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ABSTRACT Compressive sensing (CS) plays a pivotal role in the signal processing and we address on
the issues, i.e., the information-theoretic analysis of CS under random noise in this paper. To distinguish
from existing literature, we aim at providing a precise reconstruction of the source signal. From the analysis
of the recovery performance, we calculate the lower band upper bound of the probability of error for CS.
To be more specific, we provide more discussions for the case where both the source and the noise follow
Gaussian distribution. It has been proved that perfect reconstruction of the signal vector is impossible if the
corresponding conditions are not satisfied, which can be served as the theoretical reference of noisy CS.
In terms of the necessary proofs, we leverage the results from information theory and estimation theory. The
compression of real underwater acoustic sensor network (UWASN) data is applied to verify the theoretical

bounds derived in this paper.

INDEX TERMS Compressive sensing, random noise, probability of error, theoretical performance bounds,

underwater acoustic sensor networks.

I. INTRODUCTION

Compressive sensing (CS) is one of the major
tools [1]-[3], [12] that transforms an inherently sparse and
high-dimensional signal vector in some space to a much
lower dimensional representation. Compared to the classi-
cal Nyquist sampling requirement, the CS requires lower
data to achieve similar performance, which demonstrates its
tractability in real application.

To address the CS problem, let’s consider the source signal
vector x € RV that is K-sparse in the basis W [1], where
¥ e RV>*N and also it is orthogonal. The compressed version
of the original x can be represented as [1]-[3],

y=ox+w (H

where ® € R¥*N is the measurement matrix, and w € RM

is the additive noise and y € RM is the observation vector.
For the sparsity condition, we have M < N.

The purpose of reconstruction based on CS is to obtain
the original source information x from the sparse obser-
vation y. Since and x is sparse in terms of the basis W,
the reconstruction process is aim to find x such that W~!x
has limited nonzero entries. The minimization of the [y norm
of the x directly yields an intractable problem [13]. However,

The associate editor coordinating the review of this manuscript and
approving it for publication was Jinhwan Koh.

we can relax the above problem and recover the source by
formulation the above problem as the following constrained
optimization problem [2]:

o

argmin||@|;1 s. 7. ||y — Px|l2
=|y— PVl <€ (@)

For many scenarios, the data inherent in the model or the
problem formulation lies on the fact the fact the signal is
inherently sparse [3], the emerging CS provides a powerful
tool to handle these problems in a concise and tractable way.
A model-based CS theory with provable performance guar-
antees was introduced in [4] by investigating read-world and
irregular signal models by dropping out simple assumptions
in the CS theory. In [5], the robust PCA scheme permeated
benefits from variable selection and compressive sampling.
The algorithm related with CS can be also solved in a recur-
sive way and an adaptive algorithms for recursive estimation
and tracking of sparse signals is provided in [6]. Sparsity
in the eigenspace of signal covariance matrix was discussed
in [7]. The recovery of the unknown sparse vector of regres-
sion coefficients was studied in [8], and sparse TLS algo-
rithms were provided to tackle the perturbation problem in
nature. The work in [9] connects CS and linear regression to
extend the range of sparsity-exploiting algorithms for model
mismatch caused by unreliable sensors (outliers) that lead
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to sparse residuals, even the non-sparse signal case is dis-
cussed. Another interesting case is about the CS recovery
of the uniform quantization, which is studied in [10], and
the authors show theoretically that the reconstruction error is
bounded under certain assumptions. The application of CS to
real SAR data was studied in [11], however in their work, they
just provide limited cases which is not ubiquitous to other
scenarios.

A. RELATED WORK

One of the previous research focus is to analyze the perfor-
mance of CS from information-theoretic point of view. The
matrix completion problem under the information theoretic
limit was given in [14]. Several theoretical results regarding
the recovery of a low-rank matrix from just a few measure-
ments were presented, and the error bounds regarding low-
rank matrices were extended in [15]. One of the seminal
manuscripts about the theory of CS was introduced in [22],
in which the CS mechanism selects sensing vectors indepen-
dently from a determined probability distribution without the
requirement of the restricted isometry property and a given
random model for the signal. Wainwright [16] studied the
information-theoretic limits of sparsity recovery for a noisy
linear observation model based on random measurement
matrices drawn from general Gaussian measurement matri-
ces. Both sufficient and necessary conditions were derived.
The recovery of the non-asymptotic bounds, block-sparsity
and low-rank matrix in the Gaussian ensemble were stud-
ied in [17]. Arias-Castro et al. [18] provided some MSE
bounds of adaptive sensing estimation. In [19], The measure-
ment matrix which is generated from the noisy projections
scheme defined on different basis is proposed and the bounds
of precise recovering of the support set of the CS signal
is investigated by introducing the information theory. The
concept of CS was extended to signals that are sparse in
a redundant dictionary instead of the original orthonormal
space [21]. Tang and Nehorai formulated the support recovery
problems for jointly sparse signals as binary and multiple-
hypothesis testings and derived corresponding bounds on the
probability of error (P,) in [20]. The metric for the quantity
of measurements for recovering a compressed signal in the
noise is analyzed in [23] and the average distortion introduced
by quantization of compressive sensing (CS) measurements
was studied in [24]. The reconstruction rate distortion perfor-
mance was discussed in [28] and [29]. Reference [30] studied
the upper and lower bounds of probability error for com-
pressive sensing with Gaussian noise. A lower bound on the
mean-squared error (MSE) achievable for sparse estimation
with Gaussian noise was given in [31]. An approximation
in terms of the minimum bit rate to achieve the best aver-
age performance from a CS system was developed in [27].
Rate distortion theoretic performance bounds to sensing and
reconstruction of CS from noisy projections were provides
in [32]. Reference [36] provided the lower bound of the P,
for CS but the results are limited, and our work will
extend to more cases about the theoretical limits for CS.
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The Cramer-Rao lower bound (CRLB) for CS was studied
in [33] and [34] based on the assumptions that the location of
the non-zero delayed taps in advance is known for the signal
estimator.

B. CONTRIBUTIONS IN THIS PAPER

By assuming that both the source and noise follow Gaussian
distribution, we provide a information-theoretical analysis
of noisy CS, and give the closed-form representation of the
lower and upper bound in terms of the P,. We have to mention
that although the performance results are derived for the
above special case those results still could be used as theoret-
ical reference of real application of CS [41]. The entropy is
a measure of the average uncertainty in the random variable.
This indicates that our results provide the bounds of the worst
case. Different from other literature, we consider the precise
reconstruction of the signal instead of just the recovery of
the support of the signal. Then we form the lower and upper
bound of P, for general case without specific requirement on
the measurement matrix. Furthermore, we provide analysis
for the case that the measurement matrix ® is Bernoulli
matrix, and the related lower and upper bound of the proba-
bility for noisy CS are given. Finally, real underwater acoustic
sensor network (UWASN) data are compressed to verify the
theoretical results derived in this paper.

C. CONTENT

The rest of this paper is organized as follows. In Section II,
we give the related assumptions. The performance bounds
of compressive sensing with random noise is shown in
Section III. In Section III-A, the lower bounds of the
P, are provided for both general case and the special
case of Bernoulli distribution based measurement matrix.
In Section III-B, the upper bounds of P, for CS are provided
for both the general case and special case. The detailed proofs
are given in Section IV. The experimental results with real
underwater acoustic sensor network data are provided in
Section V. Conclusions are presented in Section VI.

Il. PROBLEM SETTING

Before diving into the details of the theoretical study,
we would like to provide the following assumptions for the
problem setting:

1) The source information x € RN is K—sparse in
the sparsity basis W, i.e., there are only K non-zero
entries in § = WTx, and each element of x ~
N(O, O’xz). We consider the noise vector w € R and
w~ N, 02).

2) This paper provides theoretical analysis of the com-
pressive sensing for the general case without any
assumption of the measurement matrix as well as
the special case with Bernoulli measurement matrix.
To be more specific about the special case, the mea-
surement matrix & is the Bernoulli matrix. The i.i.d
entries of ¢y, have value of either 1 or —1 with
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Pr(¢mn = =£1) = 0.5. We also assume that the
measurement matrix ¢ is known in advance for both
the transmitter and the receiver.

3) For the special case with Bernoulli measurement
matrix, the observations can be represented as the fol-

lowing,
N
Ym = Z¢m,nxn + wm
n=1
Np N>
=Y D6+ > ~Dxi+wa ()
i=1 j=1
Ni+N, =N @

where N is the length of x. Because Pr(¢,,, = £1) =
0.5, from the strong law of large number (LLN) theo-
rem,as N — oo, N| =N, = % so that:

le_ﬁzx]'i‘wm 5

=1

As both x;, and w,, follow Gaussian distribution with
zero mean and different variance o2 and o2, y,, is also
a Gaussian random variable with N'(0, o2 + o2).

lll. PERFORMANCE BOUNDS OF CS WITH RANDOM
NOISE: FUNDAMENTAL RESULTS

A. LOWER BOUNDS

Consider the CS with Bernoulli measurement matrix and
additive noise and we assume that both of them follow the
Gaussian distribution and Pr(¢,, = £1) = 0.5. We will
have the following theorem in terms of the lower of bound of
the P, as follows:

Theorem 1: Consider the noisy CS scenario, given the
input x ~ N(0, ze Iv), w ~ N(0, ov% Iy), and the elements
of Pm.n are i. i. d. with Pr(¢,, , = £1) = 0.5, then the lower
bound of P, can be derived as:

1 ]Og(NJ +(7M )M +1
Pe>1— — T (6)
3 log[(Zneox) ]
where N stands for the length of the information. We notice

that if sz > 1,and N — oo, ﬁ ~ 0, therefore,
3 log[(2meos)V]

2 2
1) If Qres?)VN > (%)M , then P,, > 0, which
means that error alwayg exit so that perfect reconstruc-

tion of the 1nf0rmat10n Vector is impossible.

2) If Qrea?)V < (N(r ctoy M, then P,,, < 0, so that per-
fect reconstruction of the information vector is possible
in this case.

In a nutshell, Theorem 1 demonstrates a special case of
the lower bound of the P, when the measurement matrix &
follows Bernoulli distribution with Pr(¢,, , = £1) = 0.5.
We can extend to a more general lower bound of the P,
without any special assumption of the measurement matrix,
which is given in Theorem 2 as follows:
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Theorem 2 In noisy CS, given the input x ~ N (0, o IN)
w~N(QO,o IM) and the measurement matrix is P, then the
lower bound of the P, will be as follows,

N log[zﬂ'e)nxymin] +M IOg(—);jy’"i")
Pe 2 Ymax (7)
N log[2meo?]
From analysis, we conclude that:

(1). If (2 €Ay, )V = (3225)M | then P,,, > 0, this means
that perfect reconstruction 'of the information vector is impos-
sible, as there will always be certain error.

Q). If Qrehny,,)V < (e then P, < 0, this
means that perfect reconstruction of the information vector is
possible.

B. UPPER BOUNDS
Since a linear MMSE estimator y = ®x + w is an affine
transformation of Gaussian random vector y, hence % is mul-
tivariate Gaussian as well, i.e., the estimated expression for
linear MMSE estimator also follows Gaussian distribution.
From the reference [41], if x and X are independent and
they have the following distribution functions x ~ p(x), and
X ~ p(&), then

Prix=3%) > 2—H(px)-Dp®IlpE) 8)

where D(p(x)||p(X)) is the Kullback-Leibler distance (KLD)
between the corresponding two probability mass functions
px) and p(X).

Therefore, the P, between x and X is upper bounded
by Theorem 3, with Bernoulli measurement matrix.
Theorem 3 provide the upper bound of the P, in a
information-theoretic sense of viewpoint.

Theorem 3: In noisy CS, if x ~ N(O, axz Iy), w ~
N(O, O’v% Inr), and the entries of the measurement matrix ¢p.
Sfollows Bernoulli distribution with Pr(¢p,, = £1) = 0.5,
then the upper bound of P, can be expressed as:,

N NoZ+ol NaA +aw
Po<1—(rec?) 72" T "9
A more general upper bound of the P, w1thout any special
assumption of the measurement matrix is provided in Theo-
rem 4, which is from the estimation theory point of view.
Theorem 4. In noisy CS, consider x ~ N0, O’X2 Iy), w ~
N, O’v% Iy), and the measurement matrix is ®, then the
upper bound of the P, will be as follows,

1
(271)1"/2 det(( v + L pTp)-1)1/2

Observe that Theorem 4 is a general case of the upper
bound of the P, for CS with random noise. For the special
case when the measurement matrix follows Bernoulli distri-
bution with Pr(¢,, , = £1) = 0.5, the corresponding result
is shown in Theorem 5.

Theorem 5: In noisy CS, if x ~ N(O, ze Iy), w ~
N(O, Gv% Iy), and the entries of the measurement matrix ¢p.
follows Bernoulli distribution with Pr(¢p,, = £1) = 0.5,

(10)
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then the upper bound of the P, will be as follows,

1
Po< ——5— (11
e
Proof: When the measurement matrix @ is Bernoulli
matrix, the entries of ¢, are iid. with Pr(¢m,, =
+1) = 0.5, and if the length N of x is sufficiently large,
®Td = M - Iy, from which we could achieve the result in

Theorem 5. O

IV. PROOFS
A. PROOF OF THEOREM 1

Proof: Given that each x, is a Gaussian i.i.d random
variable, and Cy = oxz Iy, we employ the definition of the
differential entropy of x from [41] here as follows:

h(x) = %1og(2nea)§)N . (12)

At the receiver side, y = &x + w, and also x ~
N(O, a)? Iy), and w ~ N0, av% Iyr), then we obtain the
covariance matrix of y as,

Cyy = El(y = Op)(y — )" ]

= E[(P(x — ftx) + WH(P(x — p) + w)']

= OE[x" 10" +C,

= ®C,®" +C,,

D NoD)ly + 02y

= (No? + o)y (13)
where equality (i) follows from the fact that Pr(¢,, =
+1) = 0.5, if N is sufficient large, when m # m,
E[(XCN_ | mntbur ] = 0, therefore, @D = N - Iy

Since y = ®x + w, we could notice that the mean of y is 0,

with covariance matrix Cyy, i.e., y ~ N(0, (No2 + oﬁ)?M).
The joint likelihood function is,

1 _
Py x) = ———————exp(—=y' - Cl oy (14)
- 2n(No2 +02)? 2= 7T
Py x) = 1 oxp (- L) )
yx (Vs X 2r(No? + ov%)g 2(No2 +02)

Lemma 1. For any unbiased estimator X of compressed
signal x in noisy compressive sensing with random noise x,
ie., y = ®x + w, the CRLB of the estimator X can be
determined as:

E(l 2 —x|?) = WNoi +o)Tri(@" @)~} (16)
Given the Fisher’s Information here from [43]:
9% Inp(y; x) 1
X - chx2 + 0»%

Hence, the CRLB [43] of the estimator X is

I(x));j = —EI[ o' (17)

8)6[3)(]'

E{l 2 —x %) =TI} =Woi +oDTr{(®T @)} (18)
and therefore we complete the proof. 0
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The entropy of y is given by:

h(y) = % logre(Na? 4+ o)™ (19)

Given the fact that x and y are joint Gaussian r.v.s, and their
covariance matrix Cyy

Co Cxx Cov(x, y)
2\ Cov(y, x) Cyy

Cov(x, y) is the covariance matrix between x and y, where

Cov(Xn, Ym) = Gm.n02 (20)

We will then utilize the following fact: given four
matrices A, B, C, D which they serve as a block matrix of the
complete matrix, where either A or D is invertible, then the
determinant of the block matrix can be given as:

A B\ .
det( c D) — det(A)det(D — CA™'B)
or,
A BY _ .
det ( e D) — det(D)det(A — BD™'C)

As both Cy, and Cy, are invertible matrices, the determi-
nant of C,y can be obtained as:
det(Cyy) = det(Cyy) - det(Cyy — Cov(y, x)Cy Cov(x, y))
= (crf)N -det(Cyy — Cov(z, )_C)(O’XZIN)_ICOV()_C, X))
1
= o))" - det(Cy, — — Covly, x)Cov(x, y))
o 2 z

X
. 1
D G2V . det(Cyy — —(NoHin)
X
= (02)N - det(No? + a2y — (NaDIy)
= (@HV (M 2D
where equality (if) is obtained due to Cov(y,X)uxn =

Covx, Yhp» 8 Prigmn = £1) = 0.5, if N of x is
sufficient large,

oxz, ifm=m
CoV(ym, Xn) - Cov(xn, y,)T =10, itm#£m (22)

’

and,
Cov(y, Dmxn - Cov(x, Yvxm = NoDIy — (23)

Therefore, the joint entropy of x and y is,

h(x,y) = % log[(2m )N det(Cyy)]

%log[<2ne>M+N<of)N<(o£>M] (24)

As the process of CS can be viewed as a Markov chain
withx — y — X [36], where x is the estimated infor-

mation. By the data-processing inequality, I(x; x) < I(x; ),
therefore, h(x|X) > h(x| y) and so we have,

h(xly) < 1+ P, - h(x) (25)
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From Fano’s inequality, we could get the lower bound of
the P,, as shown

h(x |y —1
LAY T
h(x)
h(x)
3 logl@reM*N (02N (0 2M]

% log[(2meo2)V]

Iogl@re (No? + o2)M] + 1
1 5 log[2mea?)N)

| 1 log(NG toy M 41 06)
B % 10g[(271 ea2)N]

We can revalidate the above bound from another point of
view. Since the mutual information can be derived from the
entropy as:

I(x: y) = h(y) — h(ylo) 27)

Given that @ is known in advance so that more conditions
reduce mutual information [41]

I(x; y|®) = I(x3y)
= h(y) — h(y|x)
2 h(y) — hw)

1 1
= E1og(2ne(Na + oM — E1og(2neaz)M

2
2 o}

)M (28)

We finally leverage the Fano’s inequality to obtain the P,,

h(x]y) — 1
h(x)
G 1(x; y|P) + 1
B h(x)
NU +‘7w)M +1

Pe(x # x|®) >

1 5 log(
% log[(27'[eaxz)N]

(29)

B. PROOF OF THEOREM 2
If the source x and the noise w follow Gaussian distribution,
the observation vector y = ®x + w also follows Gaussian

distribution. Therefore h(X) = %log[(Zne)M - det(Cyy)].
Furthermore, we have:

hx,y) = 3 logl@re M - det(Cy)l  (30)

For the calculation of determinants of the covariance matri-
ces, we utilizes the results from [36] that det(Cyy) = ]_[l 1 )Jy

and det(Cyy) = HJNZ +1M A{(y and we can obtain the lower bound
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of the P, for general case (without any particular assumption
of the measurement matrix) as:

h(x,y) — h(y) — 1
h(x)
L log[@mey N [TV4M 2,1
3 log[(2mea)V]
%log[(Zne)M ]_[l 1 y] +1
3 log[@mea?)N]
L logl @)+ (g, )MV
L logl@mea?)V]
1 10g[(2ne)M()»>mm) I+1
1 log[(Zneaz)N]

Py =

—~
D)

—a+Y OB log(2neh,,)
B N "log(2mec?)
1
ﬂ log(2meo?)

" N log[2meAyy,,;, ] + M log(5 Lvmin)

)’nax 3]
N log[2meo?] G

log(2ec?)

/-\
3‘

where inequality (g) follows from the fact that [36]
H}N—’I_M )\‘j Z ()\'x)’mm)M ’ and Hl 1)\'1 S ()\'}max)M

Approxmlatlon (h) follows from the fact that when the length

N of x is sufficient large, and a > 1, then W

C. PROOF OF THEOREM 3
Proof: From a linear MMSE estimator, because y =
Dx+w,y € RY & e RM*N andw € RY, x ~ N(0, 02 Iy),
and w ~ N(0, o2 Iyy) are independent.
Since estimator in (49) is an affine transformation of Gaus-
sian random vector y, hence X is multivariate Gaussian. Thus
the estimated expression for linear MMSE estimator also fol-

lows Gaussian distribution, with mean and auto-covariance
given by,

o 1 1 T —1 4T 2
X =Elxlyl=(5Iv+ 5P @) @' y/oy  (32)
= o2 Y
E[f] = E[x] =0 (33)
Ci = CyCp'Cpx
= Cou®T(PC @7 + C,) ' DCyy
= oo (200" +02Iy) "' D (34)
Therefore, X ~ N(0, C;), and its probability density
function (pdf) is:

p) =

lor -1 .
——x -C. - 35
GGy G D 69

As we know, the source signal x ~ N(0, axz Iy), its pdfis,

x) = ;ex (_le @) x) (36)
Py = no2)N/? P N B

Q2
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From information theory [41], we know that if x and x are
independent with x ~ p(x), and X ~ p(x), then

Pr(x = %) > 2—H(p@)—Dp®)Ip(%) (37)

where D(p(x)||p(x)) is the KLD between two probability mass
functions p(x) and p(x) which is defined as

px)
pR)

Therefore, the probability of error between x and X is upper
bounded by

DP®Ip@) =Y px (38)

P.=1—Prx=1%)
51 2—H(p(X))—D(p(X)IIP®)
— 1 — 2~ 3log@mead)"  »-DpWIp@)
Consider the case where measurement matrix is Bernoulli

matrix and the entries of ¢, , are i.i.d. with Pr(¢m, =
+1) = 0.5, and suppose dimension of the source signal N

is sufficiently large, ®'® = M - Iy, and ®®7 = N - I,
therefore,
C; = ot dT (000" +02Iy) ' @
Mot
=M% 40
NoZ + o2V (40)
and
der(Cy) = (% (1)
et(Cy) = (————
£ No?+ o}

AsM < N,o? > 0and o2 > 0, we could conclude that:

Mcr;1 Mo?

< X M 2 2
No +a No

= Nax < oy 42)

From the fact that the KLD between two N dimen-
sional multivariate normal distributions with the mean vec-
tors g, p1 and their corresponding nonsingular covariance
matrices Xg, Xq is:

1
Dxkr(NoINY) = 5("@1_120) +(p1— po)' Z1 7!
detzo

(1 —po) =N —In(= )) (43)

Therefore, the KLD between the source signal x and the
estimated signal x could be obtained as:

D(p(x)|p(x))

@+ o
=—(N< Mo ) ln(m))

Noi+oy
1 xz v% NU + 0?2
= =( —Nln w
3 ( Mo? (—or 2 )
N No?+o} No?+o}
== B O Y i 44
> e Mo? ( Mo? ) (44)
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Since
No2+o2 N 2 N
LZ"WZ_JF T (45)
Max M Max M

When M and N are sufficiently large, M—V%Z — 0.

We notice that when a > 1, then a — 1 > Ina, therefore,
from the analysis above, D(p(x)||p(X)) > O is concluded,
which satisfy the requirement of the KLD.

Hence, the upper bound of the P, will be:

P, <1-— (znwf)*l\’ﬂz*D(p(&)Hp@)

2,2
No2 +a Nof+oy,
2 ( X w 1 ln( X 2 w ))

1 — Qrea?) ™22
];l(NrTX-HTW l(Nm(-HrH ))

=1—(rea?)y ™/ ? wet (46)
O

D. PROOF OF THEOREM 4
Proof: y = ®x +w. As each of x, is an . i. d Gaussian
random variable with zero mean and variance o , and each
noise w;, also follows Gauss1an with zero mean and varlance
o2, we know that x ~ N(0, o2 Iy), and w ~ N(0, o2 Iy).
Using Bayesian estimator [43]

El(x — %)%
/ / - Dpeiodydy  (@7)

The aim of the estimator is to find x that minimizes
Buse(%),

Byse(x) =

X = argmin Bysg(X) = Elx | y] (48)
k Y

For the assumed CS scheme, the estimated X can be
expressed as:

£ = Elxly]

= Elx] + CyCy,' (v — Elx])

1 1
= (v + 50 &) 'oTy/0l  (49)
OX O—W -
By leveraging the following conclusion of the covariance
matrix [43]

Cyy = El(x — ElxlyD@ — ElxlyD" |y]
! LY
=(=-Iv+ =0 @) (50)
oy o

The error between x and X is

e=x—X=x—

Elxly] 51)

Since estimator in (49) is an affine transformation of
Gaussian random vector y, hence X is multivariate Gaussian.
Estimation error ¢ = x — X is an affine transformation of
jointly Gaussian vectors x and y, hence ¢ is also Gaussian.

The mean of ¢ is calculated as

Ev,le] / / (x — ElxlyDpOln) dxlp()dy =0 (52)
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probailty

B 2|

-15 1

Nl 500 1000 1500 2000 2500 3000 3500 25 2 15 4 s 0 05 1 15 2
data

t x10°

(a) (b)

FIGURE 1. underwater acoustic sensor data. (a) UWASN data. (b) UWASN
data PDF.

The covariance of ¢ is
Elge"] = Eyy[(x — ElxlyDx — ElxlyD"]1 = Cyy (53)
The error vector’s probability distribution function
(pdf) [43] will be derived as,

1
N2 det(Cypy)!/?

L 7
p&) exp(—zé “Cypy-g) (B4

To be more specific, for Gaussian distribution, we have the
following:

1
< p(0) =
p(e) < p0) Qm)N/2. der(czlg)l/z
1
- 55
(ZJT)N/Zdet((o_l?IN_‘_éq)Tq))_l)l/z ( )
]

For more details of the deviation of this case, the readers can
be referred to [30] for more details.

V. EXPERIMENTAL RESULTS OF UNDERWATER
ACOUSTIC SENSOR NETWORK

In our experiment, we assume the source signal fol-
lows Gaussian distribution, and provide the correspond-
ing results. However, in real world, not all the source
information follows Gaussian distribution [11]. For exam-
ple, for underwater acoustic sensor networks, the data
gathered looks like in Fig. la, with the pdf shown as
in Fig. 1b.

From information theory, we know that the Gaussian dis-
tribution maximizes the entropy over all distributions with
the same variance [41]. As the entropy can be regarded as
the metric for uncertainty, which indicates that our results
provide the bound of the worst case. For real applica-
tion of compressive sensing, even though the source does
not follow Gaussian distribution, our results could be used
as an reference to judge the performance of compressive
sensing.

Figure 2 shows the compression performance of real
UnderWater Acoustic Sensor Networks (UWASN) data with
different SNR using compressive sensing. The real UWASN
data we used in this paper was obtained by Prof. Jin Chen
from Qilihai, Tianjin, China. We thank Prof. Jin Chen for
sharing these UWASN data into this research. We have
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found that the increasing of sampling rate M /N leads to
the decrease of the P,. This property indicates that in order
to get better reconstruction performance with lower proba-
bility of error, the sampling rate should be chosen as high
as possible. However, higher sampling rate means higher
computation complexity. To balance this, in the real appli-
cation of compressive sensing, Fig. 2 could be referred for
the chosen of certain sampling rate at an acceptable prob-
ability of error. It is obvious that the probability of error is
always above the lower bound of the theoretical P, with the
same SNR.

These results based on UWASNSs data verify the effective-
ness of our theoretical results. Despite that we employ the
basic Gaussian distribution here, these results still could be
used as theoretical reference of real application of compres-
sive sensing, as we explained in earlier part of this paper that
the Gaussian distribution. For the worst case, we can maxi-
mize the entropy over all pdfs with same variance. The results
provided in this paper could be used as theoretical references
when apply compressive sensing to real data compression and
reconstruction.

VI. CONCLUSIONS

The theoretical bounds and performance analysis of noisy
CS under different scenarios were proposed. It is assumed
that the source information and the additive noise follow the
Gaussian distribution and we provide the lower and upper
bound of the P, for noisy CS setting. We have demonstrated
that for certain conditions (e.g. (2neoxz)N > (%)M ),
the lower bound of the error is always large than "zero so
that the we cannot reconstruct the signal completely. To be
more specific, we further consider the case where the mea-
surement matrix is a Bernoulli matrix, the related lower and
upper bound of the P, were expressed as a clear closed-form
solution. We provide an application study of the UWASN
data and demonstrate the performance under different SNR
with the increasing fo the sampling rate, which the previous
theoretical results are proved accordingly.
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