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ABSTRACT Biomedical named entity recognition (biomedical NER) is a core component to build biomed-
ical text processing systems, such as biomedical information retrieval and question answering systems.
Recently, many studies based on machine learning have been developed for a biomedical NER. The machine
learning-based approaches generally require significant amounts of annotated corpora to achieve high
performance. However, it is expensive to manually create a large number of high-quality corpora due to
the demand for biomedical experts. In addition, most existing corpora have focused on several specific
sub-domains, such as disease, protein, and species. It is difficult for a biomedical NER system trained
with these corpora to provide much information for biomedical text processing systems. In this paper,
we propose a method for automatically generating the machine-labeled biomedical NER corpus that covers
various sub-domains by using proper categories from the semantic groups of a unified medical language
system (UMLS). We use a bootstrapping approach with a small amount of manually annotated corpus
to automatically generate a significant amount of corpus and then construct a biomedical NER system
trained with themachine-labeled corpus. At last, we train twomachine learning-based classifiers, conditional
random fields (CRFs) and long short-term memory (LSTM), with the machine-labeled data to improve
performance. The experimental results show that the proposed method is effective to improve performance.
As a result, the proposed one obtains higher performance in 23.69% than the model that trained only a small
amount of manually annotated corpus in F1-score.

INDEX TERMS Biomedical named entity recognition, bootstrapping, information extraction,
semi-supervised learning.

I. INTRODUCTION
An increasing number of studies have been conducted using
bioinformatics with natural language processing. Signifi-
cant amounts of data are currently available in medical
domains, making it increasingly important to be able to
extract and retrieve high-quality information from this data.
As an example, the MEDLINE literature database contains
over 24 million abstracts of biomedical journals, and many
new abstracts have been added so far. In particular, extracting
biomedical terms is one of the core tasks in the analysis of

The associate editor coordinating the review of this manuscript and
approving it for publication was Shubhajit Roy Chowdhury.

biomedical texts. Biomedical named entity recogni-
tion(biomedical NER) task is defined as the identifica-
tion of biomedical entities from the biomedical texts and
their classification into categories such as disease, gene,
protein, and drug. Since biomedical terms and their cate-
gories play an important role in many tasks of bioinfor-
matics [1] such as relation extraction [2],[3], information
retrieval [4], and question answering systems [5], many
researchers have developed various methods for correctly
extracting biomedical NEs. Rule-based approaches have been
typically used to extract a biomedical NE [6],[7], while
machine-learning based approaches have recently gained
attention. The machine-learning approaches attempt to solve
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the problems of rule-based and dictionary-based approaches
to recognize new NEs and spelling variations. Shen et al. rec-
ognized gene and protein NEs by applying a Hidden Markov
Model [8]. Other studies presented a biomedical NER system
for detecting protein, DNA, RNA, cell-line, and cell-type
entity classes by using Conditional Random Field (CRF) with
a variety of traditional and novel features [9],[10]. Leaman
et al. suggested a chemical NER system that combines two
independent CRF models [11]. Li et al. used deep learning
techniques for NER, and these studies are based on the RNN
and LSTM [12],[13].

However, most of the previous studies attempted to recog-
nize proteins or genes as biomedical NEs and have focused
on several specific sub-types such as disease, cell line, cell
type, and species. Thus NE categories were limited to spe-
cific sub-domains of biomedicine in each corpus. It can
arouse a problem that most of the existing biomedical NE
corpora do not sufficiently reflect the whole spectrum of
biomedical NEs. For example, GENIA [14], GENETAG [15],
and PennBioIE [16] corpora cover gene and protein sub-
domains; BioText [17], SCAI Disease [18], and Arizona
Disease [19] corpora contain only disease names; and the
OrganismTagger [20] and Linnaeus [21] corpora are used
to recognize and identify species names. These corpora are
too narrowly scoped for applications in a large variety of
other biomedical text mining themes, and thus, CALBC [22],
CRAFT [23], and i2b2 2010 [24] were developed to cover
a wider sub-domain. The CALBC corpus includes proteins
and genes, chemicals, diseases and disorders, and living
beings and the CRAFT corpus can cover NCBI taxonomy
that contains organisms as well as the taxonomy of gene,
protein and cell type. The CALBC and the CRAFT con-
tain more sub-domains than other existing corpora but still
does not cover many sub-domains such as anatomy, organ,
and medical procedures, which are important information in
biomedical domains. The i2b2 2010 corpus contains domains
with greatly expanded coverage unlike other corpora, and
biomedical NEs of the i2b2 2010 corpus contains only three
categories including problem, test, and treatment. Because
the i2b2 2010 corpus was annotated with phrases referring to
very wide sub-domains, biomedical NER system learned this
corpus does not represent specific information. For example,
the NEs of disease class and symptom class contained in
problem class despite disease and symptom are slightly dif-
ferent. Therefore, to develop a useful biomedical NER system
for other biomedical tasks, a corpus is required to cover
various sub-domains and to represent detail information for
each sub-domain as proper categories.

In this paper, we introduce how to obtain a biomedi-
cal NE corpus that covers various sub-domains with spe-
cific information. It is difficult to manually generate a
large-scale and high-quality corpus because manual annota-
tion is extremely time-consuming and expensive, andmedical
experts are required. For providing sufficient biomedical
information with the biomedical NE corpus, we defined
the NE category as the semantic group of Unified Medical

Language System (UMLS) [25]. The UMLS includes the
meta-thesaurus, semantic network, specialist lexicon, and
lexical tools. The meta-thesaurus of UMLS is a large biomed-
ical thesaurus that is organized by concepts or meanings,
and it links similar names for the same concept from nearly
200 different vocabularies. UMLS semantic types are com-
posed of semantic groups with concepts [26]. There are
133 UMLS semantic types that can be mapped to 15 groups
known as UMLS semantic groups1 which cover various fields
in the biomedical domain. The machine-labeled corpus is
improved by applying a bootstrapping approach. An effective
biomedical NER system can be constructed by learning the
machine-labeled NE corpus as training data. In summary,
there are three contributions to this paper.
• We propose a method to generate a biomedical NE
corpus that covers various biomedical sub-domains
by applying UMLS semantic groups as categories of
biomedical NE.

• We propose the bootstrapping approach to generate a
significant amount of machine-labeled corpus with little
human effort.

• Our proposed biomedical NER system makes a higher
performance than the existing tool, MetaMap, which
uses UMLS information.

As a result, the proposed biomedical NER system that is
trained with the machine-labeled corpus by using a bootstrap-
ping approach can provide more specific category informa-
tion (15 UMLS semantic groups[26]) than NER systems that
trained with the other existing corpora mentioned above. The
overall paper consists of 4 chapters, including this introduc-
tory chapter. Chapter 2 begins an overview of our proposed
method, and its subsections show how our proposed model
works in detail. In this subsection, we suggest the method of
initial corpus generation, bootstrapping approach, machine
learning algorithm, and additional feature to enhance the
performance of biomedical NER. The third chapter analyses
the experimental results using the proposed NER system and
the baseline system. In the final chapter, we present a brief
summary and future works.

II. PROPOSED METHOD
Figure 1 shows an overview of the proposed method. We will
explain the detailed model with three parts. In the first part,
marked with circle digit 1 in Figure 1, indicates the method
for generating an initial corpus with a chunker and MetaMap.
The second part is bootstrapping to improve the quality of the
initial corpus. Finally, the bootstrapped initial corpus is used
as training data for biomedical NER with CRF and LSTM
networks.

A. HOW TO AUTOMATICALLY GENERATE AN INITIAL
CORPUS
In this section, we present how to generate an initial corpus to
build an initial classifier. Generally, a bootstrapping approach

1https://metamap.nlm.nih.gov/SemanticTypesAndGroups.shtml
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FIGURE 1. The overview of the proposed method.

starts with a classifier trained with the initial corpus which
is manually annotated (also called seed corpus) and then
gradually improves the accuracy of the classifier through
several re-training processes. Thus it is important to obtain
the high quality of the initial corpus because the performance
of the bootstrapping approach seriously depends on the train-
ing data for the initial classifier [27],[28]. However, it is
sometimes hard to manually annotate sufficient amounts of
the initial corpus. Therefore we try to automatically generate
a sufficient amount of initial corpus with the chunker and
MetaMap.

1) WHY DOES NOT USE METAMAP ALONE FOR AUTOMATIC
LABELING?
The reason for using the chunker and MetaMap together
is as follows. MetaMap is a useful tool to extract biomed-
ical NEs and match their groups known as concepts to
the UMLS meta-thesaurus [29]. Sometimes, MetaMap has
been used as a biomedical NER system for various applica-
tions[30],[31]. However, there are several limitations to the
usage of MetaMap alone as a biomedical NER system [32]:
(i) MetaMap extracts not only biomedical NEs but also com-
mon entities or even verbs that are not clearly biomedical
NEs because the UMLS meta-thesaurus includes a signif-
icant amount of common knowledge; (ii) if a biomedical
NE does not exist in the UMLS thesaurus, MetaMap can-
not determine the UMLS semantic type of the biomedical
NE. In other words, it is hard to extract newly generated
biomedical NEs with MetaMap. In addition, several pre-
vious studies showed that MetaMap performed poorly in

their experiments [33],[34]. Thus, it is difficult to obtain a
high quality of the initial corpus by using only MetaMap.
Therefore, we focus on how to improve the quality of the
initial corpus by overcoming the limitations listed above and
by exploiting the advantages of MetaMap to enhance the
biomedical NER.

2) EXTRACTION OF BIOMEDICAL NE CHUNKS
The chunker was built up to extract only biomedical NE
chunks by using a manually annotated corpus, it solves the
problem of extracting common entities in the initial corpus.
Besides, the chunker enables a term sequence to correspond
to a biomedical NE in a sentence by peripheral information
associated with the term sequence, even if the term sequence
is not registered in UMLS.

We used the features which are listed in Table 1 and word
tokens in a window of size two around the current word.
We use CoNLL 2003 dataset format proposed by [35] as
training data for chunker. That format represents a single
word with a series of words, tab-separated features, and label
of a word. The features are represented as string symbol, and
its representations of examples are described in the column
of ‘Expression in the labeled corpus.’ Word uni-gram, lemma
uni-gram, and POS uni-gram are represented as a string of
itself in a labeled corpus and the features in row 4-9 in
Table 1 are represented as the symbols of ‘f1+’ to ‘f6+.’
For example, the word ‘‘NXY059’’ has partial capital letters
and Number, so the symbol ‘f2+’ and ‘f3+’ annotated as
the features of ‘‘NXY059.’’ In training data, the example
represented as ‘‘NXY059 NXY059 NN f2+ f3+
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TABLE 1. Feature list for chunker.

B.’’ Herein, We adopt the IOB2 tagging scheme.2 The type of
label is only three ‘B’, ‘I’ and ‘O’ because the chunker does
not determine the category of a word, only extract the range
of biomedical NE.

3) AUTOMATIC LABELING FOR THE INITIAL CORPUS
The initial corpus is automatically generated by the chunker
and MetaMap with unlabeled medical data. The format of the
initial corpus is the samewith training data of the chunker, but
the initial corpus has different labels which contain category
information.Wefirst input the unlabeledmedical data into the
chunker mentioned the previous section to detect the scope
of biomedical NE chunks. The chunking results, biomedical
chunks, are used as inputs of MetaMap to determine the
UMLS semantic groups as categories of input. The results
of MetaMap, UMLS semantic groups, are eventually used to
the categories of extracted biomedical NE chunks. to annotate
the initial corpus.

However, there are two cases in which a biomedical NE
chunk does not have only one UMLS semantic group. First,
a biomedical NE chunk may have no UMLS semantic group.
If a biomedical NE chunk does not exist in the UMLS,
MetaMap cannot analyze the UMLS semantic group of input
NE chunks. We refer to this problem as ‘out-of-vocabulary
problem’ in this paper. Second, a biomedical NE chunk can
have several UMLS semantic groups. A lot of homonyms,
especially abbreviation, are existed in the biomedical domain.
Thus even the sameNE chunks can belong to different UMLS
semantic groups. In this case, MetaMap outputs all UMLS

2IOB2 format is tagging format for tagging tokens such as chunking, part-
of-speech tagging, NER. There are three kinds of tags in IOB2 format; B-
class, I-class and O. The ‘B-class’ indicates that the tag is the beginning of
a chunk. An ‘I-class’ indicates that the tag is inside a chunk and ‘O tag’
indicates that a token is not a chunk.

semantic groups of biomedical NE chunks can have. This
problem is named ‘ambiguity problem.’ In the above two
cases, we did not consider those biomedical NE chunks as
correct biomedical NEs. Since the labels of the initial corpus
were tagged with the IOB2 tagging scheme, biomedical NE
chunks that did not have a single UMLS semantic group were
annotated with ‘O’ tags in the initial corpus. Therefore, many
biomedical NEs cannot be covered by the initial corpus. Con-
sequently, we suggest the method of applying bootstrapping
to improve the automatically annotated corpus quality, and it
will be discussed in the next section.

B. THE BOOTSTRAPPING TO IMPROVE THE
AUTOMATICALLY GENERATED DATA
We present how to apply the bootstrapping approach to
our proposed biomedical NER system in this section.
In general, a bootstrapping approach starts with a small
amount of manually annotated corpus called seed corpus
and then generates an initial classifier learned with the
seed corpus [36],[37]. After the initial classifier analyzes
the unlabeled data, its classification results are added to
training data. And then the classifier is re-trained with the
machine-labeled corpus and seed corpus. As this process
is iterative, the performance of the classifier is gradually
increased.

A bootstrapping approach is designed and applied to make
the initial corpus more accurate by resolving the problem of
incorrect labels with O tags caused by an out-of-vocabulary
problem and an ambiguity problem. Algorithm 1 describes
the main structure of our bootstrapping approach. In line
1, the initial classifier trained with the initial corpus and
the manually labeled seed corpus. It is a little different
from previous studies [36],[37] in that our bootstrapping
approach starts with the initial corpus which machine-labeled
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automatically and the manually labeled seed corpus together,
not just the seed corpus. By this way, the initial classifier can
have more information on a large amount of context from
unlabeled medical data and the UMLS thesaurus information
by MetaMap.

Algorithm 1 Outline of the Bootstrapping Approach
Require:

I : Initial corpus.
U : Unlabeled medical data.
S : Seed corpus.
Mi : Machine-labeled corpus generated in the ith

bootstrap iteration.
Ci : Classifier trained in the ith bootstrap iteration.
Itermax : Number of iterations.

1: Initial classifier C0← CRF based Classifier (I , S)
2: t ← 1
3: M0← I
4: while t < Itermax do
5: Mt ← Annotate on U by Ct−1
6: while wi ⊆ U do
7: li← the label of wi
8: if li in Mt−1 6= li in Mt then
9: if li in Mt−1 is ‘O’ label then

10: Tagging li in Mt as li in Mt
11: else
12: Tagging li in Mt as li in Mt−1
13: end if
14: end if
15: Ct ← CRF based Classifier (Mt , S)
16: t← t+1
17: end while
18: end while
19: return M1,...,t

For the first iteration of bootstrapping, the unlabeled med-
ical data is labeled by the initial classifier (line 5). The first
machine-labeled corpus is generated with the results of the
initial classifier, by applying followings; in the first criterion,
denoted in line 9-10, if any entity with an O tag in the initial
corpus is changed to a B or I tag by the classifier, the tag
is replaced with the new B, or I tag. The second criterion is
denoted in line 11-12. If any entity with the B or I tag in the
initial corpus is annotated with the O tag or B or I tag with the
different category name, the label of this entity is maintained
the same one. As this process is repeated, the O tags in a
previous machine-labeled corpus are replaced with correct
tags by using the peripheral information. Since we focused
on solving the out-of-vocabulary problem and the ambiguity
problem, in which biomedical NEs are tagged with O tags
in our approach, our method of only replacing O tags into
correct labels can generate a more robust machine-labeled
corpus.

Figure 2 illustrates our schematized bootstrapping pro-
cess with the improved machine-labeled corpus and the

FIGURE 2. Proposed bootstrapping process in terms of corpus.

FIGURE 3. Example of generating the training data for next iteration.

seed corpus. Short red lines in both of the initial and
improved corpora denote biomedical NEs. After sev-
eral bootstrap iterations, the improved machine-labeled
corpus has more accurate biomedical NEs than initial
corpus.

Figure 3 shows the example that how to generate the
training data for the second iteration using an initial corpus
and the results of the first classifier. The entity ‘injection-
site reactions’ is tagged with ‘B-PHEN3’ and ‘I-PHEN’ in the
initial corpus while the entity is classified to ‘B-DISO4’ and
‘I-DISO’ in the results of the first classifier. In this
case, PHEN tags are still maintained. As another example,
the entity ‘drisapersen’ with an O tag in the initial cor-
pus is newly classified by ‘B-CHEM5’ by the first classi-
fier, the tag of the drisapersen is changed into ‘CHEM’,
which is a chemical category of the UMLS semantic groups
and includes drugs, proteins, steroids, vitamins, and others.
In actual, the drisapersen is a type of drug. Through this
process, the label of the drisapersen is corrected in the training
data for the second iteration.

3This is an abbreviation of phenomena that contains biologic function,
human-caused phenomenon or process, and so on.

4This is an abbreviation of disorders that contains cell or molecular
dysfunction, disease or syndrome, and so on.

5This is an abbreviation of chemicals & drugs that contains carbohydrate,
chemical, clinical drug, enzyme, lipid, and so on.

70312 VOLUME 7, 2019



J. Kim et al.: Bootstrapping Approach With CRF and Deep Learning Models for Improving the Biomedical NER

C. MACHINE LEARNING BASED BIOMEDICAL NER
SYSTEM
This section describes two trainingmethods for implementing
the biomedical NER and the feature which improves perfor-
mance.

1) CRF BASED BIOMEDICAL NER
CRF is a sequence modeling framework, conditional proba-
bility distributions on an undirected graphmodel, for building
probabilistic models [38]. We apply linear-chain CRF for
our proposed CRF based biomedical NER. The conditional
probability of linear-chain CRF determined on observations
x and random variables y as follows:

P(y|x) =
1

Z (x)
exp(

∑
j

n∑
i=1

λjtj(yi−1, yi, x, i)

+

∑
k

n∑
i=1

µksk (yi, x, i)) (1)

Z (x) is a scale factor that guarantees that the posterior
probabilities sum to one. tj(yi−1, yi, x, i) is a transition func-
tion of i − 1 and ith label sequence and all observation
sequences. sk (yi, x, i)is a state feature function of ith observa-
tion sequence. λj and µk are variables that will be estimated
from training data with cross-entropy method.

2) BIDIRECTIONAL LSTM-CRF NETWORK BASED
BIOMEDICAL NER
We apply a deep learning approach to improve the
performance of our biomedical NER system. Recent
studies [39]-[42] using deep learning techniques have
demonstrated the high performance for sequential label-
ing tasks contain the NER task. In particular, LSTM-CRF
is known as a model with high performance in NER
tasks [43],[44]. It shows good performance in a biomedical
domain as well [45],[46]. Huang et al. [47] showed that bidi-
rectional LSTM-CRF performed well for sequence tagging
tasks such as chunking, named entity recognition system and
part-of-speech tagging. To improve performance, we applied
bidirectional LSTM-CRF [44], a deep learning-based model,
to learn with the final generated corpus. The bidirectional
LSTM-CRF model was not used throughout the bootstrap-
ping process because it is a complex model and it requires
too long training time for learning. Figure 4 shows the
architecture of the bidirectional LSTM-CRF model for our
biomedical NER system. The input layer represents input fea-
tures that consist of word vector representations and one-hot
representation of handcrafted features shown in Table 1.
We utilize a 3.5GB word embedding provided by BioASQ
to convert the input word to a vector representation. The
output layer represents the probability distribution over labels
at time t . The output dimensionality was 31 that is the
number of labels with O tag and the combination of categories
and B or I tags. Our bidirectional LSTM-CRF model has
100-dimensional LSTM cells. We train our NER model by

FIGURE 4. Bidirectional LSTM-CRF for named entity recognition.

using the backpropagation algorithm, updating the weights
on every 30 sentences of training data, and using the early
stopping criteria. The dropout rate for training is 0.5.

3) CORPUS-BASED FEATURE
In this section, we introduce a dictionary and context-based
feature to improve performance of biomedical NER system.
Most of the recognition studies [48],[49] have shown that
the dictionary matching was an important feature to improve
performance of NER. In the biomedical domain, there is a
high-quality of medical dictionary known as UMLS devel-
oped by U.S. National Library of Medicine. This dictio-
nary has a vocabulary database of biomedical concepts, their
semantic types, and relationship, and it has been used for
mapping the contents of a biomedical text to concepts by
MetaMap. Thus we try to construct the corpus-based fea-
tures by using the information of UMLS dictionary from
MetaMap.

Herein, we explain how to extract the corpus-based fea-
tures by the following steps. First, we input the unlabeled
data into a chunker and the results of the chunker are tagged
by MetaMap. When raw sentences are entered into MetaMap
without a chunker, a lot of common entities or verbs are
matched with UMLS vocabularies from MetaMap. That is a
reason why we utilize the results of a chunker, not only use
UMLS vocabularies. The extracted results from this process
are called NE features and this process is similar to the
process of generating the initial corpus. Then the NE features
that have only one semantic group type, no ambiguity, are
listed as entries in the corpus-based feature set. This set is
referred to as the corpus-based NE set (CBNES).

For using the CBNES as a good feature, the noise from
automatic extraction have to be removed. When we observed
the entries of CBNES, we found that the entries, NE fea-
tures, of CBNES with too high or low frequency have high
probabilities to be noise. The noisy NE features because,
in many cases, NE features with too high-frequency common
words are commonwords that are incorrectly extracted byNE
features and ones with too low frequency are a kind of error.
Therefore, we set up the removal percentages as two thresh-
olds to get rid of NE features with too high or low frequencies
from CBNES. To set up the parameters, we conducted close
tests and their results are shown in Figure 5 and 6. Figure 5
illustrates performance changes after getting rid of NE fea-
tures with low frequencies from 1 to 10 and Figure 6 does
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FIGURE 5. Performance changes according to each threshold value that
indicates frequencies of the NE features in CBNES.

FIGURE 6. Performance changes according to removal percentages of the
NE features with top low frequencies in CBNES.

performance changes after getting rid of NE features with the
top few percentages from 0% to 5%. According to results
of these experiments, extracted NE features located higher
than top 1% or with lower than 5 frequencies are removed
from CBNES after all NE features in CBNES are sorted in
decreasing order by their frequencies.

We illustrate an example of how to express the
corpus-based features in the training data through Figure 7.
The first column is the word feature and the second column
is the lemma feature. In the third column, ‘f-B-PHEN’ and
‘f-B-LIVB’ are corpus-based features. It means the entity
‘adverse event’ is included in CBNES and it has ‘PHEN’
label. Since the word ‘injection-site’ has a ‘-’ let-
ter, the special-letter feature ‘f4+’, which is mentioned
in Table 1, is represented as the feature of ‘injection-site.’ The
Final column is the correct answer tag of the word positioned
in the first column.

III. EXPERIMENTS
A. EXPERIMENTAL SETTINGS
In our studies, we used two corpora, a small amount of
manually annotated corpus and a significant amount of unla-
beled data. The manually annotated corpus (MAC) consists
of biomedical questions distributed by BioASQ 2015 and

FIGURE 7. Training data sample.

TABLE 2. Dataset statistics.

TABLE 3. Comparing performances of MetaMap as baseline, the CRF
model trained with MAC training data and initial classifier with initial
training data.

2016 without duplicate questions. The half of the manually
annotated corpus was used as test data and the other half
was used as seed data. A significant amount of unlabeled
data is composed of 7,631 PubMed article abstracts that
were arbitrarily selected. Table 2 shows the statistics of these
corpora.

The evaluation metrics to measure the performance of
biomedical NER system are precision, recall, and F1.
We describe some terminologies for describing our evalua-
tion metrics. ‘Correct’ is the number of the biomedical NEs
that match the correct answer and the count of ‘Correct’ is
measured with the exact matching of the biomedical NEs,
not a single word. ‘Predict’ is the number of biomedical NEs
predicted by the NER system. ‘Answer’ is the number of
golden-standard biomedical NEs that we have to recognize in
the test data. Precision is to measure the quality of predictions
based on that system refers to be positive and precision is
represented as the ratio of the number of predicted NEs
that are correct answers to the number of biomedical NEs
predicted from the proposed NER system like equation (2).
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TABLE 4. Comparing performances of CF usages according to the size of corpus.

TABLE 5. The number of biomedical NEs detected in training data by
bootstrap iterations.

Recall measures how much the proposed model can capture
the actual answers in test data. Recall is calculated as the
number of predicted NEs that is correct answer divided by
the number of real answers in test data like equation (3).
F1-score is defined as equation (4) as the harmonic average
of precision and recall.

Precision =
num of system predictions
num of correct predictions

=
Predict
Correct

(2)

Recall =
num of gold arguments

num of correct predictions
=
Answer
Correct

(3)

F1− score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(4)

B. EXPERIMENTAL RESULTS
1) COMPARING THE INITIAL RESULTS OF THE PROPOSED
METHOD USING A CHUNKER TO METAMAP
In this section, we show an effect of a machine-labeled
corpus. The MetaMap model in Table 3 is a model that
used only MetaMap as a biomedical NER system. In this
model, the sentences of test data are entered to MetaMap
for recognizing the biomedical NEs. The CRF with MAC
model is trained with only a small amount of MAC called
the seed corpus. The initial classifier model was learned with
the training data that consists of the initial machine-labeled
corpus and the seed corpus.

Performance of the MetaMap model is lower than the
CRF with MAC model. In particular, the precision score
of the MetaMap model is much worse than its recall score
because the MetaMap model makes a significant amount of
false-positive errors. That is, the CRF with MAC model does
not extract the common nouns and verbs by learning with
the annotated corpus for biomedical NEs, but the MetaMap
model extracts many common nouns and verbs for them.
In the other hand, the recall score of the CRF with MAC

FIGURE 8. Graphical representation of comparing of MetaMap, CRF with
MAC and initial classifier.

model showed lower performance thanMetaMap because the
small amount of training data cannot cover various training
examples of whole classes such as anatomy, Living Beings,
occupations and so on.

By comparing the initial classifier with the MAC model,
we can verify the impact of a significant amount of
machine-labeled corpus. The initial classifier makes a higher
performance than the CRF with MAC model with 15.34%
increased recall score and F1-score is improved up to 68.04%.
Because the training data for the initial classifier has more
various examples and information by using a significant
amount of training data that can cover UMLS semantic
groups as the NE categories. Although the initial classi-
fier cannot recognize some terms that have the out-of-
vocabulary problem or the ambiguity problem as biomedical
NEs, it showed better performance than MetaMap and the
CRF with MAC model. The F1-score of the initial classifier
is much higher than the MetaMap model at 24.16%. These
results show that a large amount of data was important and the
proposed method of generating initial-machine labeled data
can improve the performance of biomedical NER system.
Figure 8 is a graphical representation of the results corre-
sponding to Table 3.

2) COMPARING THE RESULTS OF CORPUS-BASED
FEATURES ACCORDING TO THE SIZE OF CORPUS
In the previous section, we explained corpus-based features
to reflect the information of UMLS thesaurus. Experimental
results using the corpus-based features without the bootstrap-
ping approach are shown in Table 4. The terms 10MB-CF and
20MB-CF indicate that corpus-based features were extracted
from 10MB and 20MB unlabeled data composed of PubMed
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TABLE 6. Performance change according to bootstrapping approach with corpus-based feature.

TABLE 7. Enhancing performance of biomedical NER system using Bidirectional LSTM-CRF.

articles. As shown in Table 4, corpus-based features from a
larger corpus more contributed to improving the biomedical
NER system.

3) PERFORMANCES OF BIOMEDICAL NER SYSTEM WITH
BOOTSTRAPPING AND CORPUS-BASED FEATURES
Table 5 shows the number of biomedical NEs detected in the
machine-labeled corpus for each iteration of the bootstrap-
ping approach. During the five bootstrap iterations, the num-
ber of detected biomedical NEs were constantly increased,
but the amount of increase was reduced as the bootstrap-
ping iterations progressed. It shows that our bootstrapping
approach changes the O tags to other meaningful tags with
B or I tags and their entities.

Table 6 shows performance changes in the bootstrap-
ping approach according to the number of iteration with
20MB-CF. It experimentally verifies that our biomedical
NER system was improved by overcoming the ambiguity
problem and the out-of-vocabulary problem using our pro-
posed bootstrapping approach. However, performances of
models in the fourth and fifth iterations were lower than
that of the model in the third iteration model. This result
shows that too many bootstrapping steps can decrease perfor-
mance because more wrongly recognized NEs are added to
machine-labeled data. The comparison of the initial classifier
with 20MB-CF and the third iteration model achieved the
best performance can give us evidence for the effect of the

FIGURE 9. Graphical representation of performance changes by the size
of corpus for CF.

bootstrapping method. We improved the F1-score from
69.77% to 71.87% with our bootstrapping method. In addi-
tion, the third iteration model outperformed the baseline of
MetaMap, with 29.99% improvements.

4) ENHANCING PERFORMANCE OF THE BIOMEDICAL NER
SYSTEM WITH DEEP LEARNING
Table 7 shows a comparison of performances of biomedical
NER trained by CRF and bidirectional LSTM-CRF with a
small amount of MAC and automatically machine-labeled
corpus (MLC). As the third bootstrap iteration model
with 20MB-CF showed the best performance in Table 6,
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FIGURE 10. Performance changes according to proposed method.

we considered the training data for this model as MLC that
is regarded as a final automatically generated corpus using
our proposed approach in our following experiments. The
experimental results in this subsection show that, regardless
of the learning classifiers, the performance of the model
learned with the MAC, and MLC data was better than one
of the model learned only MAC. It demonstrates that a sig-
nificant amount of corpus that was automatically generated
by our proposed method is effective to improve the perfor-
mance of biomedical NER system. In particular, deep learn-
ing requires a significant amount of training data because a
huge number of parameters are required to be tuned by a
learning algorithm. Therefore we expect that the proposed
method, which automatically generates a significant amount
of corpus with the bootstrapping approach, can enhance
the performance of other studies using deep learning algo-
rithms. Finally, we increased the F1-score from 71.87% to
75.99% by applying a deep learning algorithm, Bidirectional
LSTM-CRF.

IV. CONCLUSION
In this study, we have proposed an effective biomedical
NER system that can reduce lots of cost for generating
the training data and a problem that a corpus cannot cover
various sub-domains with specific information. By applying
the UMLS semantic groups as categories of biomedical NEs
with MetaMap, we developed a biomedical NER system that
provides various and specific information in 15 categories.
To generate a significant amount of the training data with
a little cost, we proposed the method for automatically and
accurately generating the machine-labeled corpus with the
bootstrapping approach. In addition, we used a corpus-based
feature and bidirectional LSTM-CRF, a deep learning algo-
rithm, to enhance the performance of the biomedical NER.
Finally, the proposed system showed 32.11% better perfor-
mance than MetaMap.

Our proposed method can be useful for many other
domains and tasks as well because our approach can construct
a high-quality machine-labeled corpus with only a small
amount of training data. In particular, generating a significant
amount of data can facilitate deep learning based approaches

because deep learning algorithms require large training data
to achieve high performance in general. In addition, using
MetaMap as an open toolkit, developers can build a biomedi-
cal NER system without any help from experts in biomedical
domains. Unfortunately, our approach does not remove the
wrong labels generated during bootstrapping. Therefore we
have a plan to apply external resources or various approaches
such as lexico-syntactic pattern and bagging as future works.
We expect that these approaches will be able to increase
the performance of biomedical NER system by removing
noises of machine-labeled data, it improves the quality of
machine-labeled data.
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