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ABSTRACT An intelligent cache replacement policy suitable for picture archiving and communication
systems (PACS) was proposed in this work. By combining the logistic regression (LR) algorithm with
the classic least recently used (LRU) cache replacement policy, we have created a new intelligent cache
replacement policy called LR-LRU. The LR-LRU policy is unlike conventional cache replacement policies,
which are solely dependent on the intrinsic properties of the cached items. Our PACS-oriented LR-
LRU algorithm identifies the variables that affect file access probabilities by mining medical data. The
LR algorithm is then used to model the future access probabilities of the cached items, thus improving
cache performance. In addition, `1-regularization was used to reduce the absolute values of the variables’
coefficients. This screens some variables that have little influence on the model by causing their coefficients
to approach zero, which achieves the effect of screening the variables. Finally, a simulation experiment
was performed using the trace-driven simulation method. It was shown that the `1-regularized LR model
is superior to the LR and `2-regularized LR models. The LR-LRU cache algorithm significantly improves
PACS cache performance when compared to conventional cache replacement policies, such as LRU, LFU,
SIZE, GDF, and GDSF.

INDEX TERMS PACS, cache replacement policy, logistic regression, hybrid storage, LRU.

I. INTRODUCTION
The picture archiving and communication system (PACS) is
a computer system that was specifically designed to process,
store, and transmit medical images. In a PACS, the image
data acquired by medical imaging techniques, such as com-
puted tomography (CT), computed radiography (CR), digital
subtraction angiography (DSA), magnetic resonance imag-
ing (MRI), digital gastrointestinal imaging, ultrasound, and
endoscopy, are digitalized by a secure network and then
transmitted to a server for classification and storage. The
data being handled by PACSs is growing rapidly in volume.
For example, the PACS data volumes of the Yancheng 1st
People’s Hospital are growing by over 20% per annum. This
incredible rate of growth poses a massive challenge for data
storage systems. Although data storage systems are becoming
faster, larger, and cheaper, neither hard disk drive (HDD) nor
solid-state drive (SSD) storage systems are able to satisfy the
requirements of PACS data storage, due to the inherent limi-

The associate editor coordinating the review of this manuscript and
approving it for publication was Jun Wu.

tations of SSD and HDD technologies. To solve this problem,
HDD and SSD storage systems have been combined to form
hybrid storage systems, which fully leverage the advantages
of both technologies [1]–[3].

A hybrid data storage system combines storage media
with contrasting features, so that each data request will be
handled by the optimal storage media for the given data
access characteristics and system load, thus enhancing over-
all system performance. In most cases, SSDs are used as
cache memory for HDDs. This configuration exploits the
speed advantage of SSDs while retaining the storage capacity
advantage of HDDs, thus creating a fast and high-capacity
storage space. However, the storage space of SSD caches
is relatively limited due to the high cost of SSDs; a cache
replacement policy is therefore necessary to manage hybrid
storage systems [1]–[7].

Conventional cache replacement policies tend to perform
poorly in PACSs. That is because these policies only focus
on one specific factor (e.g., filesize, last access time, access
frequency, and so on). References [1]–[5] proposed the use of
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machine learning techniques to improve conventional cache
replacement policies. In most of these studies, a machine
learning algorithm (e.g., artificial neural networks (ANNs),
support vector machines (SVMs), and the C4.5 decision tree
algorithm) was combined with a conventional cache replace-
ment policy to predict the future access probabilities of the
cached items, thus forming an intelligent cache replacement
policy that improves cache performance. These policies gen-
erally consider the intrinsic factors of the cached items, but
overlook the characteristics of real-world entities. Conse-
quently, the performance of intelligent cache replacement
policies in PACSs still leaves something to be desired.

The treatment of a patient tends to generate large amounts
of medical data, which are stored in various medical
databases, e.g., health information system (HIS), radiol-
ogy information system (RIS), and electronic health record
(EMR) databases. A variety of variables can be obtained by
mining these data. Some interesting insights were obtained
by analyzing these variables:

• If the imaging process has yet to be completed, the
corresponding image data will be accessed repeatedly.

• The image data of inpatients is much more likely to be
accessed than that of outpatients.

• Images that led to positive diagnoses are much more
likely to be accessed than images that led to negative
diagnoses.

• Doctors vary significantly from one to another in their
probability of viewing medical images.

• The image data of surgery patients and critically-
ill patients have a much higher probability of being
accessed than that of ordinary patients.

In our method, medical data is mined to identify the
patients who correspond to the PACS’s cached items.
A machine learning algorithm is then used to construct a
predictive model that is based on the variability of the treat-
ment process. This model is then used to predict the future
access probability of each cached item, thus improving cache
performance.

The remainder of this paper is organized as follows: hybrid
storage architectures, cache replacement policies, and the
`1-regularized logistic regression (LR) algorithm are
described in Section II. Section III describes the framework
and algorithm of the LR-LRU policy. Section IV describes the
procedures for variable extraction, data acquisition, and data
preprocessing. Section V shows how the `1-regularized LR
algorithm is used to construct a predictive model. Section VI
evaluates the performance of classifier models and the
LR-LRU policy. Section VII provides the conclusion of this
paper and suggests future directions for research.

II. MATERIALS AND METHODS
A. ARCHITECTURE OF HYBRID STORAGE SYSTEMS
PACSs often use hybrid storage systems that combine SSDs
and HDDs [6]–[8]. Hybrid storage systems are generally
configured in one of two basic architectures. In the first

FIGURE 1. Hybrid storage architecture where the SSD is used as cache
memory for the HDD.

FIGURE 2. Tiered SSD-HDD architecture.

architecture, the SSD is used as cache memory for the HDD,
and the logical addresses of the hybrid storage system cor-
respond one-to-one to physical addresses in the HDD. The
SSD only caches ‘‘hot’’ data, and the total capacity of the
HDD is the total capacity of the hybrid storage system.
A schematic of this architecture is shown in Figure. 1. When
an access request occurs, the system will first search the
SSD. If a ‘‘cache hit’’ occurs, the file will be read from the
SSD. Otherwise, the data will be transferred from the HDD
to the SSD before being read. If the SSD is already full,
some of the cached data will be replaced according to the
cache replacement policy. This architecture is suitable for file
storage systems. Since a PACS mainly stores image files, this
architecture is very suitable for PACSs.

In the second architecture, the SSD is used as an extension
of the HDD and addressed in unison with the HDD. The
total capacity of the hybrid storage system is therefore the
sum of SSD and HDD capacities [6]–[8]. This hybrid storage
architecture is illustrated in Figure. 2. This architecture is best
suited for database storage systems. A page is either placed
on the SSD or HDD, depending on the workload; the page
may also be migrated between the SSD and HDD according
to its migration cost. Read-intensive pages are placed on the
SSD, while write-intensive and frequently updated pages are
placed on the HDD, thus making full use of the contrasting
strengths of SSDs and HDDs.

B. CACHE REPLACEMENT POLICIES
1) CONVENTIONAL CACHE REPLACEMENT POLICIES
This section provides a review of conventional cache replace-
ment policies, which may generally be divided into five
categories.
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TABLE 1. The conventional replacement policies.

• Random algorithm (RAND)-based policies: These poli-
cies use a software or hardware-based random number
generator to determine the files that will be replaced
in the cache. This is by far the simplest type of cache
replacement policy, and therefore the easiest to imple-
ment. However, RAND policies do not account for any
of the factors that affect hit ratio and thus have low hit
ratios. This is why they are rarely used in practice.

• Least recently used (LRU) algorithm-based policies [9]:
In these policies, cached items that have not been
accessed for the longest time are targeted for replace-
ment. LRU policies are relatively simple to imple-
ment and have low time complexities. However, they
are susceptible to cache pollution, since factors like
filesize and access frequency are overlooked in these
policies.

• Least frequency used (LFU) algorithm-based poli-
cies [10]: In these policies, the items that are accessed
least frequently are selected for replacement, which pre-
vents the occurrence of cache pollution. Clearly, this is a
very reasonable policy. However, the implementation of
this policy is extremely difficult; a counter must be set up
for each cached item, and a fixed clock must be selected
to periodically evaluate all counters. Furthermore, this
policy only considers the access frequency of the cached
items and ignores all other factors.

• Filesize-based (SIZE) policies [11]: In filesize-based
SIZE policies, the largest items in the cache are replaced
when space is needed to store new items. These policies
are simple and easy to implement. However, the cache
could become contaminated by small items, as it is very
difficult to replace small items even if they are never
accessed again. SIZE policies are suitable as web cache

replacement strategies, as they have high hit ratios but
low byte hit ratios.

• Function-based policies, such as greedy dual size (GDS)
and greedy dual-size frequency (GDSF)-based cache
replacement [12]: With these policies, cache perfor-
mance can be optimized by selecting the appropriate
weighting parameters. These policies are thus applicable
to a variety of usage scenarios, as they can account for
multiple influencing factors. However, the selection of
appropriate weighting parameters is extremely challeng-
ing and new problems may arise from the computation
of function values.

Table 1 summarizes the strengths and weaknesses of
the aforementioned cache replacement policies. It may be
observed that these policies only consider a single factor
or use mathematical methods to predict access probabilities.
As the storage environment changes very rapidly and is con-
stantly being updated, these policies are not generally very
efficient. Due to the need to improve cache performance, a
multitude of intelligent cache replacement policies have been
proposed in the literature.

2) INTELLIGENT CACHE REPLACEMENT POLICIES
Numerous intelligent cache replacement policies have been
proposed in recent years. The strategies proposed in Refer-
ences [1]–[5] can generally be divided into two categories.
In the first category, intelligent algorithms are used indepen-
dently as cache replacement policies; in the second category,
intelligent algorithms are combined with conventional cache
replacement policies. Both of these approaches rely on the
prediction of future access probabilities to enhance cache
performance.
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Reference [1] proposed a Markov chain-based predictive
model called the predictive greedy dual-size frequency artifi-
cial intelligence (PGDSF-AI) policy. Firstly, a Markov chain
model is constructed according to user usage habits. This is
then used to predict user requests. When the cache runs out
of space, the cached items that are not in the set of predicted
items and have the lowest key values will be replaced. Refer-
ence [2], semantic analysis concepts like semantic segments,
probe queries, and remainder queries were used to construct
a segment access-aware semantic cache, which predicts the
items that will be accessed by users in the future to improve
cache hit ratio. In the method proposed by Reference [3],
web log mining is performed to construct an algorithm
that predicts the future access frequency of each page. The
frequency predicting model was then incorporated into the
GDSF caching policy to improve the GDSF policy’s per-
formance. Reference [4], multiple logistic regression (MLR)
was used to categorize cache items into multiple classes. The
MLR classifier was then combinedwith the LRU algorithm to
form a new cache replacement policy called LRU-M, where
the cache is divided into multiple class-based queues that are
managed by the LRU algorithm. Reference [5], three intelli-
gent cache replacement policies were developed by combin-
ing machine learning with conventional cache replacement
policies; each of these policies was designed to handle a
different application.

C. THE `1-REGULARIZED LOGISTIC REGRESSION
ALGORITHM
LR is a generalized linear algorithm [13] that is commonly
used in machine learning for data mining, webpage classifi-
cation, and economic forecasting. LR excels in describing the
relationship between dependent and independent variables.
The probability of an event occurring can be predicted simply
by fitting data to an LR function, which is very useful for
applications that rely on probabilistic decision-making. The
logistic probability function of the LR algorithm is:

y = φ(x) =
1

1+ e−x
(1)

The dependent variable is y ∈ {0, 1}, and the eigenvector,
which consists of n independent variables, that determines the
predicted result is x = (x1, x2, x3, · · · , xn). If the regression
coefficient is expressed as a vector β = (β1, β2, β3, · · · , βn),
the a posteriori probability estimation is:

p (y = 1 |x ) = φ
(
βT x

)
=

1

1+ e−βT x
(2)

The maximum likelihood method may then be used to
estimate the value of β. Given that the training dataset is
Dm = {(xi, yi)}mi=1, the maximum log-likelihood of the LR
model is: [14]:

argmax
β
{ln p (β |Dm )} = argmax

β

(
m∑
i=1

ln yiφ(βT xi)+(1−yi)

×

(
1− φ(βT xi)

)
-lnp (β)

)
(3)

We created a penalty function based on the concepts of the
LASSO penalty function [15], that is, by adding an `1-norm
function to the model’s coefficients to obtain a more refined
LR model, the `1-regularized LR model:

argmax
β
{ln p (β |Dm )} = argmax

β

(
m∑
i=1

ln yiφ(βT xi)+(1−yi)

×

(
1− φ(βT xi)

)
− λ ‖β‖1

)
(4)

Highly-efficient algorithms have been proposed by She-
vade and Keerthi [16], Zhang [17], Kin et al. [18] to solve
the `1-regularized LR model. Here, we used the ‘‘Shooting’’
algorithm proposed by Balakrishnan and Madigan to solve
the `1-regularized LR model [14].

Firstly, the LR log-likelihood is:
m∑
i=1

ln (p (yi |β )) =
m∑
i=1

ln
(
yiφ(βT xi)

)
+ (1− yi)

(
1− φ(βT xi)

)
(5)

When yi = 1 or 0, the log-likelihood functions are ln
φ(βTxi) and ln φ(1− βTxi), respectively, as shown below:

m∑
i=1

ln (p (yi |β )) =



m∑
i=1

lnφ(βT xi), yi = 1

m∑
i=1

ln
(
1− φ(βT xi)

)
, yi = 0

(6)

In both of these cases, the log-likelihood function can be
approximated by a Taylor expansion around βTi−1xi, thus con-
verting the original optimization problem into an approximate
optimization problem.

argmax
β
{ln p (β |Dm )}≈argmax

β

(
βT9mβ+β

T θm−λ ‖β‖1

)
(7)

where 9m =
∑m

i=1 xi(xi)
T and θm =

∑m
i=1 xi.� is defined

as � = 29β + θ , while ai and bi are obtained by the Taylor
expansion of the log-likelihood function around βTi−1xi. The
procedure of the ‘‘Shooting’’ algorithm is thus:
• Select an initial value for iteration, β0.
• Iterate the algorithm; on the m-th step, perform the
following operation for i = 1 to p:

βi =


0, if �i ≤ λ
λ−�i

29ii
if �i � λ

−λ−�i

29ii
if �i ≺ −λ

(8)

After the p-th calculation, use the newly-estimated value
to replace the result of the previous step.

• Repeat Step 2 until βm converges.
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Compared to the LR model and `2-regularized LR model,
the `1-regularized LR model is very effective in sparsify-
ing variables when solving for model coefficients, since the
`1-regularization reduces the absolute values of the coef-
ficients. This also causes the coefficients of variables that
have a minimal impact on the dependent variable of the
model to approach 0, thus screening these independent
variables.

III. THE PACS-ORIENTED LR-LRU INTELLIGENT CACHE
REPLACEMENT POLICY
A. THE LR-LRU INTELLIGENT CACHE REPLACEMENT
POLICY
LRU is a conventional cache replacement policy. However,
the LRU policy often results in cache pollution, which means
that unwanted items are often left in the cache for long periods
of time. In the LRU policy, new objects are inserted onto the
top of the cache stack. Even if this object is not accessed in
the future, it will take a long time before it reaches the bottom
of the stack and is removed from the cache.

Algorithm 1 LR-LRU
Input: each file X requested by user
1: If X is in SSD
2: Cache hit occurs return X //file X read completion
3: Else
4: nFetch X from HDD to SDD
5: End
6:While not enough space in SDD for X
7: Evict Y such that Y is at the bottom of the

cache stack
8: Insert X at the bottom of the cache stack
9: Cache hit occurs return X //file X read completion
10: End
11: Use LR-LRU algorithm to update probability

PX of X
12: Predict whether X is cold data or hot data
13: If X is cold data
14: Move X to the middle of the cache stack
15: Else
16: Move X to the top of the cache stack
17: End
Output: X

To mitigate the cache pollution problems of the LRU
policy, we have combined the LR algorithm with LRU to
form the LR-LRU intelligent cache replacement policy. The
workflow of the proposed LR-LRU policy is shown below.
When a user requests a file, X, the LR algorithm predicts the
future access probability of this file, P. If P is greater than
the threshold, ξ , X is adjudged to be ‘‘hot’’ data and stored
at the top of the cache stack. Otherwise, X is adjudged to be
‘‘cold’’ data and stored in the middle of the cache stack, so as
to accelerate its eviction from the stack. The pseudocode of
the LR-LRU policy is shown below:

B. ARCHITECTURE OF THE LR-LRU INTELLIGENT CACHE
REPLACEMENT POLICY
The architecture of the proposed LR-LRU intelligent cache
replacement policy is illustrated in Fig. 3. This architec-
ture consists of three functional components: the extract-
transform-load (ETL) component, offline component, and
online component.

The ETL component is responsible for extracting dis-
tributed and differentiated medical data (e.g., HIS, RIS, and
EMR data) and depositing it in a temporary intermediary
layer, where the data is cleaned, converted, and collected
before being uploaded to the target data center. The uploaded
database is the basis of all subsequent data analysis and data
mining operations [18], [19].

The offline component does not directly handle user
requests, as its role is to train the LR-LRU policy when the
server is idle. The updated LR-LRU policy is then used by the
cache manager in the online component.

The online component is responsible for managing the
cache manager. When a user inputs an access request,
the variable of the cached item is first obtained from the
target data center. The variable is then forwarded to the cache
manager, where the LR-LRU policy is used to perform cache
management.

IV. VARIABLE SELECTION AND DATA PREPROCESSING
In this work, a trace-driven simulation was used to experi-
mentally examine the LR-LRU policy. The experimental data
was derived from the PACS of Yancheng 1st People’s Hospi-
tal, and the data was collected between 7th May 2018 and
27th May 2018 (a total of 21 days). Firstly, a trace recorder
was constructed to analyze the PACS logfiles in real time.
In the log, each record represents a query, which may
be treated as a transaction; a transaction may query one
or many cached items. For the purposes of this experi-
ment, each line of the log was interpreted as a transaction
file.

A. INITIAL SCREENING OF VARIABLES
The selection of appropriate variables is crucial for the con-
struction of a mature and efficient predictive model, and
it is also an important challenge in this work. Although
a very large number of patient treatment-related variables
can be obtained using the ETL component, only some of
these variables are suitable for model building. The con-
ditions for the selection of variables in this work are as
follows:

• The variable is related to cached file requests
• The variable can be quantified or coded
• The variable is uniquely defined at each point in
time

• The variable can be obtained via simple computations or
queries

A total of 124 suitable variables were obtained after the
initial screening process.
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FIGURE 3. Architecture of the intelligent LR-LRU cache replacement policy.

B. DATA PREPROCESSING
The transaction files collected by the ETL must be prepro-
cessed before they can be used in the simulation experiment.
The data preprocessing procedure deletes irrelevant or invalid
requests, adds relevant variables, and labels the attributes of
the cached files. This procedure is as follows:

• Filtering: Filter irrelevant or invalid tasks like un-cached
requests, unsuccessful tasks, and tasks with incomplete
records.

• Interpretation: Interpret the meaning of each field in the
transaction files, convert all files to a unified format, and
delete unnecessary fields.

• Completion: Fill in the variable information of the trans-
action files’ requests through the ETL component.

• Labeling: If a cached item is accessed within 24 hours
of its previous query, it is labeled as hot data. Otherwise,
the cached item is labeled as cold data.

• Finalization: The 21-day transaction file dataset
obtained through the abovementioned data preprocess-
ing procedure was divided into two parts. The first
14 days of the dataset were used to train the model, and
the last 7 days of the dataset were used in the simulation
experiment.

The preprocessed transaction file dataset includes the
cached items’ records, variables, and labels.

V. CONSTRUCTION OF THE `1-LR MODEL
After the transaction file dataset has been prepared, the LR
algorithm may then be trained using the training dataset to
construct a classifier for the cached items. The testing dataset
is then used to test and optimize the model. LASSO and
the LR library were used to construct the LR-LRU policy in
Matlab [20].

A. MODEL TRAINING
The first 14 days of the preprocessed data were selected to
form a dataset, D by stratified samplingmethod. 10-fold cross

FIGURE 4. 10-fold cross validation.

validation was used to divide D into 10 mutually exclusive
subsets of equal size, i.e., D = D1∪D2∪· · · ∪D10, Di∩Dj =

∅(i 6= j). The data distribution of each Di subset was made to
be as consistent as possible; each subset was obtained from D
via time-stratified sampling. The union of 9 different subsets
was used as the training set, while the last set was used as
the testing set. In this way, we obtained 10 training sets and
10 testing sets, which allowed the model to be trained and
tested 10 times. The returned results correspond to the aver-
aged results of 10 tests. 10-fold cross validation is illustrated
in Fig. 4.

B. CONSTRUCTION OF THE `1-LR MODEL AND VARIABLE
SELECTION
Firstly, suitable values were selected for the 124 previously-
selected variable through Wald test-based backward selec-
tion. The access probability (dependent variable) of each file
was defined as y ∈ {0, 1}, while the eigenvector, which con-
sists of n variables, that influences the result of the prediction
was defined as x = (x1, x2, x3, · · · , xn). The regression coef-
ficient was expressed as a vector, β = (β1, β2, β3, · · · , βn).
Hence, the i-th variable and regression coefficients are xi and
βi, respectively.
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TABLE 2. The selected variables and their definitions.

Significance tests were performed on all xi variables and
y dependent variables; the variables that failed to meet sig-
nificance requirements were removed one by one. The null
hypothesis is denoted as H0: βi = 0, which indicates that the
independent variable xi did not alter the occurrence probabil-
ity of the event. If the null hypothesis is disproved, xi then
has an effect on the occurrence probability of the event. The
Wald test (Eq. (9)) is often used to test the significance of
regression coefficients:

Wald =
[

βi

SE (βi)

]2
(9)

where SE (βi) is the standard deviation of βi. However,
the standard deviation of a regression coefficient will be
embellished if its absolute value is very large; this causes
the value of the Wald statistic to shrink, which increases the
probability of erroneous results. In other words, the Wald test
may fail to disprove the null hypothesis even if the regression
coefficient is indeed significant. `1-regularization was incor-
porated to solve this problem. During the calculation of the
model’s coefficients, `1 regularization shrinks the absolute
values of the coefficients and screens insignificant variables
(with respect to the model’s dependent variables) by having
their coefficients approach 0 in value. Nine variables were
selected by training the `1-LR model, as shown in Table 2.
These variables were used as the variables of the final model.

Variables 1-5 are binary variables, which are either 0 or
1 depending on whether they are true or false, whereas vari-
ables 6-8 are multiclass variables. Multiple classifiers are
needed to handle multiclass problems. Given a dataset D ∈
Rm×n, whose labels are Y ∈ Rk , these samples will have k
different classes. The samples that were labeled as c (c ≤ k)
are selected and marked as ‘1’, whereas the samples that were
not labeled as c are marked as ‘0’. These data are then used
to train a classifier. An LR classifier function for c-labeled
samples, hc (x), was thus obtained. The procedure above can
be used to obtain k different β values.

SPSS 21.0 was then used to perform statistical tests on the
nine variables and β0 constant that were selected, which are
shown in Table 3, for the final model. Here, ‘Sig.’ represents
the P value of the variable in the model; the variables’ dif-
ferences are of statistical significance if P ≤ 0.010 [21].
‘Exp(β)’ is the odds ratio (OR) of the variable, i.e., the ratio
between high and low variable values in terms of the number
of event occurrences. Hence, OR = 1 or OR values close to
1 indicate that the variable does not affect event occurrence.
In LR, amulticlass variable is always treated as a single entity,
that is, as long as one of the classes of the multiclass variable
is statistically significant in terms of P andOR, the multiclass
variable will be included in the model.

When using Wald test-based backward selection, the cor-
relation between the variables must be taken into account,
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TABLE 3. Coefficients and Wald tests for L1-LR.

since this method should not be used if the variables are
strongly correlated [21]. SPSS 21.0 was used to analyze
correlations between the selected variables. A correlation
matrix was computed, which shows how the variables are
correlated to each other. The correlation coefficient ranges
within [−1,1]; a pair of variables are strongly correlated if the
absolute correlation approaches 1, and weakly correlated if
the absolute correlation approaches 0. The correlation matrix
is shown in Fig. 5.

Fig. 5 indicates that only 4 sets of variables have absolute
correlations greater than 0.6. The other 32 sets have absolute
correlations less than 0.5. Hence, the selected variables are
only weakly correlated to each other and the model has a high
level of sparsity.

VI. RESULT ASSESSMENT AND DISCUSSION
A. VALIDATION OF THE `1-LR MODEL
The results of binary classification problems can be
categorized as true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN) depending

FIGURE 5. Correlation matrix of the variables.

on how the predicted result compares to reality. The
confusion matrix of the classification results is shown
in Table 4.
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TABLE 4. Confusion matrix.

The predicted value is compared to a threshold value,
ξ ; a prediction is positive if the predicted value is greater
than ξ and negative otherwise. Hence, reducing the value
of ξ will produce a larger number of positive results and
thus increase the percentage of actual positives among the
positive predictions, i.e., the true positive rate (TPR). How-
ever, this also increases the number of negative examples
among the positive predictions, i.e., the false positive rate
(FPR). The receiver operating characteristic (ROC) curve
was plotted to visualize these changes. TPR and FPR are
the vertical and horizontal axes of the ROC curve, respec-
tively. Based on Table 4, the definitions of TPR and FPR
are:

TPR =
TP

TP+ FN
(10)

FPR =
FP

TN + FP
(11)

LR and `2-LR models were constructed using the same
methods, and then compared to the `1-LRmodel. Fig. 6 illus-
trates the ROC curves of these models.

The ROC curves allow the strengths and weaknesses
of the three models to be directly evaluated. If the ROC
curve of a model is completely covered by the ROC curve
of another model, the latter model is superior to the for-
mer. In other words, the area under the ROC curve (AUC)
can be used to determine the performance of a classifier,
as the performance of a classifier is proportional to its AUC.
Figure. 6 shows that the ROC curve of the `1-LR model
completely covers those of the LR and `2-LR models. The
`1-LR model also has the largest AUC. Hence, the perfor-
mance of the `1-LRmodel is superior to that of the `2-LR and
LR models.

B. EVALUATION OF THE LR-LRU INTELLIGENT CACHE
REPLACEMENT POLICY
1) EVALUATING METRICS FOR CACHE REPLACEMENT
POLICIES
The two most important metrics for evaluating cache perfor-
mance are hit ratio (HR) and byte hit ratio (BHR). HR is the
number of accesses obtained from the cache as a percentage
of all access requests, while BHR is the percentage of bytes
obtained from the cache over the total number of requested
bytes.

The equations for calculating HR and BHR are shown
in Eqs. 12 and 13, respectively. N is the number of access
requests, and each request i(1 ≤ i ≤ N) corresponds to
a cached item. mi is the filesize of the i-th cached item.

qi indicates whether the i-th item is a hit (qi = 1 for hits
and qi = 0 for misses).

HR =

∑N
i=1 qi
N

× 100% (12)

BHR =

∑N
i=1 qimi∑N
i=1 mi

× 100% (13)

HR and BHR have different purposes, as HR mainly
focuses on reducing user response times and improving the
user experience, whereas BHR is about reducing bandwidth
consumption. It is extremely difficult for a cache replacement
policy to simultaneously optimize HR and BHR [22], [23].
To increase HR, the cache has to store as many small cached
items as possible and maximize the density of cached items.
However, this will reduce BHR. Conversely, given a cache of
finite size, maximizing the storage of large files in the cache
will increase BHR but reduce the density of the cached items,
thus reducing HR. Therefore, the aim of this work is to create
a cache replacement policy that is able to achieve excellent
results in one of these metrics without significantly degrading
the other metric.

2) COMPARISON BETWEEN THE LR-LRU POLICY AND
CONVENTIONAL CACHE REPLACEMENT POLICIES
The trace-driven simulation method was used to perform
a simulation experiment [24]. The data used in this exper-
iment is the transaction file dataset that was prepared in
Section IV.B. Prior to the experiment, it is necessary to deter-
mine the termination point of the experiment, that is, the size
of the ‘‘infinite’’ cache. An infinite cache is a cache that is
large enough to store all cached items without needing to
replace any items. Hence, the infinite cache size is the sum
of the file sizes of all cached items. An infinite cache will
also allow HR and BHR to reach their maximum values.
However, it is very difficult to realize an infinite cache due
to cost factors. It was experimentally determined that the
infinite cache size was 161341.79 GB, and the corresponding
maximum HR and BHR values were HRmax = 42.36% and
BHRmax = 45.18%. 10 cache sizes were used in the simu-
lation experiment, and the cache sizes ranged from 25 GB to
214 GB.

The experiment was performed using the LR-LRU policy
and the conventional GDSF, GDS, LRU, LFU, and SIZE
policies. Figures. 7 and 8 show the HR and BHR correspond-
ing to each policy for each cache size. An increase in cache
size always increases HR and BHR, for any given policy.
When the size of the cache approaches the infinite cache
size, HR and BHR values will plateau and approach their
maximum values.

In terms of HR (Figure. 7), it is clear that the LR-LRU
policy has better levels of performance than the conventional
LRU policy, thus proving the effectiveness of combining
the LR algorithm with the LRU policy. The access frequen-
cies of the PACS storage system’s image cache do not vary
significantly, as there are very few excessively ‘‘hot’’ or
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FIGURE 6. Comparison between the ROC curves of the LR, `2-LR, and `1-LR models.

FIGURE 7. Comparison between the HR of several algorithms.

‘‘cold’’ cached files. Consequently, the LFU policy (which
depends on a frequency factor) exhibits the worst perfor-
mance between all caching policies. However, the filesizes
in the PACS storage system’s image cache do vary quite sig-
nificantly. For example, B-scan ultrasonography and digital
radiography (DR) files only range between 1 MB to 10 MB
in size while CT and MRI files can be several hundreds
of MBs in size. Therefore, filesize-dependent policies like
SIZE, GDS, and GDSF hold very large advantages over other
caching policies for small cache sizes. However, HR grows
more slowly with increasing cache size for these policies than
other policies, as they tend to discard large cached files with
excessive frequency.

FIGURE 8. Comparison between the BHR of several algorithms.

In terms of BHR (Figure. 8), the LR-LRU, LRU, and LFU
policies display similar BHR and HR trends with respect to
cache size since these policies are not filesize-dependent. The
SIZE, GDS, and GDSF policies tend to favor small cached
items; hence, these policies sacrifice BHR to obtain high HR
values. At small cache sizes, these policies perform better
than the LR-LRU policy in terms of HR, but significantly
poorer in terms of BHR.

To provide a more comprehensive assessment of these
policies, the improvement ratio (IR) was used to evaluate
these policies [5]. The equation for calculating IR is shown in
Eq. 14. PM is the ‘‘proposedmethod,’’ while CM is the ‘‘com-
parative model.’’ The IR values of the LR-LRU policy (PM)
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TABLE 5. IR of the LR-LRU policy with respect to conventional cache replacement policies.

with respect to other cache replacement policies (CMs) are
summarized in Table 5.

IR =
(PM-CM)

CM
× 100% (14)

As a whole, the LR-LRU policy is superior to all other
policies in terms of BHR, at all cache sizes. In terms of HR,
the LR-LRU policy is slightly inferior to the SIZE, GDS, and
GDSF policies (which use size factors) at small cache sizes.
This is because these policies sacrifice BHR tomaximize HR.
It is thus shown that the LR-LRU policy has successfully
obtained a large advantage in BHR with a relatively small
cost in HR.

The LR-LRU policy has significantly better HR and BHR
values than the LRU policy, and the maximum IRs were
obtained when the cache size was 128 GB (IRHR = 26.03%
and IRBHR = 23.26%). By analyzing the PACS logs, it
was found that the LR-LRU policy is faster than the LRU
policy at predicting and replacing cold data in the cache,
especially at lower cache sizes. Hence, the combination of the
LR algorithm and LRU policy has been proven to be highly
effective. The HR and BHR values of the LR-LRU policy
are also excellent compared to the LFU policy. Compared to
GDS and SIZE, the LR-LRU policy only has slightly lower
HR values when the cache size was 32 GB; under all other
circumstances, the HR and BHR of the LR-LRU policy are
superior to these policies. The GDSF policy, which combines
frequency and size factors and also utilizes aging and time
factors, has a better HR but a poorer BHR than the LR-LRU
policy at small cache sizes. At small cache sizes, the LR-LRU
policy achieves a large advantage in BHR for a small cost in
HR. LR-LRU gradually begins to outperform GDSF in both
HR and BHR as cache size increases.

In summary, the LR-LRU policy outperforms all con-
ventional cache replacement policies in terms of BHR,
while retaining an acceptable level of performance in HR,

especially at larger cache sizes. As a whole, the LR-LRU
policy is superior to conventional cache replacement policies.
This is in-linewith the aims stated in SectionV.B.1 aswe have
created a cache replacement policy that performs excellently
in onemetric, while achieving adequate levels of performance
in the other metric.

VII. CONCLUSION AND OUTLOOK
In this work, we have proposed an intelligent cache replace-
ment policy that is suitable for PACS storage systems. This
policy combines the LR algorithm with the LRU policy
to form the LR-LRU intelligent cache replacement policy.
Unlike currently-existing policies that solely rely on the
cached items’ intrinsic properties (e.g., filesize, last access
time, and access frequency), our PACS-oriented LR-LRU
policy identifies the variables that affect file access prob-
abilities by mining medical data and models the future
access probabilities of cached items using the LR algorithm,
thus improving the performance of the caching policy. `1-
regularization was also used to shrink the absolute values
of the variables’ coefficients, thus screening less important
variables by causing their coefficients to approach zero. It was
experimentally demonstrated that the LR-LFU policy signif-
icantly improves cache performance compared to the LRU,
LFU, SIZE, GDS, and GDSF policies.

Although the LR-LRU policy proposed in this work is
oriented towards hospital PACSs, the core concepts of this
policy can be extended to other fields, such as electric util-
ities, banking, aerospace, and telecommunications. These
industrial systems are similar to PACSs as they handle large
amounts of data, much of which contains a large number of
dimensions and are strongly correlated. Data mining can be
used to identify the most relevant variables for cached items;
machine learning algorithms may then be used to construct
predictive models that predict the future access probabilities
of the cached items, thus improving cache performance.
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