. S. Boyer, and J. S.Moore, ‘‘A fast string searching algorithm,’’Commun.
ACM, vol. 20, no. 10, pp. 762–772, Oct. 1977.

[35] M.A. Hernández, ‘‘A taxonomy of some right-to-left string-matching algo-
rithms,’’ in Int. Workshop Funct. Constraint Logic Program., Heidelberg,
Germany: Springer, 2010, pp. 79–95.

[36] G. Baeza-Yates and G. H. Gonnet, ‘‘A new approach to text searching’’
Commun. ACM, vol. 35, no. 10, pp. 74–82, Oct. 1992.

[37] D. Breslauer, L. Colussi, and L. Toniolo, ‘‘Tight comparison bounds for
the string prefix-matching problem,’’ Inf. Process. Lett., vol. 47, no. 1,
pp. 51–57, Aug. 1993.

[38] R. N. Horspool, ‘‘Practical fast searching in strings,’’ Softw., Pract. Exper.,
vol. 10, no. 6, pp. 501–506, Jun. 1980.

[39] A. Apostolico and R. Giancarlo, ‘‘The Boyer–Moore–Galil string search-
ing strategies revisited,’’ SIAM J. Comput., vol. 15, no. 1, pp. 98–105,
Feb. 1986.

[40] T. Raita, ‘‘Tuning the boyer-moore-horspool string searching algorithm,’’
Softw., Pract. Exper., vol. 22, no. 10, pp. 879–884, Oct. 1992.

[41] M. Crochemore, A. Czumaj, L. Gasieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter, ‘‘Speeding up two string-matching algo-
rithms,’’ Algorithmica, vol. 12, nos. 4–5, pp. 247–267, Nov. 1994.

[42] T. Berry and S. Ravindran,‘‘A fast string matching algorithm and exper-
imental results,’’ in Proc. Prague Stringology Club Workshop, 1999,
pp. 16–26.

[43] M. K. Ahmad, ‘‘An enhanced Boyer-Moore algorithm,’’ Ph.D. dissertation,
Dept. Comput. Sci., Fac. Inf. Technol., Middle East Univ., Amman, Jordan,
2014.

[44] D. M. Sunday, ‘‘A very fast substring search algorithm,’’ Commun. ACM,
vol. 33, no. 8, pp. 132–142, Aug. 1990.

[45] L. Colussi, ‘‘Correctness and efficiency of pattern matching algorithms,’’
Inf. Comput., vol. 95, no. 2, pp. 225–251, Dec. 1991.

[46] H. Xian-feng, Y. Yu-bao, and X. Lu, ‘‘Hybrid pattern-matching algorithm
based on BM-KMP algorithm,’’ in Proc. 3rd Int. Conf. Adv. Comput.
Theory Eng. (ICACTE), vol. 5, pp. V5-310–V5-313, Aug. 2010.

[47] Z. Cao, Z. Yan, and L. Liu, ‘‘A fast string matching algorithm based on
lowlight characters in the pattern,’’ in Proc. 7th Int. Conf. Adv. Comput.
Intell. (ICACI), pp. 179–182, Mar. 2015.

[48] S. Hakak, A. Kamsin, P. Shivakumara, M. Y. I. Idris, and G. A. Gilkar,
‘‘A new split based searching for exact pattern matching for natural texts,’’
PLoS ONE, vol. 13, no. 7, Jul. 2018, Art. no. e0200912.

[49] S. Hakak, K. Amirrudin, P. Shivakumara, and M. Y. I. Idris, ‘‘Partition-
based pattern matching approach for efficient retrieval of arabic text,’’
Malaysian J. Comput. Sci., vol. 31, no. 3, pp. 200–209, 2018.

[50] R. M. Karp and M. O. Rabin, ‘‘Efficient randomized pattern-matching
algorithms,’’ IBM J. Res. Develop., vol. 31, no. 2, pp. 249–260, Mar. 1987.

[51] W. S. Dorn, ‘‘Generalizations of Horner’s rule for polynomial evaluation,’’
IBM J. Res. Develop., vol. 6, no. 2, pp. 239–245, Apr. 1962.

[52] J. Lee, ‘‘Analysis of fundamental exact and inexact pattern matching
algorithms,’’ Standford Univ., Stanford, CA, USA, Project Rep. BIOC 218,
Jun. 2004.

[53] S. Fide and S. Jenks, ‘‘A survey of string matching approaches in hard-
ware,’’ Dept. Elect. Eng. Comput. Sci., Univ. California, Irvine, Irvine, CA,
USA, Tech. Rep. TR SPDS 06-01, 2008.

[54] A. A. Abdulrazzaq, N. A. Rashid, and H. Y. Hamdani, ‘‘Influenced
factors on computation among quick search, two-way and Karp-Rabin
algorithms,’’ in Proc. 3rd Int. Conf. Inform. Technol., Oct. 2009, pp. 81–87.

[55] T. Lecroq, ‘‘Fast exact string matching algorithms,’’ Inf. Process. Lett.,
vol. 102, no. 6, pp. 229–235, Jun. 2007.

[56] S. Wu and U. Manber, ‘‘A fast algorithm for multi-pattern search-
ing,’’ Dept. Comput. Sci., Univ. Arizona, Tucson, AZ, USA, Tech.
Rep. TR-94-171994, May 1994.

[57] P. Kalsi, H. Peltola, and J. Tarhio, ‘‘Comparison of exact string matching
algorithms for biological sequences,’’ in Proc. 2nd Int. Conf. Bioinf. Res.
Develop. (BIRD), 2008, pp. 417–426.

[58] S. Kim and Y. Kim, ‘‘A fast multiple string-pattern matching algorithm,’’
in Proc. 17th AoM/IAoM Conf. Comput. Sci., 1999, pp. 44–49.

[59] F. Simone, ‘‘A very fast string matching algorithm based on con-
densed alphabets,’’ In Proc. Int. Conf. Algorithmic Appl. Manage. Cham,
Switzerland: Springer, 2016, pp. 65–76.

[60] W. Yang, ‘‘Mealy machines are a better model of lexical analyzers,’’
Comput. Lang., vol. 22, no. 1, pp. 27–38, Apr. 1996.

[61] R. Navarro and M. Raffinot, ‘‘Bit-parallel approach to suffix automata:
Fast extended string matching,’’ in Proc. Annu. Symp. Combinat. Pattern
Matching, Berlin, Germany: Springer-Verlag, 1998, pp. 14–33.

[62] K. R. Rasool and N. Khare, ‘‘Parallelization of KMP string matching
algorithm on different SIMD architectures: Multi-core and GPGPU&;’’
Int. J. Comput. Appl., vol. 49, no. 11, pp. 26–28, Jul. 2012.

[63] J. A. Joseph, K. Reeba, and S. Salivahanan, ‘‘Efficient string matching
FPGA for speed up network intrusion detection,’’ Appl. Math. Inf. Sci.,
vol. 12, no. 2, pp. 397–404, Mar. 2018.

[64] M. Aldwairi, Y. Flaifel, and K. Mhaidat, ‘‘Efficient WU-Manber pattern
matching hardware for intrusion and malware detection,’’ in Proc. Int.
Conf. Elect., Electron., Comput., Commun., Mech. Comput. (EECCMC),
Tamil Nadu, India, Jan. 2018, pp. 1–6.

[65] X. Wang and D. Pao, ‘‘Memory-based architecture for multicharacter
Aho–Corasick string matching,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 26, no. 1, pp. 143–154, Jan. 2018.

[66] S. Hakak, A. Kamsin, P. Shivakumara, O. Tayan, M. Y. I. Idris, and
G. A. Gilkar, ‘‘An efficient text representation for searching and retrieving
classical diacritical arabic text,’’ Procedia Comput. Sci., 142, pp. 150–157,
Jan. 2018.

[67] B. Commentz-Walter, A String Matching Algorithm Fast on the Average.
Berlin, Germany: Springer, 1979, pp. 118–132.

[68] C. Allauzen, M. Crochemore, and M. Raffinot, ‘‘Factor oracle: A new
structure for pattern matching,’’ in SOFSEM, Theory and Practice of
Informatics. Berlin, Germany: Springer, 1999, pp. 295–310.

[69] R. Allauzen andM. Raffinot, ‘‘Simple optimal string matching algorithm,’’
J. Algorithms, vol. 36, no. 1, pp. 102–116, Jul. 2000.

[70] L. He, B. Fang, and J. Sui, ‘‘The wide window string matching algorithm,’’
Theor. Comput. Sci., vol. 332, nos. 1–3, pp. 391–404, Feb. 2005.

VOLUME 7, 2019 69635

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

[71] C. Liu, Y.Wang, D. Liu, and D. Li, ‘‘Two improved single patternmatching
algorithms,’’ in Proc. 16th Int. Conf. Artif. Reality Telexistence–Workshops
(ICAT), Hangzhou, China, Nov./Dec. 2006, pp. 419–422.

[72] S. Faro and T. Lecroq, ‘‘Efficient variants of the backward-oracle-matching
algorithm,’’ in Proc. Prague Stringology Conf., Czech Republic, U.K.,
2008, pp. 146–160.

[73] H. Fan, N. Yao, and H. Ma, ‘‘Fast variants of the backward-oracle-
marching algorithm,’’ in Proc. 4th Int. Conf. Internet Comput. Sci. Eng.,
Washington, DC, USA: 2009, pp.56–59.

[74] W. Masaki, I. Hasuo, and K. Suenaga, ‘‘Efficient online timed pat-
tern matching by automata-based skipping,’’ in Proc. Int. Conf. For-
mal Modeling Anal. Timed Syst. Cham, Switzerland: Springer, 2017,
pp. 224–243.

[75] F. Hongbo, S. Shupeng, Z. Jing, and D. Li, ‘‘Suffix type string match-
ing algorithms based on multi-windows and integer comparison,’’ in
Proc. Int. Conf. Inf. Commun. Secur.. Cham, Switzerland: Springer, 2015,
pp. 414–420.

[76] Y. Baeza-Yates and G. H. Gonnet, ‘‘A new approach to text searching,’’
Commun. ACM, 1992, pp. 74–82.

[77] G. Fredriksson and S. Grabowski, ‘‘Practical and optimal stringmatching,’’
in Proc. Int. Symp. String Process. Inf. Retr. (SPIRE), 2005, pp. 376–387.

[78] Intel.com. XML Parsing Accelerator with Intel Streaming SIMD
Extensions 4 (Intel-SSE4). Accessed: Apr. 5, 2015. [Online]. Available:
https://software.intel.com/en-us/articles/xml-parsing-accelerator-with-
intel-streaming-simd-extensions-4-intel-sse4

[79] H. Peltola and J. Tarhio, ‘‘Alternative algorithms for bit-parallel string
matching,’’ in Proc. 10th Int. Symp. String Process. Inf. Retr. (SPIRE),
2003, pp. 80–93.

[80] K. Ulekci and M., ‘‘Filter based fast matching of long patterns by
using SIMD instructions,’’ in Proc. Prague Stringology Conf., Prague,
Czech Republic, Jan. 2009, pp. 126–280.

[81] M. O. Külekci, ‘‘A method to overcome computer word size limitation
in bit-parallel pattern matching,’’ in Proc. 19th Int. Symp. Algorithms
Comput., (ISAAC), 2008, pp. 496–506.

[82] G. Zhang, E. Zhu, L. Mao, and M. Yin, ‘‘A bit-parallel exact string match-
ing algorithm for small alphabet,’’ in Frontiers in Algorithmics. Berlin,
Germany: Springer, 2009, pp. 336–345.

[83] F. Franek, C. G. Jennings, and W. F. Smyth, ‘‘A simple fast hybrid pattern-
matching algorithm,’’ J. Discrete Algorithms, vol. 5, no. 4, pp. 682–695,
Dec. 2007.

[84] M. Crochemore, A. Czumaj, L. Ga̧sieniec, T. Lecroq, W. Plandowski,
and W. Rytter, ‘‘Fast practical multi-pattern matching,’’ Inf. Process. Lett.,
vol. 71, nos. 3–4, pp. 107–113, Aug. 1999.

[85] M. C. A. V. Aho, ‘‘Efficient string matching: An aid to bibliographic
search,’’ Commun. ACM, vol. 18, no. 6, pp. 333–340, Jun. 1975.

[86] G. Navarro, ‘‘Nrgrep: A fast and flexible pattern matching tool,’’ Dept.
Comput. Sci., Univ. Chile, Santiago, Chile, Tech. Rep. TR/DCC-2000-3,
Aug. 2000. [Online]. Available: ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/
nrgrep.ps.gz

[87] H.-T. Lu and W. Yang, ‘‘A simple tree pattern-matching algorithm,’’ in
Proc. Workshop Algorithms Theory Comput., 2000, pp. 1–8.

[88] Y. Bai and H. Kobayashi, ‘‘New string matching technology for network
security,’’ in Proc. 17th Int. Conf. Adv. Inf. Netw. Appl. (AINA), Mar. 2003,
pp. 27–29.

[89] M. Ahmed, M. Kaykobad, and R. A. Chowdhury, ‘‘A new string matching
algorithm,’’ Int. J. Comput. Math., vol. 80, no. 7, pp. 825–834, Jul. 2003.

[90] D. Cantone and S. Faro, ‘‘Fast-search: A new efficient variant of the
Boyer-Moore string matching algorithm,’’ in Experimental and Efficient
Algorithms (Lecture Notes in Computer Science), vol. 2647, K. Jansen,
M. Margraf, M. Mastrolilli, and J. D. P. Rolim, Eds. Berlin, Germany:
Springer, 2003.

[91] D. Cntone and S. Faro, ‘‘Searching for a substring with constant
extra-space complexity,’’ in Proc. 3rd Int. Conf. Fun Algorithms, 2004,
pp. 118–131.

[92] G. Navarro and M. Raffinot, ‘‘A bit-parallel approach to suffix automata:
Fast extended string matching,’’ in Combinatorial Pattern Matching (Lec-
ture Notes in Computer Science), vol. 1448, M. Farach-Colton, Ed. Berlin,
Germany: Springer, 1998.

[93] B. U. J. Holub, ‘‘Fast variants of bit parallel approach to suffix automata,’’
in Proc. 2nd Haifa Annu. Int. Stringol. Res. Workshop Israeli Sci. Found.,
2005, pp. 1–20.

[94] M. E. Nebel, ‘‘Fast string matching by using probabilities: On an optimal
mismatch variant of Horspool’s algorithm,’’ Theor. Comput. Sci., vol. 359,
nos. 1–3, pp. 329–343, Aug. 2006.

[95] S. S. Sheik, S. K. Aggarwal, A. Poddar, N. Balakrishnan, and K. Sekar,
‘‘A FAST pattern matching algorithm,’’ J. Chem. Inf. Comput. Sci., vol. 44,
no. 4, pp. 1251–1256, Jul./Aug. 2004.

[96] R. Thathoo, A. Virmani, S. S. Lakshmi, N. Balakrishnan, and K. Sekar,
‘‘TVSBS: A fast exact pattern matching algorithm for biological
sequences,’’ Current Sci., vol. 91, no. 1, pp. 47–53, Jul. 2006.

[97] Z. A. Alqadi, M. Aqel, and I. M. El Emary, ‘‘Multiple skip multiple pattern
matching algorithm (MSMPMA),’’ IAENG Int. J. Comput. Sci., vol. 34,
no. 2, pp. 14–20, Dec. 2007.

[98] N.-F. Huang, Y.-M. Chu, C.-Y. Hsieh, C.-H. Tsai, and Y.-J. Tzang,
‘‘A deterministic cost-effective string matching algorithm for network
intrusion detection system,’’ in Proc. IEEE Int. Conf. Commun., Jun. 2007,
pp. 1292–1297.

[99] A. Hudaib, D. Suleiman, M. Itriq, and A. Al-Anani, ‘‘A fast pattern
matching algorithm with two sliding windows (TSW),’’ J. Comput. Sci,
vol. 4, no. 5, pp. 393–401, 2008.

[100] S. Deusdado and P. Carvalho, ‘‘GRASPm: An efficient algorithm for
exact pattern-matching in genomic sequences,’’ Int. J. Bioinf. Res. Appl.,
vol. 5, no. 4, pp. 385–401, 2009.

[101] S. Cho, J. C. Na, K. Park, and J. S. Sim, ‘‘A fast algorithm for
order-preserving pattern matching,’’ Inf. Process. Lett., vol. 115, no. 2,
pp. 397–402, Feb. 2015.

[102] S. K. Pandey, H. K. Tiwari, and P. Tripathi, ‘‘Hybrid approach to reduce
time complexity of string matching algorithm using hashing with chain-
ing,’’ in Proc. Int. Conf. ICT Sustain. Develop. Singapore: Springer, 2016,
pp. 185–193.

[103] A. M. Al-Ssulami, ‘‘Hybrid string matching algorithm with a pivot,’’
J. Inf. Sci., vol. 41, no. 1, pp. 82–88, Feb. 2015.

[104] S. Faro and T. Lecroq. (2010).‘‘The exact string matching problem:
A comprehensive experimental evaluation.’’ [Online]. Available: https://
arxiv.org/abs/1012.2547

[105] N. A. K. Ersin, ‘‘A research into string matching algorithms and a new
string matching algorithm,’’ M.S. thesis, Dept. Comput. Eng., Trakya
Univ., Edirne, Turkey, 2008.

[106] P. Kalsi, H. Peltola, and J. Tarhio, ‘‘Comparison of exact string matching
algorithms for biological sequences,’’ in Bioinformatics Research and
Development (Communications in Computer and Information Science),
vol. 13. Berlin, Germany: Springer, 2008, pp. 1–10.

[107] T. Lecroq, ‘‘Experimental results on string matching algorithms,’’ Softw.,
Pract. Exper., vol. 25, no. 7, pp. 727–765, Jul. 1995.

[108] H. Zhang, ‘‘Parallelization of software based intrusion detection
system,’’ M.S. thesis, Univ. Canterbury, Christchurch, New Zealand,
2011.

[109] K. Kambatla, G. Kollias, V. Kumar, and A. Grama, ‘‘Trends in big data
analytics,’’ J. Parallel Distrib. Comput., vol. 74, no. 7, pp. 2561–2573,
Jul. 2014.

[110] W. O. Science. (2016). Web of Science. [Online]. Available: http://
isiknowledge.com/wos

[111] S. Hakak, A. Kamsin, O. Tayan, M. Y. I. Idris, and G. A. Gilkar,
‘‘Approaches for preserving content integrity of sensitive online Arabic
content: A survey and research challenges,’’ Inf. Process. Manage., vol. 56,
no. 2, pp. 367–380, Mar. 2017.

[112] S. Hakak, A. Kamsin, S. Palaiahnakote, O. Tayan, M. Y. I. Idris, and
K. Z. Abukhir, ‘‘Residual-based approach for authenticating pattern of
multi-style diacritical Arabic texts,’’ PLoS ONE, vol. 13, no. 6, 2018,
Art. no. e0198284.

[113] A. K. Abdulrazzaq, N. A. Rashid, and H. A. A. Alezzi, ‘‘Parallel process-
ing of hybrid exact string,’’ in Proc. IEEE Int. Conf. Control Syst., Comput.
Eng., Mindeb, Malaysia, Nov./Dec. 2013.

[114] Quora.com. (2015). What-is-the-Difference-Among-CPU-GPU-APU-
FPGA-DSP-and-Intel-MIC. [Online]. Available: www.quora.co

[115] C.-L. Hung, C.-Y. Lin, and H.-H. Wang, ‘‘An efficient parallel-network
packet pattern-matching approach using GPUs,’’ J. Syst. Archit., vol. 60,
no. 5, pp. 431–439, May 2014.

[116] O. Tayan andY.M.Alginahi, ‘‘A review of recent advances onmultimedia
watermarking security and design implications for digital Quran comput-
ing,’’ in Proc. Int. Symp. Biometrics Secur. Technol. (ISBAST), Aug. 2014,
pp. 304–309.

[117] S. Hakak, A. Kamsin, O. Tayan, M. Y. I. Idris, A. Gani, and S. Zerdoumi,
‘‘Preserving content integrity of digital holy Quran: Survey and open
challenges,’’ IEEE Access, vol. 5, pp. 7305–7325, 2017.

[118] S. Zerdoumi et al., ‘‘Image pattern recognition in big data: Taxonomy
and open challenges: Survey,’’ Multimedia Tools Appl., vol. 77, no. 8,
pp. 10091–10121, Apr. 2017.

69636 VOLUME 7, 2019

S. I. Hakak et al.: Exact String Matching Algorithms: Survey, Issues, and Future Research Directions

SAQIB IQBAL HAKAK received the bachelor’s
degree in computer science engineering from the
University of Kashmir, India, in 2010, the M.S.
degree in computer and information engineering
from IIUM, Malaysia, and the Ph.D. degree from
the University of Malaya, Malaysia, under the fac-
ulty of Computer Science and Information Tech-
nology. His research areas include information
security, natural language processing, cloud com-
puting, cyber security, deep learning and wireless
networks.

AMIRRUDIN KAMSIN received the B.I.T.
degree in management the University of Malaya,
in 2001, the M.Sc. degree in computer animation
fromBournemouthUniversity, U.K., and the Ph.D.
degree from University College London (UCL),
in 2014. He is currently a Senior Lecturer with
the Faculty of Computer Science and Information
Technology, University of Malaya, Malaysia. His
research areas include human computer interaction
(HCI), authentication systems, e-learning, mobile

applications, serious game, augmented reality, and mobile health services.

PALAIAHNAKOTE SHIVAKUMARA received
the B.Sc., M.Sc., M.Sc. Technology by research,
and Ph.D. degrees from the University of Mysore,
Mysore, Karnataka, India, in 1995, 1999, 2001,
and 2005, respectively, all in computer science.
He was a Research Fellow with the National Uni-
versity of Singapore, Singapore, from 2005 to
2007 and from 2008 to 2013. Besides, he was
Research Consultant with Nanyang Technolog-
ical University, Singapore, from 2007 to 2008.

He is currently a Senior Lecturer with the University of Malaya (UM),
Kuala Lumpur, Malaysia. Based on his work, he has published more than
190 research papers in national, international conferences and journals.
His research interests include video text understanding, document analysis,
image processing, and OCR related. He was a recipient of a prestigious
Dynamic Indian of the Millennium Award by KG foundation, India, for his
contributions to computer science field. He received the TopReviewer Award
from Pattern Recognition Letters. He has several international collabora-
tors, namely, Nanjing University, China, Hohai University, China, Shantou
University, China, Indian Statistical Institute, Kolkata, India, University of
Essex, U.K., Assiut University, Egypt, andUniversity of Technology Sydney,
Australia. He has been serving as a Chair of different levels for International
Conference, namely, ICDAR, DAS, ICFHR, and ACPR. He has been serving
as an Associate Editor for Transactions on Asian Language Information
Processing (TALLIP).

GULSHAN AMIN GILKAR received the bach-
elor’s and master’s degrees from India. She is
currently a Lecturer with the Department of
Computer Science and Information Technology,
Faculty of Computer Science and Information
Technology, Shaqra University, Saudi Arabia. She
has vast teaching experience since she has worked
in various educational institutions locally and
abroad.

WAZIR ZADA KHAN (M’16–SM’17) received
the B.S. and M.S. degrees in computer science
fromCOMSATSUniversity Islamabad,WahCam-
pus, in 2004 and 2007, respectively, and the
Ph.D. degree from the Electrical and Electronic
Engineering Department, Universiti Teknologi
PETRONAS, Malaysia, in 2015. He is currently
with the Farasan Networking Research Labora-
tory, Faculty of CS & IS, Jazan University, Saudi
Arabia. His current research interests includewire-

less sensor networks, security and privacy, the Internet of Things.

MUHAMMAD IMRAN is currently an Associate
Professor with the College of Applied Computer
Sciences, King Saud University (KSU). He has
published a number of research papers in refer-
eed international conferences and journals. His
research interest includes mobile and wireless net-
works, the Internet of Things, cloud/edge com-
puting, and information security. His research is
financially supported by several grants. He has
been involved in more than 75 conferences and

workshops in various capacities, such as a Chair, a Co-chair, and a Techni-
cal Program Committee Member. These include IEEE ICC, GLOBECOM,
AINA, LCN, IWCMC, IFIP WWIC, and BWCCA. He has received number
of awards such as the Asia Pacific Advanced Network Fellowship. Recently,
European Alliance for Innovation (EAI) has appointed him as an Editor-
in-Chief for the EAI Transactions on Pervasive Health and Technology.
He also serves as an Associate Editor for the IEEE Communications Mag-
azine, Future Generation Computer Systems, the IEEE ACCESS, Wireless
Communication and Mobile Computing Journal, Ad Hoc & Sensor Wireless
Networks Journal, IET Wireless Sensor Systems, the International Journal
of Autonomous and Adaptive Communication Systems, and the International
Journal of Information Technology and Electrical Engineering.

VOLUME 7, 2019 69637

	INTRODUCTION
	CLASSIFICATION OF STRING MATCHING ALGORITHMS
	APPROXIMATE STRING MATCHING ALGORITHMS
	EXACT STRING MATCHING
	SINGLE PATTERN MATCHING
	MULTIPLE-PATTERN MATCHING
	HARDWARE-BASED PATTERN MATCHING

	ANALYSIS OF SOFTWARE-BASED SINGLE-PATTERN MATCHING ALGORITHMS
	CHARACTER-BASED APPROACH
	BM ALGORITHM 34
	EXTENDED BOYER-MOORE APPROACHES
	HYBRID BM APPROACHES

	HASHING-BASED APPROACH
	Q-QRAMS APPROACH
	NON Q-GRAMS APPROACH

	SUFFIX AUTOMATA-BASED APPROACH
	DIRECTED ACYCLIC WORD GRAPH-BASED APPROACHES
	WIDE WINDOW BASED APPROACHES
	AUTOMATA-BASED SKIPPING APPROACHES

	BIT-PARALLEL APPROACH
	HYBRID APPROACH

	COMPARISON ANALYSIS OF SOFTWARE-BASED PATTERN STRING MATCHING ALGORITHMS
	CURRENT TRENDS, APPLICATIONS, CHALLENGES AND FUTURE SCOPE
	CURRENT TREND
	APPLICATIONS
	MULTIMEDIA APPLICATIONS
	NETWORKING APPLICATIONS
	FORENSIC SCIENCE
	SEARCH ENGINES

	CHALLENGES
	REFINEMENT OF PROPOSED CLASSIFICATION
	PERFORMANCE ANALYSIS USING DIFFERENT ENCODING TECHNIQUES
	ANALYSIS TOOL
	EXECUTION TIME
	LIBRARY
	DEVELOPMENT OF EFFICIENT DATA STRUCTURES
	OPTIMAL FILE SIZE
	BENCHMARK STANDARD

	FUTURE SCOPE
	FACTORIAL ANALYSIS OF STRING MATCHING ALGORITHMS
	IMPLEMENTATION OF STRING MATCHING ALGORITHMS IN MAPREDUCE ENVIRONMENT
	USE OF GPU AND FIELD PROGRAMMABLE GATE ARRAY (FPGA)
	SURVEY OF APPROXIMATE AND HARDWARE-BASED APPROACHES
	ARABIC PATTERN MATCHING ALGORITHMS
	MEMORY ANALYSIS OF STRING MATCHING ALGORITHMS
	OTHER FUTURE RELATED WORKS

	CONCLUSION
	REFERENCES
	Biographies
	SAQIB IQBAL HAKAK
	AMIRRUDIN KAMSIN
	PALAIAHNAKOTE SHIVAKUMARA
	GULSHAN AMIN GILKAR
	WAZIR ZADA KHAN
	MUHAMMAD IMRAN

