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ABSTRACT During a high-speed movement, the satellites are connected intermittently, so the queue
length becomes larger and a cache overflow appears. In this paper, the abundant storage resources of the
multilayered satellite network (MLSN) are used to avoid the packet loss caused by a cache overflow of
the Low Earth Orbit (LEO) satellites. However, due to the limited storage space of the Geostationary Earth
Orbit (GEO) satellites, an effective load balance scheme which addresses two problems: LEO satellites
competition in a non-cooperative fashion and content popularity utilization, is needed. Therefore, we propose
a load balancing scheme based on the Stackelberg game, containing Members of a Game Algorithm and
Distributed Cache Price Bargaining Algorithm. In addition, a storage technology based on content popularity
(Popularity Matching Algorithm) is introduced. The numerical results show that the proposed methods are
effective in pricing, cache resource allocation of GEO satellites, and load balancing of LEO satellites.

INDEX TERMS Cache resource allocation, load balancing, Martingale theory, popularity of contents,
Stackelberg game, satellite networks.

I. INTRODUCTION
Satellite network has been becoming a major information
infrastructure with global coverage. Therefore, much atten-
tion has been paid to this field recently, especially, to the mul-
tilayered satellite architectures [1]–[8]. Namely, it is expected
that the multilayered satellite architectures will dominate
in the future satellite networks because the combination of
different satellites layers can obtain much better performance
than these layers separately. In the multilayered satellite net-
works [9], load balancing strategy is designed to detour traffic
from LEO satellites to the GEO satellite [1], [2], [10], [11].
Nishiyama et al. [1] proposed a load balancing scheme by
adopting a traffic distribution model based on the network
capacity estimation and theoretical analysis of the congestion
rate of each layer, where the model was assumed as a square
lattice. However, this model is not general, and it does not
take into account the channel influence. Kawamoto et al. [10]
introduced a model based on the Multilayered Satellite Net-
works (MLSNs) by distributing the packets between the
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two layers to minimize the packet delivery delay, where
the effect of the method on the packet delivery delay was
analyzed by considering propagation and queuing latencies.
However, in the scheme, the access and physical channel
were not considered. Song et al. [2] proposed a traffic-light-
based intelligent routing strategy for the Non-Geostationary
(NGEO) satellite networks, where a set of traffic lights was
used to indicate the congestion status. Especially, the packet
route could be adjusted dynamically according to the real-
time traffic light color. In this scheme, a public waiting queue
could temporarily store packets which were not forwarded.
However, the cache size was limited, which means the public
waiting queue had a size limitation. In [11], an optimal por-
tion of traffic flows of the low layer network is decided based
upon the newly arrived traffic estimate, where the model is
considered as square lattice. However, the analysis does not
take into account the effects of the channel.

In addition, in the multilayered satellite networks, due
to the limited storage resources of the upper-layer satellite,
when many nodes need to upload data, they compete. There-
fore, we assume that the game theory can be used to solve the
resource allocation problem (e.g. [12]–[16]). Accordingly, we
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propose a cache resource allocation method based on the
Stackelberg game consisting of a leader (an GEO satellite)
and multiple followers (LEO satellites), where the storage
resource of the leading GEO satellite must first fulfill its
demand, and then the remaining storage space can be rented
to the LEO satellites. Considering the remaining (surplus)
storage space of the leading GEO satellite as a resource,
the system is optimized so that the nodes congestion can be
alleviated.

The condition for finding the solution to the proposed game
is that the traffic backlog of LEO and GEO satellites has to be
known. However, the information about the backlog change is
difficult to obtain timely, so it is estimated by the Martingale
theory, providing the advantage of transferring the schedul-
ing problem to the time-shifting martingales. F.Ciuiu [17]
proposed a novel representation of a queueing system based
on the martingale-envelope. Particularly, in [18], the backlog
bound was given by abstracting the random access and phys-
ical channel as a service process. In this work, we utilize the
martingale theory to estimate the backlog of LEO and GEO
satellites. With the aim to use storage resources effectively,
the data attribute is analyzed, namely the content popular-
ity. The main contributions of this paper are summarized as
follows:

1) To obtain an effective load balancing in a satellite
network, the backlog of LEO and GEO satellites
is estimated, and the characteristics of a terrestrial-
satellite link are fully considered. To describe the
interference uncertainty, the Gilbert-Elliott model is
adopted. In addition, the fading channel characteristics
are considered. A load balancing scheme based on
the Stackelberg game containing the game members
and the Distributed Cache Price Bargaining Algorithm,
is proposed. The storage technology based on con-
tent popularity (PopularityMatchingAlgorithm) is also
proposed.

2) Since it is difficult to obtain the actual real-time cache
occupancy, it is estimated by the martingale process,
where the terrestrial-satellite link is abstracted as a ser-
vice supermartingale, and the arrival process of satellite
data is considered to be the departure process of a
satellite user after being served by the uplink wire-
less channel according to the network calculus theory.
In our uplink wireless channel model, the Gilbert-
Elliott based channel model and the Slot-ALOHA
random access protocol are fully used.

3) To minimize the congestion of LEO satellites and max-
imize the profit of the GEO satellite, we propose a
Stackelberg game model based on the congestion level
of LEO satellites, where the non-convex problem is
transformed into a convex optimization problem using
a threshold function which is a strictly monotonically-
increasing function of the number of game participants.
In the proposed game, a new profit model is developed
for LEO satellites by assuming the GEO cache space
is a resource. In this way, both the congestion level of

the cache space and the non-cooperative nature of LEO
satellites are taken into consideration.

The remainder of the paper is organized as follows.
Section II introduces the system and channel model and
defines the data arrival and service processes. Section III
proposes a load balancing scheme based on the Stackelberg
game. Section IV presents the simulation results and analysis.
Section V concludes the paper.

II. RELATED WORK
In this section, we mainly summarize some important related
studies, which is are grouped into two categories: terrestrial
wireless caching networks and satellite caching networks.

A. TERRESTRIAL WIRELESS CACHING NETWORKS
Caching the most popular content on a network edge can
reduce the content download delay and consumption of
backhaul link resources. Specifically, the wireless network
edge-caching includes device-to-device (D2D) [19]–[21],
small base station [22], [23], base station [24], and virtual
network [25].

In [19], a method for maximizing the hit rate based on a
truncated Zipf distribution is proposed. In [20], the perfor-
mance of large-scale cache-enabled D2D networks is stud-
ied, and the optimal probabilistic caching strategy of mobile
helpers was investigated based on the content delivery prob-
ability. In [21], a joint transmission and caching strategy was
proposed based on the pre-awareness of user needs. In [26],
to solve the congestion of the backhaul channel, a joint
cache and downlink resource optimization framework was
proposed, where the D2D communication technology was
fully utilized. In [22], based on content popularity, two col-
laborative transport mechanisms were proposed to improve
cache efficiency. In [25], a collaborative optimization scheme
for wireless spectrum resources and content placement was
proposed to minimize the rejection rate of user requirements
in a virtual network environment.

In [23], a commercialized small-cell caching was con-
sidered to provide faster local video transmissions to users.
To simultaneously maximize the profit of network service
providers and video retailers, the Stackelberg game was used
as a model, and the Stackelberg equilibrium was obtained by
solving a non-convex optimization problem. The mechanism
was characterized by the base station as a resource for pricing
and trading. At the same time, In [27], a pricing-based content
placement mechanism was also proposed in named data net-
working to maximize the profit of both service providers and
Internet service providers. Essentially, the cache was traded
as a resource.

B. SATELLITE CACHING NETWORK
The initial Cache-Satellite Distribution Service (CSDS) was
mainly based on proxy services [28], [29], in other words,
communication was performed through ground stations.
In [28], a model for CSDS was proposed to capture the
intricate interaction between the proxy caches, where the
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authors analyzed the business flow properties from the HTTP
log, which was similar to the popular distribution. In [29],
the satellite ground station collected the selected content
information and broadcasted it periodically to the partici-
pating proxies via satellite. At present, content placement is
primarily considered to have an on-board cache [30]–[32].
S. Liu [30] proposed a caching algorithm by optimizing
the content placement based on a many-to-many matching
game in the LEO satellite constellation network. A two-layer
caching model for content delivery was introduced in [31],
where a nonlinear integer programming problem was solved
by the genetic algorithm.

TABLE 1. Summary of notation.

III. SYSTEM MODEL
In this section, we present the system model and introduce
the channel model, arrival process, service process, and Zipf
distribution. The notations used in the following are listed
in Table 1.

The multilayered satellite network is presented in Fig.1,
where it can be seen that in such a network, one GEO

FIGURE 1. An example of caching system for satellite networks.

satellite coversK LEO satellites. TheGEO and LEO satellites
communicate with their ground stations via a terrestrial-
satellite link. The GEO satellite communicates with its asso-
ciated LEO satellites along the inter-satellite links, which are
assumed to be ideal because of the good electromagnetic scat-
tering environment. Furthermore, it is assumed that coverage
areas of the GEO satellites do not overlap.1 Therefore, in the
following, the GEO satellite and its associated (served) K
LEO satellites are considered.

In this work, we assume that each satellite node is equipped
with several storage chips to construct the cache space.
However, the volume of the GEO satellite is much bigger than
that of LEO satellites. Correspondingly, the size of the cache
space of the GEO satellite is much larger than of the LEO
satellites. Thus, the probability of congestion of the LEO
satellites may be much bigger than that of the GEO satellite,
whichmeans that the GEO satellite may have some idle cache
space to place the received content from the LEO satellites.
However, uploading content of the LEO satellites to the GEO
satellite is closely related to the content popularity, space size
of the GEO satellite, and queuingmethod. The storage system
of LEO/GEO is presented in Fig.1, where the right rectangle
represents the cache.

A. CHANNEL MODEL
In order to analyze the content backlog in different layers of
satellites, we introduce the channel models of the uplink and
downlink channels in the following. In the channel models,
the term ‘‘satellite’’ refers to LEO or GEO satellite. Similarly,
the term ‘‘satellite users’’ corresponds to the LEO satellite
users or GEO satellite users, respectively.

1) DOWNLINK WIRELESS CHANNEL MODEL
The signal received through the downlink at the satellite user
side can be expressed as

Ysu =
√
psHsuxsu + n0, (1)

1Since this work mainly analyzes the load balancing of satellite data
streams, we do not consider the overlap of coverage, which is beyond the
scope of our analysis.
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FIGURE 2. Gilbert−Elliott model can be abstracted as a two-state Markov
chain.

where n0 represents the zero-mean additive white Gaussian
noise at the satellite user, ps denotes the satellite transmitting
power, and xsu is the corresponding signal. In addition, Hsu
denotes the channel from the satellite to the ground user side,
and it can be characterized by the Gilbert-Elliott model to
include the interference uncertainty. Explicitly, the evolution
states of the terrestrial-satellite link can be depicted by a two-
state Markov chain model which is shown in Fig.2, where g
denotes the good state; b denotes the bad state, and pgb and
pbg separately represent the transition probabilities from g to
b and from b to g state. The corresponding state transition
matrix can be expressed as

P =
[
1− pgb pgb
pbg 1− pbg

]
. (2)

In ’good’ state, the transmission rate can be expressed as

Rsu = wsu log

(
1+
√
ps||hsu||2

n0

)
, (3)

where wsu is the bandwidth of a satellite-terrestrial link, and
||hsu||2 is the channel coefficient in the good state. Moreover,
the probability density function (pdf) of hsu’s [33], [34] can
be defined by

f||hsu||2 =
1

2bsu

(
2bsumsu

2bsumsu +�

)msu
exp

(
−

x
2bsu

)
.1F1

(
msu; 1;

�x
2bsu(2bsumsu +�)

)
, (4)

where � is the average power of the line-of-sight (LOS)
component, 2bsu is the average power of the multipath com-
ponent, and msu is the Nakagami-m parameter.

2) UPLINK WIRELESS CHANNEL MODEL
The signal received through the satellite uplink can be written
expressed as

Yus =
√
puHusxus + n0, (5)

where n0 represents the zero-mean additive white Gaussian
noise at the satellite user side, pu denotes the transmitting
power of a satellite user, and xus is the corresponding signal.
Generally, the downlink channel works in the orthogonal
mode, while the uplink adopt S-ALOHA network protocol
because of the large propagation delay. Tomeet the challenge,
by using the polarization transmission structure in the satellite

uplink [35]–[39],2 the access is presented by the value of
the indicator function I (T ), where 1 denotes the successful
access, and 0 denotes unsuccessful access.

I (T ) =

{
1, pm(1− pm)N

0, 1− pm(1− pm)N
, (6)

In (6), pm denotes the probability of each satellite user
accessing the channel, and N is the number of users who
to access the channel at the same time. Further, Hus denotes
the channel from the ground user to the satellite and can
be characterized by cascading the random access channel
and Gilbert-Elliott model. Similar to the downlink, the cor-
responding state transition matrix Pus can be written as[
(1− pusgb)pm(1− pm)

N pusgbpm(1− pm)
N

pusbg1− pm(1− pm)
N (1− pusbg)(1− pm(1− pm)

N )

]
(7)

In the good state, the transmission rate can be expressed as

Rus = wus log

(
1+
√
pu||hus||2

n0

)
, (8)

where wus is the bandwidth of a satellite-terrestrial uplink,
and hus is the channel coefficient in the good state.

FIGURE 3. An example of arrival and service of content.

B. ARRIVAL PROCESS AND SERVICE PROCESS
The arrival service model considered in this work is presented
in Fig.3. In this model, λf content arrives in a time slot τ , and
the state of the Gilbert-Elliott channel keeps constant during
a time slot but changes from one slot to another. The amount
of the service content depends on both the fading channel
characteristics in the good state and queuing service rate in
the cache. For notation simplicity, we assume that a time
slot lasts for τ second (τ = 1 means that At (T τ ) = At (T ),
T = 1, 2, . . . ,).

2In the references, the early S-Aloha and the recent satellite network
access protocol are provided. The latest protocols mainly consider how to
improve the access success rate, so our analysis structure can be directly used
without a need for many changes. Therefore, we adopt the S-Aloha protocol.
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In our system, the content arrival process at a satellite node
can be divided into three sub-processes, i.e., data generation
process at a satellite user side, channel access process of a
satellite user, and the Gilbert-Elliott channel service process.
Next, in order to introduce a static prioritized (SP) scheduling
algorithm, we divide the arriving traffic into two types high-
priority arrival Ah(T ) and the low-priority arrives Af (T ) and
At (T ) = Ah(T ) + Af (T ). Therefore, the following can be
derived using the Martingale-Envelope theory.3

Lemma 1: The arrival process At (T ) is a supermartingale,
where the martingale-envelope [17] is defined by

MAt (T ) = hAh (aT )hAf (a
f
T )hsq (sT )

×eθ (A
h(κ,T )−(T−κ)κf+Af (T )−Tkh+Tκs−Sq(T )). (9)

In (9), the part hAh (aT ), hAf (a
f
T ), hsq (sT ) represents a

monotonically increasing function, and κh and κf are the
high-priority and low-priority arrival rates of an LEO/GEO
satellite, respectively, Sq(T ) is queue service process, θ > 0
and κs depends on the queue service rate in the cache.

Proof: Please refer to A section in the appendix.
In the above proof, the arrival process involves the gener-

ation of user data and the satellite channel service process.
According to the idea of system cascading,4 we regard this
arrival process as the arrival process of the satellite cache.
Corollary 1: The equivalent service process S(T ) is a

supermartingale, where the martingale-envelope is defined as
follows

MS (T ) = hS (sT )eθ
∗({S(T )−Tκss}) (10)

where hS (sT ) is a monotonically increasing function, θ∗ > 0
and κss depends on Rsu. Note that κss is the rate at which the
content arrive at the user.

C. ZIPF DISTRIBUTION
A cache of an LEO satellite is capable of storing F dif-
ferent contents, whose popularity follows the Zipf’s law as
[29], [31], [40] which is given by

tf =
1/f s

F∑
i=1

(1/is)

, ∀ f ∈ F , (11)

where f denotes the ranked content according to the descend-
ing order of popularity, s is the coefficient which controls
the popularity distribution of the contents, and 0 ≤ s ≤ 1.
At s = 0, the distribution is uniform, which means that all
the content will be identical regarding the popularity.

Fig.4 shows the popularity varied with different types of
content and different values of the Zipfs factor s. As the Zipfs
factor s increased, the popularity distribution of content got

3refer to F section of the appendix
4Similar to signal and system theory in the circuit analysis, service curves

can be viewed as the impulse response of a linear system. In fact, the output
of a system is the input of the second system in the tandem of the many
system. Therefore, the tandem of the many systems can be substituted by a
single equivalent system S(τ, t) that is composed by min-plus convolution of
the individual service processes.

FIGURE 4. The popular probability of contents vs. the index of content
under different popular parameter s.

skewed according to (11). Therefore, the effectiveness of the
load balancing could be improved by setting a different pop-
ularity parameter s to obtain an effective content selection.

IV. LOADING BALANCE SCHEME BASED
ON STACKELBERG GAME
With the development of the content delivery networks
(CDNs), the cache has stopped being only a small memory,
and it has become feasible to store the time tolerance content
in the cache. In this paper, we aim to make full use of the
cache resources of satellites to balance the content placement.
Specifically, in this section, we estimate the backlog by the
martingale method, which is described in detail in the follow-
ing. In addition, we present also a competition mechanism of
the multiple nodes.

A. BACKLOG ESTIMATION
Since the information about the backlog change is difficult to
obtain timely, we estimate the backlog by using the martin-
galemethod. As it is well known, the content backlog depends
on the data generation rate, transmission rate, and queuing
method. Moreover, the transmission rate is time-varying due
to the performance uncertainty of a wireless channel. Besides,
the general queuing theory can achieve only an average per-
formance for a given queue length, such as an average delay.
However, given a certain probability, we need to focus on
the data backlog. Fortunately, the martingale process can pro-
vide a theoretical basis for the calculation of the probability.
To determine the satellite backlog (GEO or LEO), we firstly
set the delay upper bound based on the data generation rate,
transmission rate, and queuing method.
Theorem 1: The delay upper bound can be expressed as

follows

p(W(T ) > κ) ≤
E(MAt (0))E(MS (0))

H
e−θ

∗

1 κκss , (12)

where H := min{hAt (aT )hS (sT ) : aT − sT > 0},
Ra = min{κs,Rus}, κss > Rsu, Ra < κss and θ∗1 is any
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value satisfying:

θ∗1 ∈

{
θ > 0

∣∣∣∣Raln[sp(Mθ )]
θ

≤
ln[e−θκss ]
−θ

}
(13)

Proof: Please refer to B section of the appendix.

FIGURE 5. Violation probability vs Average delay Based on FIFO (λf = 0.6,
pm = 0.1 and Rsu = 1).

In this section, we compare the Martingale method by sim-
ulations under asymptotic regimes. The simulation parame-
ters were λf = 0.6, pm = 0.1 andRsu = 1. In Fig.5, the y-axis
is presented in logarithm format, and blue box plots show the
simulation results, while black line denotes the delay bound,
where the irregular tail behavior of the box plots is caused
by the restriction of the simulation runs to 106 contents.
As Fig.5 shows that the delay bound p(W(T ) > κ) given
by the Martingale bounds is quite tight. Since the method of
Martingale-envelope can achieve a tight upper bound, we use
this delay bound directly in the backlog estimation.

1) BACKLOG ESTIMATION BASED ON FIFO
The cache analysis is mainly focused on the scheduling algo-
rithms, such as First-In First-Out (FIFO) and Static Prior-
ity (SP). In this subsection, according to the delay analysis,
the cache queue violation probability based on the FIFO
scheduling algorithm can be written as follows: For any
σFIFO,L ≥ 0, the violation probability bound pFIFO,L is as
follows

E(MAt (0))E(MS (0))
H

e−θ
∗

1 σFIFO,L , (14)

where H refers to section B in the appendix and θ∗1 can be
any value satisfying the following condition:

θ∗1 ∈

{
θ > 0

∣∣∣∣Ra ≤ κssln[sp(Mθ )]
θ

}
(15)

This proof is similar to that of Theorem 1, and so it will not
be explained in detail here. Then, we use the backlog as an
estimation of the cache space.

σFIFO,L =
1
θ∗1

ln
E(MAt (0))E(MS (0))

HpFIFO,L
, (16)

2) BACKLOG ESTIMATE BASED ON SP
The SP scheduling policy can assign a specific priority to
every service flow, where Ah(T ) is assumed to have a higher
priority. Similar to the delay analysis, the cache queue QSP,L
violation probability can be defined as follows: for any
σSP,L ≥ 0, where σSP,L is the backlog corresponding to At (T )
in the cache, the following violation probability bound phSP,L
is given by

E(MAf (0))E(MAh (0))E(MS (0))
H

e−θ
∗

2 (σSP,L−σ
a,h
SP,L ), (17)

where σ a,hSP,L is the backlog corresponding to Ah(T ) in the
cache and θ∗ is any value satisfying the following condition:

θ∗2 ∈

{
θ > 0

∣∣∣∣Ra ≤ κssln[sp(Mθ )]
θ

}
(18)

This proof is similar to that of Theorem 1, and so it will not
be elaborated in detail here. The backlog based on the SP can
be expressed as

σSP,L=
1
θ∗2

ln
E(MAf (0))E(MAh (0))E(MS (0))

HpSP,L
− σ

a,h
SP,L (19)

The backlog simulation was conducted using differ-
ent shadowing scenarios for the satellite links, including
heavy shadowing and light shadowing, which are given
in Table 2 [34]. For the sake of simplicity, we let κs > Rus,
and κss > Rsu. The other simulation parameters are given
in Table 2.

TABLE 2. Shadowing values.

Using the FIFO scheduling algorithm, we simulated the
violation probability of the backlog in the LEO satellite
cache. As shown in Fig.6, as the backlog increased, the prob-
ability of violation decreased. Based on the backlog given
by (16), and under the assumption that the upstream channel
scenario was light shadowing, and the same backlog, when
the downlink channel scenario was the heavy shadowing,
the probability of backlog violation was higher compared
with the downlink channel scenario of light shadowing.
In other words, under the heavy shadowing channel condi-
tions, the cache was more likely to accumulate the content.
In addition, using the SP scheduling algorithm, we also sim-
ulated the violation probability of the backlog in the LEO
satellite cache. As presented in 7, as the backlog increased,
the probability of violation decreased, as given by (16). Here,
we give a comparison of two high-priority services with the
arrival rate of Ah(T ) = 1 and Ah(T ) = 0.5T respectively.
In the comparison, the high priority service rate Ah(T ) = 1
was fixed, the probability of violation was paralleled with that
of the service without priority, and when the priority service
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FIGURE 6. Violation probability vs Backlog Estimation Based on FIFO (The
uplink and downlink channel fading models are the light and heavy
shadowing respectively).

FIGURE 7. Violation probability vs Backlog Estimation Based on SP (The
uplink and downlink channel fading models are the light and heavy
shadowing respectively).

rate Ah(T ) = 0.5T was an affine function, the probability of
violation deviated from that of the service without priority.

In Fig.7, the black line is the backlog in the case of a single
type of service arrival, which is the same as the blue line
of Fig.6, that is, the backlog of the SP and the FIFO of the
single type service is the same. Given the same probability
of violation, compared to the FIFO based on two different
types of traffic, the SP backlog is greater. The reason for the
large backlog in the case of SP is that high-priority services
are often served, resulting in a large backlog of low-priority
services.

B. DISTRIBUTED CACHE PRICE BARGAINING
In this section, we consider only the multi-node case, where
the objective of a low layer satellite (LEO satellites) has a
lower congestion probability, as low as possible. In other
words, LEO satellites are expected to upload as much data
as possible to the GEO satellite. However, due to the limited
storage space of an GEO satellite, the LEO satellites compete

for the resources in a non-cooperative fashion. At the GEO
satellite side, the objective is to maximize the revenue by
selling the storage space to the LEO satellites. In the fol-
lowing, the game process is analyzed, and the Stackelberg
equilibrium of the game is investigated.

1) STACKELBERG GAME FORMULATION
The Stackelberg game is a strategy game in the economic
field, where a leader and several followers compete with each
other for given resources. Specifically, the leader moves first,
and then followers move sequentially. In this work, the GEO
satellite is treated as a leader because its storage must satisfy
its requirements first, and only the surplus space, if there
is any, can be rented to the LEO satellites. On the other
side, the LEO satellites want to use the caching resources
of the GEO satellite. Therefore, the LEO satellites are seen
as followers. The GEO satellite imposes a set of prices per
unit of the received data to each LEO satellite. Then, the LEO
satellites (followers) update their cache allocation strategies
tomaximize their individual utilities. The revenue of the GEO
satellite (leader) can be calculated by

RGEO(η, q) =
K∑
k=1

ηLk sLk (qLk ), (20)

where η = [ηL1 , ηL2 , . . . , ηLK ] is a pricing vector, q =
[qL1 , qL2 , . . . , qLK ] is a portion vector of the accumulated
storage for LEO satellites, and sLk (qLk ) = qLkσL is the cache
occupation function of data received from a low layer node k ,
where σL is a backlog of LEO satellite. Due to the limited
surplus space of the GEO satellite, the price vector η can be
optimized by solving the following problem:

Problem 1: max RGEO(η, q)

s.t.
K∑
k=1

s(qLk ) ≤ h(σG(pG)). (21)

Where h(σG) is surplus storage of GEO satellite. Next,
we design a function that reflects the congestion level of the
cache space and the non cooperative nature of the nodes.
Definition 3.1: Congestion Index (CI) is defined by

I (qLk ) = ln

1+
qLkσLk
K∑
j 6=k

qLjσLj

 ,
K∑
j 6=k

qLjσLj 6= 0

∀k, j, qLk > 0, qLj > 0k, j ∈ {1, 2, . . . ,K }

(22)

The above-given definition is rational. In the Shannon for-
mula, the power of other users to the user interference is used
as a denominator. Here, each LEO satellite is expected to
upload the maximized portion of its traffic flow to the GEO
satellite. However, due to limited surplus space of the GEO
satellite, the LEO satellites compete in a non-cooperative
fashion. Therefore, we provide a similar definition.
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Besides, the ratio qLk can reflect the nature of the congestion
degree. Also, a logarithmic function will not change the
relation of a variable, so we will use the logarithm as a
congestion function.

Then, the profit of the low layer nodes can be defined by

RLEO = cf (σLk )I (qLk )− ηLk s(qLk ), (23)

where c is the utility gain per unit congestion index, and
f (σLk ) represents the probability that theGEO satellite prefers
to accept data from Lk , where f (σLk ) ∝ σLk . The assumption
is rational because the GEO satellite prefers to accept data
that will change its storage amount the most. Thus, it wants to
receive as much data as possible from the nodes participating
in the congestion.

The profit of a low layer node (an LEO satellite) consists of
two parts, revenue and cost. If a low layer node increases the
amount of data redirected to the GEO satellite, the congestion
index I (qLk ) increases, and also the revenue.Meanwhile, with
the increase in data amount, the data will consumemore space
on the GEO satellite. Thus, LEO satellites have to buy larger
cache from the GEO satellite, which will enhance the cost.
Therefore, to achieve the maximal profit of an LEO satellite,
the optimal cache allocation scheme of the GEO satellite is
given by solving the following problem:

Problem 2: max RLEO(qLk ,−qLk , ηLk ), (24)

Then, Problem 1 and 2 formulate a Stackelberg game.

2) STACKELBERG EQUILIBRIUM (SE)
For the proposed Stackelberg game, the SE is defined as
follows.
Definition 3.1: Let η∗ and q∗Lk be the solutions for

Problem 1 and Problem 2, respectively. Then, the point
(η∗, q∗) is the SE for the proposed Stackelberg game if the
following conditions are satisfied:

RGEO(η∗, q∗) ≥ (η, q∗), (25)

RLEO(q∗Lk ,−q
∗, η∗) ≥ (qLk ,−q

∗, η∗). (26)

where η � 0 and q � 0. Generally, the SE for the Stackelberg
game can be obtained through finding a perfect Nash Equi-
librium (NE) for its subgame. In our proposed game, LEO
satellites compete in a strictly non-cooperative fashion. Thus,
a non-cooperative subgame for the cache scheduling can be
formulated at the low layer node (LEO satellites) side. For
a non-cooperative game, the NE is defined as an operating
point, at which any player in the game can not improve utility
by changing its strategy unilaterally.
Proposition 1: The SE for the Stackelberg game formulated

by Problems 1 and 2 is expressed as (η∗, q∗), where η∗is given
by (25), and q∗ is given by (26). In a centralized manner,
the proposed game can be implemented as follows.

3) GAME PROBLEM OPTIMIZATION
In the previous section, we analyze the backlog bound, and
give a backlog violation probability pL or pG. In this section,

it is proven that the objective function of Problem 2 is a
concave function of qLk and the constraint is affine. There-
fore, Problem 2 is a convex problem. Since the duality gap
between the problem and its dual optimization problem is
zero, the problem is solvable.

Non-uniform Pricing Scheme: In this part, we solve the
optimization Problem 2 in our game. The Lagrangian can be
written as

F(ηLk , αLk ) = cf (σLk ) ln

1+
qLkσLk
K∑
j6=k

qLjσLj


− σLkηLkqLk − αkqLk . (27)

Lemma 2: For a given ηk , the optimal solution of
Problem 2 is

q∗Lk =
(
cf (σLk )
σLkηLk

− yLk

)+
, ∀k, (28)

where yLk =
K∑
j 6=k

qLjσLj .

Proof: Please refer to section C in the appendix.
Since q∗Lk is an optimal portion in a low layer satellite, q∗Lk is

larger than zero. When ηLk ≥
cf (σLk )
σLk yLk

, the data will not be
uploaded. This indicates that node Lk will be removed from
the game.

Substituting the optimal q∗Lk into (21), we can rewrite
Problem 1 as

Problem 3: max
K∑
k=1

(
cf (σLk )− σLkηLk yLk

)+ (29)

s.t.
K∑
k=1

(
cf (σLk )
ηLk

− σLk yLk

)+
≤ h(σG).

(30)

Note that the above problem is a non-convex problem.
Then, we assume that all nodes participate in the game so that
Problem 3 will be transferred into a convex problem without
the limit of the indicator. Then we can simplify Problem 3

Problem 4: max
K∑
k=1

(
cf (σLk )− σLkηLk yLk

)
(31)

s.t.
K∑
k=1

(
cf (σLk )
ηLk

− σLk yLk

)
≤ h(σG).

(32)

Theorem 2: The optimal solution for Problem 4 can be
expressed as η∗ = [η∗L1 , η

∗
L2
, ..., η∗LK ], where

η∗Lk =

√
f (σLk )
yLk

c
K∑
k=1

√
f (σLk )yLk(

h(σG)+
K∑
k=1

σLk yLk

) , ∀k. (33)

Proof: Please refer to section D in the appendix.
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In the following, we discuss the constraints on h(σG). For
ηLk ≥

cf (σLk )
σLk yLk

, node Lk will not upload the data.

Theorem 3: We can obtain the minimum value of h(σG)
with K nodes participating the game. Mathematically, it is
expressed by

h(σG)min =
√

yLk
σLk f (σLk )

K∑
k=1

√
f (σLk )yLk −

K∑
k=1

σLk yLk ,

(34)

Proof: Please refer to section E in the appendix.
Theorem 4: For v1 > v2 and xv1 > xv2 ,

xLK =
√

yLK
σLK f (σLK )

K∑
k=1

√
f (σLk )yLk−

K∑
k=1

σLk yLk . (35)

The above function is a strictly monotonically increasing
function with respect to K .

Proof: Please refer to section F in the appendix.
According to above-presented results, the optimal solution

of Problem 2 is given by the following theorem.
Theorem 5:Assuming that all preferences of LEO satellites

are sorted in the following order
√

f (σL1 )
yL1

>

√
f (σL2 )
yL2

> . . . >√
f (σLK )
yLK

, the optimal solution of Problem 3 is as follows:

where ZLK =
c

K∑
k=1

√
f (σLK )yLk

(h(σG)+
K∑
k=1

σLk yLk )
.

Proof: If h(σG) > xLK , we can obtain the optimal η∗

with Theorem 2. For ∀k , if xLK−1 < h(σG) < xLK , we can
obtain the corresponding η∗.
Actually, the results given by (36), as shown at the bottom

of this page, are reasonable because the less the surplus cache
resources of the GEO satellite is, the fewer nodes can partici-
pate in the game. Then, the Stackelberg game for non-uniform
pricing is completely solved. The SE of the Stackelberg game
is then given as follows.

First, the GEO satellite initializes the cache price η. Next,
the GEO satellite collects information such as fLk (σL) and
each LEO satellite computes its optimal fractional q∗Lk of
space occupation q∗Lk of the LEO satellite based on the
received η which is defined by (36). Then, this information is

Algorithm 1 Members of a Game
1: input:

surplus space h(σG) based on violation probability pG;
2: TheGEO satellite initializes the cache price η, and broad-

casts surplus space h(σG) based on violation probability
pG to all LEO satellites.

3: Count f (σL) based violation probability pL .
(f (σL) = [f1(σL), f2(σL), . . . , fK (σL)]), collect q (q =
[qL1 , qL2 , . . . , qLU ]) .

4: Set U = K , sort the U users according to
√

fL1 (σL )
yL1

>√
fL2 (σL )
yL2

> . . . >

√
fLU (σL )
yLU

.

5: Calculate xLU , where

xLU =

(√
yLU

σL fLU (σL)

U∑
k=1

√
fLU (σL)yLk −

U∑
k=1

yLk

)

6: Comparing the xLU with
√

fLU (σL )
yLU

, if xLU < h(σG)

remove user N from the game, set U = U − 1, and go to
step 3. Otherwise, go to step 6.

7: With ZLU and L, the cache price fLk (σL) for
the LEO satellite node k is given by η∗ =ZLk

√
yLk

fLk (σL)
, if , k ≤ K

∞, otherwise
8: output: U users (Members of a Game);

uploaded through the backhaul link. Further, the GEO satel-
lite computes the threshold vector x = [xLk , xLk−1 , . . . , xL1 ]
by Theorem 4. Then, for a given surplus space h(σG) of the
GEO satellite, the number of LEO satellites participating in
the game is computed by the Members of the Game algo-
rithm described in Algorithm 1. After that, according to the
obtained threshold vector x, the GEO satellite decides the
fractional capacity price for each LEO satellite based on its
surplus space h(σG). Then, the prices are fed back to the LEO
satellites through the backhaul links between the GEO and
LEO satellites. Finally, the LEO satellites decide the amount
of data which will be uploaded to the GEO satellite according
to (51). This process is described in detail in Algorithm 2.

η∗ =



ZLK

[√
f (σL1 )
yL1

,

√
f (σL2 )
yL2

, . . . ,

√
f (σLK )
yLK

]
, h(σG) > xLK

ZLK−1

[√
f (σL1 )
yL1

,

√
f (σL2 )
yL2

, . . . ,

√
f (σLK )
yLK−1

]
, xLK−1 < h(σG) < xLK

...

ZL2

[√
f (σL1 )
yL1

,

√
f (σL2 )
yL2

]
, xL2 < h(σG) < xL3 ,

(36)
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Algorithm 2 Distributed Cache Price Bargaining
1: input: U users (Members of a Game);
2: TheGEO satellite initializes the cache price η, and broad-

casts η to all LEO satellites.
3: Each LEO satellite computes its optimal amount of data
q∗Lk based on the received η by (36), and uploads with q

∗
Lk .

4: The GEO satellite calculates the total received data∑K
k=1 qLk , and updates the price η based on

∑K
k=1 qLk .

Assume that ζ is a small positive constant that controls
the algorithm accuracy. Then,

5: if
∑K

k=1 qLk > h(σG)+ ζ then
6: The GEO satellite increases the cache price by 1η;
7: else
8: The GEO decreases the cache price by 1η, where

1η > 0 is a small step size.
9: end if
10: After that, the GEO satellite broadcasts the new cache

price to all LEO satellites.
11: Step 2 and Step 3 are repeated until |

∑K
k=1 qLk −

h(σG)| < ζ .
12: output: (η∗, q∗);

Uniform Pricing Scheme: In this part, we consider a uni-
form scheme. The GEO satellite sets a uniform price for
all the LEO satellites. In this case, similar to Lemma 2,
the optimal solution of the problem is given by

q∗Lk =
(
cf (σLk )
σLkη

− yLk

)+
, ∀k, (37)

Then, the optimization problem can be simplified to

Problem 5: max
K∑
k=1

(
cf (σLk )− σLkηyLk

)+ (38)

s.t.
K∑
k=1

(
cf (σLk )
η
− σLk yLk

)+
≤ h(σG).

(39)
Similar to problem 3, we obtain the price as follows:
Lemma 3: The optimal solution of Problem 5 can be

expressed as η∗ = [η∗L1 , η
∗
L2
, ..., η∗LK ], where

η∗Lk =

c
k∑
j=1

f (σLj )

k∑
j=1
σLjyLj + h(σG)

, ∀j. (40)

Proof: The proof is similar to theorem Theorem 2.
Theorem 6: The optimal solution to Problem 5 is given as

follows:

η∗ =


η̃LK , if , h(σG) > x̃LK
η̃LK−1 , if , x̃LK−1 < h(σG) < x̃LK
...

η̃L1 , if , x̃L1 < h(σG) < x̃L2

(41)

where, η̃Lk =
c

K∑
k=1

f (σLK )

K∑
k=1

σLk yLk+h(σG)
and x̃LK =


K∑
k=1

yLk σLK−
K∑
k=1

yLk

K∑
k=1

yLk σLk

.

A detailed proof is omitted because it is similar to that of
Theorem 5.

For a given h(σG), it is easy to note that the optimal price is
unique. Thus, we can obtain SE for the Stackelberg game. It is
clear that the uniform pricing scheme is inferior to the non-
uniform pricing scheme in terms of maximizing the revenue
of the GEO satellite.

C. CONTENT UPLOADING BASED ON POPULARITY
To utilize the storage space of the GEO satellite effectively,
we sort the popularity of the LEO satellites contents using
the Popularity Matching Algorithm and upload unpopular
content to the GEO satellite. Note that in this algorithm the
caching cost is inversely proportional to the content popu-
larity, so unpopular content will be uploaded to the GEO
satellite. Specifically, in the first stage, the GEO satellite
broadcasts the information on its surplus storage space h(σG)
and the standard caching size Cb to all the LEO satellites.
In the second stage, the LEO satellites strictly compete
in a non-cooperative fashion. Besides, Algorithm 2 intro-
duces the Distributed Cache Price Bargaining Algorithm, and
Algorithm 1 introduces theMembers of the GameAlgorithm.
Based on the optimal result, content can be sorted regarding
tf based on the popularity ((t1 < t2 < ... < tF )), where
tf is the f th content of the LEO satellite, and these contents
are matched to Cb according to the popularity in ascending
order. In the third stage, the LEO satellite is connected to
the GEO satellite so that its contents can be upload to the
GEO satellite. In order to show the relationship between
the three algorithms presented in this paper more clearly,
we present the flow chart in Fig. 8. In the initialization phase,
first an error calculation accuracy value ζ is given, and then
Algorithm 1 is implemented. If |

∑K
k=1 qLk − h(σG)| < ζ

is satisfied, then Algorithm 3 is implemented; otherwise,
Algorithm 2 is implemented.

Algorithm 1 gives the number of members participating
in the game. The algorithm is correct and the effectiveness
depends on the accuracy of the threshold xLK which is ana-
lyzed in the second subsection. The other is Distributed Cache
Price Bargaining, where Algorithm 2 is correct because of the
existence of the optimization results, and the effectiveness of
which depends on the accuracy of the pricing error ζ .

V. NUMERICAL RESULTS AND THE ANALYSIS
In this section, several numerical simulations are provided
to validate the performance of the load balancing strategies
based on content popularity. In the simulations, we used the
STK (Satellite Tool Kit) tool to generate an Iridium-like con-
stellation, as shown in Fig.10. This constellation contained
66 LEO satellites evenly distributed over six orbital planes.
At the same time, we added three GEO satellites to this
scene. In the STK coverage analysis, six LEO satellites were
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Algorithm 3 Popularity Matching Algorithm
1: input: q∗;
2: The GEO satellite broadcasts the standard caching size
Cb and surplus storage space h(σG) based on violation
probability pGto LEO satellites.

3: A congestion LEO satellite sort in tf with popularity
(t1 < t2 < ... < tF ).

4: Transforming contents into equal-sized Cb. That is, let
contents with popularity (t1 < t2 < ... < tF ) match
caching size Cb.

5: The LEO satellite is connected to the GEO satellite for
uploading these matching content.

6: output: (t1 < t2 < ... < tf );

FIGURE 8. Relationship flow chart between the three algorithms.

covered by a GEO satellite (satellite111) for a long time.
Next, we analyzed the simulation results based on these seven
satellites, as shown in Fig.10.

Fig.11 shows that the price difference decreased with the
increase in h(σG) which was consistent with (36); namely,
as given by (36), the factor ηk decreases with the increase
in h(σG). Fig.11, it can be observed that, at a given h(σG),
the price of node L3 was the lowest, while that of node L1 was
the highest. Therefore, we assumed that fL1 (σL) > fL2 (σL) >
fL3 (σL), where fL1 (σL) was a larger preference for L1.
We set the parameter s of Zipf to 0.1, 0.8 just to better

reflect the influence of parameters on the number of mem-
bers participating in the game. As we can see from Fig.5,
the larger the s parameter, the steeper the distribution curve,
and the better the discrimination of the popularity of the
content. Therefore, we set the parameter s to two numbers

FIGURE 9. 3D graphic based on STK (An Iridium-like LEO satellite
constellation and three GEO satellites).

FIGURE 10. Coverage for satellite111 report.

FIGURE 11. Uploading price vs. the surplus storage space h(σG) of the
GEO satellite.

with a large span. Fig.12 shows the number of participants in
the game versus h(σG) at two value for s, s = 0.1 and s = 0.8.
In Fig.12, it is shown that more LEO satellites were able to
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FIGURE 12. Number of participants vs. the surplus storage space h(σG) of
the GEO satellite ( s = 0.1,0.8).

participate in the game at a larger h(σG). Again, the non-
uniform price outperformed the uniform price because of
the capability to accommodate more LEO satellites for a
given h(σG). By comparing the scenarios at f (σL) = 0.1 and
f (σL) = 0.8, we found that for a given h(σG), at f (σL) = 0.1
more LEO satellites were accommodated in the game than at
f (σL) = 0.8. Therefore, we assumed that distribution of the
backlog uniformity was the Zipf distribution. At f (σL) = 0.1,
the distribution was nearly uniform, while at f (σL) = 0.8,
the nodes making the congestion more easily were dominant
in the network.

FIGURE 13. Loss packet ratio vs Individual data transmission rate.

With the aim to profoundly analyze the load balancing
performance of the proposed method, we compared it with
the shortest path routing protocol (DSR) and the TOTD
(we referred to the method proposed in [1] as TOTD) bal-
ance mechanism regarding the packet loss rate. As shown
in Fig.13, the DSR had the highest packet loss rate, followed
by the TOTD, and the proposed method had the lowest
packet loss rate. The reason for such results was that DSR
caused the node traffic to be unbalanced. This phenomenon
is particularly prominent in the lattice topology [41] because
congestion node cannot upload traffic to another node under

the DSR mode. In Fig.13, the results of the TOTD method
which considered uploading traffic to the upper nodes are
presented. However, the proportion of the upload depended
mainly on the optimal threshold which largely depended on
channel conditions. However, the TOTD considered only the
propagation delay influence. As presented in Fig.13, the pro-
posed method significantly reduced the packet loss rate, and
the method based on the Stackelberg game promoted the load
balance of low layer satellite (LEO satellite) services under
the premise of ensuring the use of high layer satellite (GEO
satellite) cache.

VI. CONCLUSION
In this paper, we focus on the problem of load balancing
in multi-layers satellite network. In addition, to resolve the
competition of LEO satellites in a non-cooperative fashion,
we first estimate the backlog of the LEO and GEO satellites
to identify the congestion state of the LEO satellites and
the surplus storage space of the GEO satellite. Based on the
backlog estimation, a non-cooperative cache resource alloca-
tion problem is formed because the low layer node (the LEO
satellite) is subject to the maximum tolerable surplus storage
space constraint at the GEO satellite. We formulate the Stack-
elberg game model, which contains a new profit model of
LEO satellites, to maximize the profit of both GEO and LEO
satellites jointly. A non-convex problem is converted to a
convex optimization problem by using the threshold function,
and the Stackelberg equilibrium is achieved. The threshold
function is strictly monotonically increasing with the num-
ber of participants in the game. Finally, several numerical
simulations are conducted to evaluate the performance of the
proposed method regarding the number of participant in the
game depending on the storage space of the GEO satellite.

APPENDIX A
PROOF OF LEMMA1
The arrival process At (T ) is a supermartingale, where g(YT τ )
can be written as

g(YT (τ )) =

{
I (T )Rus, good
0, bad

(42)

Proof: Before the proceeding, the transition matrix M
for xN is defined by

Mi,j = P(YT+1 = j|YT = i). (43)

Correspondingly, the exponential transformation along the
columns of the matrix Mi,j [18] can be expressed as

Mθ
i,j =Mi,jeθg(Yj). (44)

The channel service process can be expressed as

E
[
eθ
(
At (T + 1)− g(Y (T + 1))

) ∣∣∣Y1,Y2, · · · ,YT ]
≤ eθ(A

t (T )−RusT)E
[
eθYT+1

∣∣∣YT ]
≤ eθ(A

t (T )−RusT)e−θpm(1−pm)
NRussp

(
Mθ

)
≤ eθ(A

t (T )−RusT), (45)
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where sp(Mθ ) is Mθ
i,j which is the spectral radius, and the

inequality is workable in e−θRuspm(1−pm)
N
sp
(
Mθ

)
≥ 1 case.

In this work, we assume the high-priority arrivalAh(T ), and
low-priority arrives at Af (T ). Then, the martingale envelope
can be defined by

MAt (T ) = hAh (aT )hAf (a
f
T )hsq (sT )

×eθ (A
h(κ,T )−(T−κ)κf+Af (T )−Tkh+Tκs−Sq(T )),

where hAh (aT ), hAf (a
f
T ), hsq (sT ) are monotonically increas-

ing functions, and κh and κf are the high-priority arrival and
low-priority arrival rates of the LEO/GEO satellite, respec-
tively, Sq(T ) is the queue service process, θ∗ > 0 and κs
depends on the queue service rate.

APPENDIX B
PROOF THEOREM1
According to the definition of the martingale envelope given
by (63), we consider the arrival supermartingale envelope
MAt (T ) and service supermartingale envelope Ms(T ) are
respectively expressed by

MAt (T ) = hAt (a
f
T )e

θ∗({(At (T ,κ)−(T−κ)Ra)})

MS (T ) = hS (sT )eθ
∗({(S(T )−nκss)})

In this work, we assume that random processes of arrivals
and services are independent. Thus, a process M (T ) is also
a supermartingale in the time domain V := κ, κ + 1, . . .,
which is given by

M (T ) = hAt (a
t
T )hS (sT )e

θ∗({(Af (T ,κ)−(T−κ)Ra)})

.eθ
∗({(S(T )−Tκss)}) (46)

Therefore, by the optional stopping theorem applied to the
stopping time, the process can be written as

E[M (0)] = E[M (κ ∧ T )]

≥ E[M (κ ∧ T )|{κ ≤ T }]

≥ E[hAt (a
t
T )hS (sT )]

E[eθ
∗((At (T ,κ)−(T−κ)Ra−S(T )+Tκss))]p(κ ≤ T )

≥ Heθ
∗κκssp(κ ≤ T ), (47)

where, H := min{hAt (aT )hS (sT ) : aT − sT > 0}

p(W(T )>κ) = p(At(0,T − k) ≥ D(T ))

≤ p(At (T , κ) ≥ min
0≤m≤T

{At (m)+ S(m,T )})

≤ p(At (T , κ)− min
0≤m≤T

{At (m)+ S(m,T )} ≥ 0)

≤ p(max
T≥κ
{At (T , κ)− (T − κ)κss

+TRa − S(T )} ≥ κκss)

≤
E(MAt (0))E(MS (0))

H
e−θ

∗κκss

APPENDIX C
PROOF LEMMA2
The optimal portion q∗Lk for node k can be achieved by
deriving F(η,α) with respect to qLk and solving the Karush-
Kuhn-Tucher (KKT) conditions given by: ∂(F(η,α))

∂qLk
= 0,

αLk ≥ 0, qLk > 0.
By applying the Lagrangian multipliers to the objective

function, we get

F(ηLk , αLk ) = cf (σLk ) ln

1+
qLkσLk
K∑
j 6=k

qLjσLj


− σLkηLkqLk − αkqLk . (48)

To solve problem3.2, let ∂(F(η,α))
∂qLk

= 0,

cσLk f (σLk )
K∑
j 6=k

qLjσLj

1+
qLk σLk
K∑
j 6=k

qLjσLj

− σLkηLk − αk = 0 (49)

Since αkqLk = 0, qLk > 0, therefore, αk = 0. Setting αk
equal to be 0 yields to

cσLk f (σLk )
K∑
j6=k

qLjσLj

1+
qLk σLk
K∑
j6=k

qLjσLj

− σLkηLk = 0 (50)

Then it follows that

q∗Lk =
(
cf (σLk )
σLkηLk

− yLk

)+
, ∀k,

where yLk =
K∑
j 6=k

qLjσLj .

APPENDIX D
PROOF THEOREM2
By applying the Lagrangian multipliers to the objective func-
tion, we get

L(η, α, γ )

=

K∑
k=1

(
ηLk yLkσLk − cf (σLk )

)
+α

[
K∑
k=1

(
cf (σLk )
ηLk

− σLk yLk

)
− h(σG)

]

−

K∑
k=1

γLkηLk . (51)

Then, the KKT conditions can be written as follows:

∂L(η, α, γ )
∂ηLk

=0 ∀k, (52)
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α

[
K∑
k=1

(
cf (σLk )
ηLk

− σLk yLk

)
− h(σG)

]
= 0, (53)

α ≥ 0, γLk ≥ 0, ηLk > 0, γLkηLk = 0, ∀k,

(54)
K∑
k=1

(
cf (σLk )
ηLk

− σLk yLk

)
− h(σG) ≤ 0. (55)

Following (52), we have ∂L(η,α,γ )
∂ηk

= σLk yLk −
cαf (σLk )

η2Lk

− γLk .

Since γLkηLk = 0, ηLk > 0, therefore, γLk = 0. Setting (52)
equal to be 0 yields to

η∗Lk =

√
cαf (σLk )
σLk yLk

. (56)

Supposing that
K∑
k=1

(
cf (σLk )
ηLk
− σLk yLk

)
− h(σG) 6= 0, based

on (53), we have α = 0 . Then, ηLk = 0,∀k accord-
ing to (56), which contradicts to ηLk > 0,∀k . Hence the
aforementioned preassumption does not hold. Thus, we have
K∑
k=1

(
cf (σLk )
ηLk
− σLk yLk

)
− h(σG) = 0. By substituting (56)

into (53), we get

√
α =

√
c

K∑
k=1

√
f (σLk )yLk

h(σG)+
K∑
k=1

σLk yLk

, ∀k. (57)

Then it follows that

η∗Lk =

√
f (σLk )
yLk

c
K∑
k=1

√
f (σLk )yLk(

h(σG)+
K∑
k=1

σLk yLk

) , ∀k.
This completes the proof.

APPENDIX E
PROOF THEOREM3
According to ηLk ≤

cf (σLk )
σLk yLk

, a low layer satellite k can upload
its traffic to the GEO satellite. The condition can be written
as the follows:

√
f (σLk )
yLk

c
K∑
k=1

√
f (σLk )yLk(

h(σG)+
K∑
k=1

σLk yLk

) ≤ cf (σLk )
σLk yLk

. (58)

In addition, (58) can be expressed as follows:

h(σG) ≥
(√ yLk

σLk f (σLk )

K∑
k=1

√
f (σLk )yLk −

K∑
k=1

σLk yLk

)
,

∀k. (59)

Then we can determine the minimum value of h(σG) when
K ’ nodes participate in the game. Mathematically, this can be

written as follows:

h(σG)min =
√

yLK
σLK f (σLK )

K∑
k=1

√
f (σLk )yLk −

K∑
k=1

σLk yLk ,

where
f (σLk )
σLk yLk

can be sorted in
f (σL1 )
σL1yL1

>
f (σL2 )
σL2yL2

> . . . >

f (σLk )
σLK yLK

.

This completes the proof.

APPENDIX F
PROOF THEOREM4
Consider v1, v2 = 1, 2, . . . ,K and v1 = v2+1. Then, we can
prove xLv1 > xLv2 . We have

xLv1 =

√
yLv1

σLv1
f (σLv1 )

v1∑
k=1

√
f (σLv1 )yLk −

v1∑
k=1

σLk yLk

=

√
yLv2

σLv2
f (σLv2 )

v2∑
k=1

√
f (σLk )yLk −

v2∑
k=1

σLk yLk

+

√
yv1

σLv1
f (σLv1 )

v1∑
j=v2+1

√
f (σLj )yj

−

v1∑
k=1

σLv1
yk +

v2∑
k=1

σLv2
yk

>

√
yLv2

σLv2
f (σLv2 )

v2∑
k=1

√
f (σLk )yLk −

v2∑
k=1

σLk yLk

>

√
yLv2

σLv2
f (σLv2 )

v2∑
k=1

√
f (σLk )yLk −

v2∑
k=1

σLk yLk

> xLv2 .

This completes the proof.

APPENDIX G
MARTINGALE
The Martingales form an extremely useful class of random
processes which appear in many fields (e.g., finance, machine
learning, information theory, etc.). Consider a sequence of
random variables X0,X1,X2, · · · ,Xn. The sequence {Xi} is
called a discrete-time martingale if it satisfies the following
condition:

E(Xi+1|X1,X2, · · · ,Xi) = Xi. (60)

For any i, it holds that

E(Xi) = E[E[Xi|X1,X2, · · · ,Xi−1]]

= E[Xi−1] = · · · = E[X1]. (61)

The sequence {Xi} is called a discrete-time supermartingale
if it satisfies the following condition:

E[Xi|X1,X2, · · · ,Xi−1] ≤ Xi−1. (62)

Stopping time of concept: Define a non-negative, integer-
valued random variable T as a stopping time of a sequence
{Zn, n > 0}, if the event T = n such that it depends only
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on the value of random variables Z1,Z2, · · · , · · · Zn. For
instance, consider a set of the system with n nodes sharing
the cache, the traffic arrival at the system between times 0
and t is denoted by A(t) =

∑i=n
i=1 Ai(t) and the departure from

the system is denoted by D(t) =
∑j=m

j=1 Dj(t).

We define the stopping time N as the first time when
the queue length Q in the cache exceeds q. The Martingale-
Envelope [17] is defined as follows: For p ≥ 0 and mono-
tonically increasing functions h1, h2, · · · , hp : R+ → R+
and θ > 0, it is said that the flow A admits a (5h, θ, c)-
Martingale-Envelope for every m ≥ 0. The process is
given by

5
(
h
−→
(an)eθ (A

r (m,n)−(n−m)c)
)
≤ Mm(n), (63)

Also, it is almost surely bounded by a supermartingaleMm(n).
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