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ABSTRACT Device-free localization (DFL) algorithms using the received signal strength indicator (RSSI)
metrics have become a popular research focus in recent years as they allow for location-based service using
commercial-off-the-shelf (COTS) wireless equipment. However, most existing DFL approaches have limited
applicability in realistic smart home environments as they typically require extensive offline calibration, large
node densities, or use technology that is not readily available in commercial smart homes. In this paper,
we introduce SpringLoc and a DFL algorithm that relies on simple parameter tuning and does not require
offline measurements. It localizes and tracks an entity using an adaptive spring relaxation approach. The
anchor points of the artificial springs are placed in regions containing the links that are affected by the entity.
The affected links are determined by comparing the kernel-based histogram distance of successive RSSI
values. SpringLoc is benchmarked against existing algorithms in two diverse and realistic environments,
showing significant improvement over the state-of-the-art, especially in situations with low-node deployment
density.

INDEX TERMS Device-free localization (DFL), histogram distance, indoor positioning systems (IPS),
smart homes, spring-relaxation.

I. INTRODUCTION
Device-free Localization (DFL) systems that utilize the
Received Signal Strength Indicator (RSSI) metric can track
untagged subjects, unlike traditional Device-based/Active
Tracking approaches. They can facilitate location-based ser-
vices such as lighting/music control and intruder detection,
based on human presence alone. However, since the tracked
entity is untagged, it can be hard to uniquely identify each
entity when multiple targets are present. Improved localiza-
tion accuracy can potentially lead to more accurate entity
identification. The purpose of this paper is to provide an
improved algorithm for DFL that can be implemented in
practical scenarios e.g. smart homes without requiring the
deployment of significant additional infrastructure.

Existing indoor DFL systems have three main shortcom-
ings with respect to practical implementation. The first one is
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that they require many sensors within the target environment.
This can lead to high implementation cost due to the large
number of sensors required, and the requirement of eas-
ily accessible power across the whole environment [1]–[4].
The second shortcoming is that DFL implementations also
require a large number of offline measurements to calibrate
the system to the target environment [5]–[10]. This restricts
their usability, as standard end users cannot be expected to
install new power sockets and undertake excessive calibration
procedures to facilitate localization within their home. The
third shortcoming is that recent attempts at DFL solutions use
hardware that is inaccessible to standard end users. For exam-
ple, Channel State Information (CSI) based DFL has been
shown to be quite accurate. However, CSI is not available on
the majority of wireless platforms e.g. Zigbee or Bluetooth.
Moreover, even with Wi-Fi, CSI is only available on two
outdated modules with bespoke modified drivers [11], [12].
Other leading approaches makes use of Frequency Modu-
lated Carrier Wave (FMCW) signals using a software defined
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FIGURE 1. Springloc algorithm overview.

radio platform [13], [14]. This limits usability as rather than
using pre-existing wireless infrastructure or widely available
Commercial Off-The-Shelf (COTS) equipment, these solu-
tions require the deployment of custom designed additional
wireless infrastructure for the sole purpose of localization.
Camera based pose estimation techniques can also be used
for multi-target localization [15], [16], however they have
privacy concerns and would likely not be able to access
existing infrastructure. To solve these problems, we pro-
pose SpringLoc, a new DFL algorithm based off RSSI his-
togram difference and Spring-relaxation, as shown in Fig. 1.
It requires fewer sensor nodes while maintaining an accept-
able localization accuracy. Thus, one is able to utilize existing
smart home infrastructure, e.g. existing Wi-Fi, Zigbee or
Bluetooth smart sensors, to provide indoor localization as
a secondary service. SpringLoc also does not require any
offline calibration measurements.

SpringLoc records the RSSI values between all transmit-
ting (TX) and receiving (RX) nodes and forms two RSSI
histograms for each link. The first histogram is formed by
taking a weighted average of recent RSSI values. The second
histogram is formed using a long-term weighted average of
the RSSI values. At each timestep, the difference between
these two histograms is calculated for each link. Links
whose histogram difference exceed a predefined threshold
are deemed to be ‘affected links’. These are the links whose
RSSI values have been impacted by the presence of the
entity, with the short-term histogram exhibiting significant
variation from the long-term one. An artificial spring anchor
is defined at the intersection point of the affected links after
removing outliers. Each spring acts as an attractive force on
the tracked entity, pulling it towards its own anchor, as shown
by the springs in Fig. 2. The spring-relaxation algorithm then

iteratively localizes the target by equalizing the forces
between the set of springs. Each spring has a weight based
on the distance between the contributing affected links. The
force associated with each spring is defined by this weight
and the distance from the previous position estimate. If the
intersection between two links does not fall within the local-
ization environment, the closest point from each link is taken
as the location of the anchor.

This is how the rest of the paper is organized. Section II
covers related DFL techniques, why RSSI has been utilized
over CSI and an overview of previous Spring Relaxation
approaches. Section III describes the proposed SpringLoc
algorithm. Section IV outlines the experimental setup and
results. Section V provides a discussion on the experimental
results and Section VI concludes the manuscript.

II. RELATED WORKS
DFL has become a popular research topic, as it allows for
untagged entities to be tracked, enabling a wide range of
usage scenarios. DFL techniques that are based on tech-
nologies readily available in a smart home, e.g. Bluetooth,
ZigBee or Wi-Fi, can be categorized into three major
approaches: 1) Fingerprinting, 2) Link-based or 3) Radio
Tomographic Imaging.

A. FINGERPRINTING
Fingerprinting schemes consist of two phases. In the offline
phase, the environment is divided into a grid. An initial
measurement is taken when the environment is empty, and
successive RSSI measurements are taken with an entity
in each known grid location. This measurement set forms
the fingerprint database. During the online phase, live
RSSI measurements are compared with the fingerprint
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FIGURE 2. Springloc with three affected links.

database, with location estimation performed via
classification.

The ‘Sequential Counting, Parallel Localization’ (SCPL)
algorithm first counts the number of subjects in an environ-
ment by using successive cancellation to remove the influence
of the subjects with the strongest influence each round. Once
the number of subjects is known, SCPL incorporates human
movement constraints and environmental geometric con-
straints to track each subject using a conditional random field
(CRF) [17]. The ‘ACcurate and Efficient’ (ACE) localization
algorithm incorporates an energy-minimization framework
followed by a Markov-based CRF and clustering to smooth
transitions between neighboring locations [18]. The ‘geo-
metrical localization, fingerprinting device free localization’
(GL-FDFL) algorithm improved traditional fingerprinting by
reducing the search area of possible fingerprint locations by
geometrically restricting it based on the area bounded by
shadowed links [19]. The ‘Energy-Efficient High-Precision
Multi-Target-Adaptive’ (E-HIPA) algorithm used compres-
sive sensing and an adaptive orthogonal matching pursuit
algorithm to track multiple targets, using a sparse link net-
work [20]. Chiang et al. [21] integrated fuzzy logic into a sup-
port vector machine (SVM) based DFL approach to improve
the classification accuracy of a pure SVM DFL approach
by 7.8%. Mager et al. [22] sought to improve the accuracy
of fingerprint-based approaches as the database degrades
due to environmental changes. Experimental results show
that Random Forest based classification is more robust to

environmental changes than traditional K-Nearest Neigh-
bor (KNN), Linear Discriminant Analysis (LDA) or SVM
approaches. Wang et al. [8] proposed a novel deep learning
approach to reduce the offline training effort by automatically
learning features using a sparse autoencoder network. A Soft-
Max regression-based classifier is then used to predict a user’s
location, activity and gesture. The WiDet approach [23] aug-
ments the offline training data by resampling somewindowed
sample sub-sets to simulate different walking speeds. Local-
ization is performed using a Convolutional Neural Network
(CNN), which is shown to outperform a traditional approach
based on RSSI wavelet features and Bayes classification.
Huang et al. [5] model DFL as a spare representation problem
which they solve using a variant of the iterative shrinkage-
thresholding algorithm. Zhang et al. [24] implemented a
parameterized extreme learning machine (ELM) approach
to DFL which was shown to outperform existing WKNN,
SVM and RTI techniques.

Though E-HIPA was able to reduce the number of nodes
required, andMager et al reduced the retraining effort, all fin-
gerprinting approaches require extensive offline calibration,
and suffer degradation due to any significant environmental
changes. This limits their usability in smart homes, where it
would be difficult to create a generalized calibration approach
that could be followed by a regular end-user. Another diffi-
culty is that calibration must be redone any time the envi-
ronment changes significantly, which may be untenable in
diverse, realistic environments.
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B. LINK-BASED
Link-based ormodel-based schemeswork by creatingmodels
to analyze the effect a subject has on a TX-RX link. A target
is considered present along a link when the model deviates
away from its steady-state by a predefined threshold. Particle
filters are often used for positioning as they allow for a
subject to be localized as the centroid of multiple affected
links [2], [25]–[27].

Guo et al. [25] developed an Exponential-Rayleigh
model for received signal strength (RSS), coupled with
a particle filter for multi-target localization and tracking.
Zheng and Men [26] represent the RSS model as a Gaussian
mixture, with online re-parameterization to ensure correct
detection, and a particle filter for localization and tracking.
Saeed et al. [27] estimates a density function for each link
based on a sliding window of RSSI variance. The system
detects links as anomalous if they exceed a predetermined
critical bound of the density function. The anomalous links
are passed to a particle filter which performs localization and
tracking [27].

Link-based schemes’ accuracy is based on the reliability of
their link model. If the model is not updated regularly, envi-
ronmental change can degrade the system. Moreover, if noisy
live measurements are used to update the link models, they
may diverge over time. Secondly, most link-based models
use a particle filter to solve the localization problem. Particle
filters are very computationally expensive and unlikely to be
feasibly run on commercial-off-the-shelf (COTS) embedded
devices. Furthermore, since parallel particle filters would
likely be required for multi-target tracking to ensure conver-
gence in noisy environments, these algorithms do not scale
well for realistic environments.

C. RADIO TOMOGRAPHIC IMAGING
Radio Tomographic Imaging (RTI) solves an ill posed linear
inverse problem to generate an output image. The bright-
est pixel within the output image defines a subject’s loca-
tion estimate. RTI approaches are typically coupled with
a Kalman filter on the output images to provide subject
tracking. The original RTI implementation used RSSI atten-
uation as a feature [28]. More recent approaches have
improved RTI by using variance as a feature and performing
subspace decomposition [4], using multiple channels [29],
using directional antenna arrays [30], or using a his-
togram difference feature [3]. Recently, a multi-frequency
approach using both 433MHz and 868MHz radios managed
to attain sub-meter accuracy in a complex indoor environ-
ment of approximately 115m2, using 39 nodes [31]. Modern
RTI approaches require minimal calibration and are less
computationally complex (in the online phase) than link-
based approaches, while still being able to track multiple
targets. However, they require a significant node density to
attain their accuracy, making them unsuitable for smart home
use, where significant infrastructure modification cannot be
justified.

D. CHANNEL STATE INFORMATION
The Channel State Information (CSI) metric has become a
popular localization metric over RSSI as it is more immune
to the adverse effects of multipath propagation [32] and out-
performs RSSI based methods [33]. Since CSI offers more
fine-grained information than RSSI, it has been extensively
utilized in machine learning based DFL approaches including
shapelet learning [34], SVM [9], [35], Random Forest [36],
HMM [37], and Deep Learning [38]. A shortcoming of
CSI is that it is currently only accessible using modified
drivers in legacy Intel 5300 [11], [39], Atheros ath9k [12]
based devices, or by using Software Defined Radio (SDR)
platforms like USRP [40] or WARP [41]. Even though there
has been significant research interest in using the modified
drivers since they were released in 2011 and 2015 respec-
tively [42], no vendor has provided access to the CSI met-
ric to end users in any subsequent hardware releases. This
means that a CSI based DFL solution cannot be recom-
mended for smart homes, as the metric is not readily avail-
able in COTS hardware. Furthermore, smart home networks
are commonly implemented using Zigbee, Bluetooth Low
Energy (BLE) or Wi-Fi equipment. While the RSSI metric
supports Zigbee, BLE and Wi-Fi equipment, the CSI met-
ric only supports the aforementioned legacy Wi-Fi devices.
Therefore, it is not suitable for integration into existing smart
homes.

E. SPRING-RELAXATION
Spring-relaxation aims to reach equilibrium among a set of
artificial springs. It has been used for sensor localization
in Wireless Sensor Networks (WSNs) [43]–[45]. A similar
energy minimization technique called ‘potential fields’ has
found extensive use in obstacle avoidance and navigation
of autonomous robots [46]–[49]. As far as the authors are
aware, the concept of spring-relaxation has not been applied
to DFL. Spring-relaxation has the benefit of only requiring a
few anchors per target, as opposed to potentially thousands
of particles used per target in a traditional particle filter.
Spring-relaxation techniques require spring anchors, which
are not readily apparent in the concept of DFL. Therefore
they must first be defined in our calibration-free algorithm,
as described in Section III. Spring-relaxation also has the
benefit of allowing for adaptively weighted springs, which,
with respect to DFL, can ensure high accuracy across a range
of different target speeds.

F. CONTRIBUTIONS
As far as the authors are aware, the concept of spring-
relaxation has never been practically implemented with
respect to wireless DFL. This leads to the following novel
contributions:

1) Apply the concept of spring-relaxation to wireless DFL
as a form of localization and tracking

2) Provide a calibration-free way of providing the
DFL spring-relaxation algorithm with artificial anchor
points, during live operations
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3) Provide experimental results across two diverse
and realistic environments which show that spring-
relaxation can outperform existing state-of-the-art
RSSI-based DFL approaches, under both high and low
node densities, for varying walking trajectories

III. ALGORITHM
DFL systems that use RSSI values must choose a feature to
determine whether an entity is influencing the propagation
of any specific link. A commonly utilized feature has been
either RSSI difference or absolute difference (also termed as
RSSI attenuation) where the current RSSI value is subtracted
from one taken during offline measurements when no one
is present. Unfortunately, this metric does not work well
in through-wall environments and requires offline measure-
ments. RSSI variance is another commonly utilized feature
that works better in through-wall environments. However,
it cannot track stationary targets.

RSSI histogram difference, as featured in [3] has the bene-
fit of incorporating both mean and variance RSSI features,
with neither of their limitations. This is beneficial as it
allows for a feature detector that does not require an offline
calibration phase. Another benefit of this feature is that it
looks for change in the RSSI values caused by movement,
irrespective of whether the change increases or decreases the
RSSI values. This allows for the metric to work in multipath
rich environments, where the magnitude RSSI change cannot
be predicted in advance. This allows the metric to work with
both stationary and moving targets, and in both open and
through-wall environments.

The SpringLoc approach is broken into fivemodules which
are described below and shown in Fig. 1. The first mod-
ule forms the long-term and short-term histograms of each
link, required for calculating the RSSI histogram difference
feature. Module two extracts the most prominently affected
links. Module three handles cases when too few affected
links were detected. Module four defines the spring anchor
points and their weights andmodule five performs an iterative
adaptive spring relaxation approach that localizes and tracks
a subject.

A. HISTOGRAM FORMATION
The RSSI difference feature is formulated by arranging
incoming RSSI values into histograms averaged over either
a short or a long period of time. The histogram difference
for each link can then be found by computing an empirical
histogram distance between the long-term histogram (L) and
short-term histogram (S) for each link. Using an exponen-
tially weighted moving average (EWMA) weighting scheme,
the histograms can be defined as:

htl = (1− α) h
t−1
l + αfR

(
Rtl
)

(1)

where htl is the histogram of link l at time t and Rtl is the
RSSI value of link l at time t . α, the forgetting factor, has a
value between 0 and 1 and governs how much recent RSSI
values contribute to the histogram. Hence a large value will

FIGURE 3. Cluttered office space environment.

FIGURE 4. Church hall environment.

help formulate the S while a low value will formulate the L.
Assuming RSSI values are quantized with a step-size of one,
and have a range between 1 and N , fR is a function that given
an RSSI value will return a vector of length N , with a value
of 1 at the index of the RSSI value, and 0 elsewhere.

The difference, KD (S,L), between the two histograms S
and L, are computed using the Epanechnikov kernel distance
in accordance with the literature [3], and can be defined as:

KD (S,L) = STKS + LTKL − 2STKL (2)

where T represents a transpose operation and K is an NxN
matrix defined by:

K (i, j) =


3
4

(
1−
|i− j|2

$

)
, |i− j| ≤ $

0, otherwise

(3)

where$ is a kernel smoothing parameter.

B. LOCATE AFFECTED LINKS
After computing the histogram difference for each link,
the systemmust determinewhich links have been triggered by
a target’s presence. Since the presence of a target will cause
an increased difference between the short-term (S) and long-
term (L) histograms, a link threshold is defined as:

ζ t = f
(
KD (S,L)t1:l

)
(4)

f (x) =

{
x, x > β

nothing, x ≤ β
(5)
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FIGURE 5. Affected link pair with intersection point.

FIGURE 6. Affected Link pair with no intersection point.

where function f iterates through each link l in KD, adding
them to an array, ζ , if they exceed predefined link threshold
constant, β.
After locating the affected links, SpringLoc defines appro-

priate spring anchors, and their weights. This requires the
successful detection of at least two affected links. If less
than two affected links are detected, the algorithm utilizes the
approach outlined in Section E.

C. DEFINE SPRING ANCHORS / WEIGHTS
Once all the affected links have been located, the system
needs to translate this into the target’s location. Intuitively,
the subject is more likely to be in a region where there is a
higher density of affected links. To help define this region,
we locate a set of points that reside within the unknown
region. For each link l in ζ , we define the coordinate of the
transmitting node as TX l , the coordinate of the receiving node
as RX l , and the line segment formed between TX l and RX l
as γl . Sunday’s geometric method [50] was used to either:
find the intersection point of each pair of line segments, or the
minimum distance between them within the environment.
This can be clearly observed in Fig. 5 and Fig. 6. Fig. 5 shows

two intersecting affected links γ1 and γ2. By defining the
closest point in line segment one as γ1,c and the closest point
in line segment two as γ2,c, we know that γ1,c = γ2,c as
the links intersect. These points are represented by the blue
diamond in Fig. 5. This alsomeans that theminimum distance
between the two links, D (γ1, γ2) = 0. In Fig. 6, the affected
link pair does not intersect within the test environment. This
means that the γ1,c and γ2,c points are defined by the node
locations as shown in Fig. 6. In this case since γ1,c 6= γ2,c,
D (γ1, γ2) > 0.

Once all intersection points have been calculated, the sys-
tem needs to define each spring anchor, and its associated
weight. The spring anchor points set (SA), are defined as:

SA = g (γ1:end ) (6)

g
(
xi, xj

)
=

{
[γi,cγj,c], D

(
xi, xj

)
< η

nothing, D
(
xi, xj

)
≥ η

(7)

where g is a function that iterates through each pair of inter-
section points, adding them to the array of spring anchor
points, SA, if the distance between them,D

(
γi, γj

)
, as shown

in Fig. 6, is less than the distance constant, η. This is done to
exclude link pairs that do not share close proximity.

After selecting the initial anchor points, a filter is applied to
only keep points surrounding the median coordinate values in
both x and y directions. The final set of spring anchor points
(SAf) is defined as:

SAf = m(SA1:end ) =


SAi, (x̃ − ρσx) ≤ SAi,x ≤ (x̃ + ρσx)
(ỹ− ρσy) ≤ SAi,y ≤ (ỹ+ ρσy)
nothing, otherwise

(8)

wherem is a function that iterates through each spring anchor,
only returning ones that are close to the median x and y value.
SAi,x and SAi,y represent the x and y coordinate of spring
anchor i respectively, x̃ is the median x coordinate from the
SA point set, ρ is a SA selection constant, σx is the standard
deviation of the x values from the SA point set, SAi,x is the
x coordinate for point i in SA, ỹ is the median y coordinate
value in SA, SAi,y is the y coordinate for point i in SA, and
σy is the standard deviation of the y values from the s the
x coordinate for point i in SA point set.
Once the final spring anchor points have been defined at

timestep t , SAtf , they need to be weighted. Each spring in
SAtf receives a weight defined by:

W t
k = KDti ∗ KD

t
j (9)

where indexes i and j were used by (7) for defining a
SA point, now stored in SAtf ,k . The weights are then normal-
ized between 0 and 1 using:

W t
=

(W t
− min(W t ))

max(W t )− min(W t )
(10)
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TABLE 1. Springloc parameters.

D. ADAPTIVE SPRING RELAXATION
The iterative spring-relaxation approach takes the final
anchor points set, spring weights, and the previous position
estimate as arguments. It is defined by parameters includ-
ing a max number of iterations (ψ), a step size (τ ), and
breakout parameter (δ) which stops the algorithm early if
convergence is reached. In a single iteration, the distance
vector between the previous location estimate, prevPos, and
each spring anchor is calculated as:

−→
disk = prevPos− SAf ,k (11)

with the force defined as:

fk =
−→
disk∗W k (12)

Assuming there are n springs, the net force over all springs is
defined as: ∑n

k=1
(netf = netf − fk) (13)

with the position estimate defined as:

Pos = prevPos+ τ ∗
netf
n

(14)

A full pseudocode breakdown of the SpringLoc algorithm is
included in Algorithm 1 and Algorithm 2 and all parameter
values used are given in Table 1.

E. ALGORITHM EDGE CASES
These are the scenarios that may cause the algorithm to
either not converge correctly or perform suboptimally. The
first case arises when no affected links, ζ t, are triggered in
module two. This can occur if the target is walking through a
temporary blind-spot or has stood relatively motionless for a
considerable duration of time. To resolve this, we implement
two cases.

If there are no affected links across multiple timesteps,
(length(ζ t ) = 0) and (length(ζ t−1) = 0), we assume the
subject is currently stationary and set the current position
estimate to the previous prediction estimate (posEstimate =
prevPos). This ensures the subject stays located at the last
known spring convergence target. However, if the previous
timestep had affected links, length(ζ t−1) > 0, we assume that

the subject is moving through a momentary blind-spot. Since
no location information is available in the current timestep,
the subject is assumed to be maintaining the same velocity
and heading as their previous timestep. Their position esti-
mate is given as:

posEstimate = prevPos+
−−−−→
project (15)

where
−−−−→
project is a vector defined by the previous trajectory:
−−−−→
project t = posEstimatet−1 − prevPost−1 (16)

The other edge case occurs when only one affected link is
detected, length(ζ t ) = 1. Since module four requires at least
two affected links to calculate spring anchors, an artificial
link is inserted into the affected links array. The artificial
‘injected’ link is defined by:

TXinjected = prevPos

RXinjected = prevPos+ Eproject

ζ tinjected = [TXinjected ,RXinjected ] (17)

IV. EXPERIMENT AND RESULTS
SpringLoc infers a subject’s location by analyzing the
changes in RSSI values across a network of wireless links.
The network consisted of 20 Texas Instruments CC2530 Zig-
bee radios for the first experiment, and six radios for the sec-
ond and third experiments. The radios operated at maximum
power and were set to channel 26. The network was set up
with a token ring protocol, where each node takes turns send-
ing a broadcast packet. The broadcast packet’s are received
by every other node within range, which would record the
ID of the transmitting (TX) node and the packets RSSI value.
Each transmitted broadcast packet would contain its own ID,
followed by a list of the last round’s received RSSI values.
A master node listens to all network traffic and sends all link
RSSI values back to a PC for live processing. The network
was set up to run at 5Hz (i.e. 5 RSSI values for every network
link, every second). If the master node detects that a node has
missed incoming packets

(as its broadcast RSSI list only contained a few values),
it would fill in the missing RSSI values with known dummy
values to keep the data structure sizes consistent. This also
allows for the PC to know which packets were dropped for
each node, for each time frame.

Experiments were conducted in two diverse environments.
The first environment consisted of a church hall, which
had the chairs removed from the center of the room, giv-
ing approximately 120m2 of open space. The sensors were
mounted on stands 1.2m above the ground and placed in a
square encompassing 25m2 in the center of the open space.
The second environment consisted of a cluttered office space
of approximately 44m2, where computers and laboratory
equipment were set up around the perimeter of the room.
The nodes were wall-mounted around the perimeter of the
room at 1.4m above the ground. In both environments, the
Wi-Fi was turned off and a Rohde& Schwarz SpectrumRider
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Algorithm 1 SpringLoc Algorithm

for t = 1 : tend At time instant t
for i = 1 : l Iterate through each link
Sti = (1−αs)S

t−1
i + αsfR

(
Rti
)

Compute the short-term histogram (S) using (1)
Lti = (1−αL)L

t−1
i + αLf R

(
Rti
)

Compute the long-term histogram (L) using (1)
KDt

i = Sti
TKSti + L

t
i
TKLti −2 S

t
i
TKLti Compute the kernel-distance between S and

L using (2)
if KDt

i > β Check if link is affected by subject’s presence
ζ t = [ζ tKDt

i] Add affected links to the end of the link set using (4)
end

end
if (length(ζ t) == 0)&&(length(ζ t−1) > 0) Check for edge cases

posEstimate = prevPos+ Eproject Accounting for an edge case, as in (15)
elseif (length(ζ t) == 0)&&(length(ζ t−1) == 0)

posEstimate = prevPos
else
if length(ζ t) == 1 Fix edge case if only one affected link present

using (17)
TXinjected = prevPos

RXinjected = prevPos+ Eproject
ζ t = [ζ t(TXinjected ,RXinjected )]

end
for j = 1 : length(ζ t)-1 Iterate through each pair of affected links
for k = 2 : length(ζ t)
[γ j,c, γ k,c] = ClsPoints(TX j,RX j,TXk,RXk) Calculate the closest point pairs using

Sunday’s method [50]
D
(
γ j,c, γ k,c

)
= DisBetSeg(TX j,RX j,TXk,RXk) Calculate the distance between each affected pair

using Sunday’s method [50]
if D

(
γ j,c, γ k,c

)
< η If affected link pairs points are within close proximity,

add to spring anchor set using (7)
SA = [SAγ j,cγ k,c]
W tmp = [W tmp(KDt

j ∗ KD
t
k)(KD

t
j ∗ KD

t
k)] Calculate weights with same indexing as SA

end
end

end
for i = 1 : length(SA)

if ((x̃ −ρ σ x) ≤ SAi,x ≤ (x̃ + ρσ x))&&
((ỹ+ ρσ y) ≤ SAi,y ≤ (ỹ+ ρσ y)) If both x and y coordinates of SA fall within bounds

set around the medians, include SA in the
final SAf using (8)

SAtf = [SAtf SAi]
W t
= [W tW tmpi] Create final weight set as in (9)

end
end
for i = 1 : length(W t) Iterate through each final weight

W t
i =

W t
i−min(W t )

max(W t )−min(W t )
Normalize final weight set to between 0-1, as in (10)

end
posEstimate = ASR(SAtf ,W

t , prevPos) Apply adaptive spring-relaxation, for t=1, set the
previous position estimate as the environments
entrance coordinate

end
−−−−→
project = posEstimate− prevPos Create projection vector for edge cases, as in (16)
prevPos = posEstimate Update previous position estimate

end
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Algorithm 2 [posEstimate] = ASR(SAtf ,W
t , prevPos)

for i = 1 : ψ Iterate until hitting the max number of iterations
for j = 1 : n Iterate through each spring anchor (n = length(SAtf ))
−→
dis = prevPos−SAf ,j Create a distance vector between the previous location estimate

and current spring anchor using (11)

f =
−→
dis∗W t

j Define the force for spring anchor j as in (12)
netf = netf − f The net force is defined equivalent to (13)

end
posEstimate D prevPos C τ∗netfn Define the current iterations position estimate, as in (14)
prevPos = posEstimate Update the previous position estimate

if mag(netf )∗τ
n < δ Return early if position estimate has reached predicted location

break
end

end

FPH spectrum analyzer was used to ensure that there was
no significant 2.4GHz interference present. Multiple walking
trajectories were used per subject in both environments to
ensure that we measured the algorithm’s performance across
the entire test space. For the test involving 20 nodes, the
red and blue nodes were used, as shown in Fig. 7. For tests
involving only 6 nodes, only the blue nodes were used.

We compared SpringLoc with three well cited DFL
approaches from literature: Fingerprinting-based SCPL, link-
based Ichnaea and RTI-based KRTI. For SCPL’s fingerprint-
ing, the office space was divided into 21 cells, and the church
hall was divided into 25 cells. Though SpringLoc can run
in real time, for these experiments, all RSSI values received
by the processing pc were stored to a file. This allows for
SpringLoc to be fairly compared with existing approaches
across both environments, using the exact same readings.
During testing, SpringLoc took an average of 8 milliseconds
to process each timesteps RSSI values. Since this is signifi-
cantly faster than the network rate of 5Hz, it confirms real-
time viability. For each test, two sets of data were recorded.
The first set of data included three fingerprint subsets. The
first subset recorded RSSI readings when no subject was
present in the test environment. The second subset consisted
of labeled RSSI readings when a single roaming target was
standing stationary at the center of each known cell. The
third subset included labeled RSSI readings from when a
single subject was moving randomly within the confines of
a single known cell. This dataset was used by any algorithm
that required them for offline calibration. The second dataset
consisted of the RSSI values recorded at 5Hz intervals when
a subject was walking at a known constant speed, through a
known trajectory. Care was taken to ensure that the walking
speed remained constant for each subject. For each of the
two environments, three walking trajectories were explored.
The subject would either walk near the perimeter in a clock-
wise or anticlockwise route, or the subject would follow a
zig-zag trajectory covering the whole test environment. The
trajectories traversed are outlined in Fig. 7 and were the same

in both the church hall and cluttered office space environ-
ments. This allowed us to compare whether the trajectory
had any influence on a DFL systems accuracy, and whether
the effect of walking along different trajectories affected
DFL algorithms differently.

For the first experiment, we utilized 20 nodes positioned in
a square, in the church hall, as shown in Fig. 7. The church
hall has no walls, support pillars or furniture within the imme-
diate vicinity of the test environment. This minimizes the
likelihood of dominant multipath propagation components,
providing an opportunity to compare SpringLoc with other
approaches under reasonably ideal conditions.

The second experiment, undertaken in the church hall,
and third experiment, undertaken in the office, utilized only
six nodes each. This was done to benchmark SpringLoc
against other RSSI based DFL approaches with a node den-
sity that would be realistically found within a Smart Home
deployment. We have represented the results with two Cumu-
lative Distribution Function (CDF) plots for each experi-
ment, (Fig. 8/Fig. 9 for experiment 1, Fig. 10/Fig. 11 for
experiment 2 and Fig. 12/Fig. 13 for experiment 3). The
first plot shows the accuracy of each separate walking trajec-
tory (clockwise/anticlockwise/zig-zag) within an experiment.
The second CDF plot combines the data from each trajectory
into one dataset and shows the overall performance for a given
experiment.

A. EXPERIMENT 1
Figure 8 clearly shows that a subject’s trajectory can greatly
influence the tracking ability of the traditional approaches.
This is not an issuewith SpringLoc as shown by the consistent
shape of the empirical CDF error curve. SpringLoc also
outperformed all other benchmarked approaches, achieving
better median and 90th percentile errors across every trajec-
tory. When the data across trajectories is combined, as seen
in Fig. 9, the effect of this becomes more pronounced, with
SpringLoc outperforming existing approaches by a signifi-
cant margin. This suggests that SpringLoc is more robust to
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FIGURE 7. Church hall test environment–node placement and walking trajectories.

FIGURE 8. Church hall 20 node results–(a) clockwise trajectory, (b) anticlockwise trajectory, and (c) zigzag trajectory.

FIGURE 9. Church hall 20 node results–combined trajectories.

spurious large errors than other approaches. This can also
be clearly seen by the maximum error in Fig. 9, where
SpringLoc’s maximum error is more than 1m lower than any
other approach.

FIGURE 10. Church hall 6 node results–combined trajectories.

B. EXPERIMENT 2
When the number of deployed nodes was reduced to six,
the performance of all algorithms degraded as expected.
However, unlike the other approaches, SpringLoc managed
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FIGURE 11. Church hall 6 node results (a) clockwise trajectory, (b) anticlockwise trajectory, and (c) zigzag trajectory.

FIGURE 12. Office space results (a) clockwise trajectory, (b) anticlockwise trajectory, and (c) zigzag trajectory.

to maintain a sub-meter overall median error, as shown
in Fig. 10, proving its viability even under a low node
density. It was also relatively unaffected by the subject’s
trajectory as shown in Fig. 11. This shows that SpringLoc
is resilient to varying walking trajectories and is also able
to maintain a superior accuracy to existing approaches,
even when the number of deployed nodes is reduced
from 20 to 6.

C. EXPERIMENT 3
Experiment 3 utilized 6 nodes in a cluttered office environ-
ment with potential for significant multipath components,
as shown in Fig. 3. SpringLoc outperformed all other bench-
marked algorithms and maintained consistent performance
across all trajectories as shown in Fig. 12. This suggests that
SpringLoc’s superior accuracy is less susceptible to environ-
mental variations, as it maintained the best localization error
across multiple indoor test locations. It was also the only
approach that did not suffer from errors exceeding 4m, as
shown in Fig. 13.

V. DISCUSSION
The CDF plots have been provided for SpringLoc as they
allow for algorithms performance to be compared over the
whole quartile range, rather than using a singular numeri-
cal metric. To provide consistency with existing literature,
numerical results are also provided in Table 2. Since literature
does not have an agreed numerical standard for benchmark-
ing DFL algorithms, we use metrics standardised by indoor
active tracking. The EvAAL framework recommends using
the ‘third quartile of point Euclidiean error’, equivalent to
the 75th percentile error [51]. The formal standard ISO/IEC
18305 has been recently introduced to standardize indoor
localization scoring, however it does not provide explicit
guidelines for DFL [52]. ISO/IEC 18305 mentions three
scoring metrics that can be utilized by a DFL approach. It rec-
ommends using the Root-Mean-Square-Error (RMSE), Cir-
cular Error Probable (CEP), and Circular Error 95% (CE95).
CEP is equivalent to the 2d 50th percentile Euclidean
error, and CE95 is equivalent to the 2d 95th percentile
Euclidean error. We have incorporated these, alongside the
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FIGURE 13. Office space results combined trajectories.

90th percentile error in Table 2. As can be observed,
SpringLoc significantly outperforms the other algorithms in
every scenario. As expected, when the node density decreased
to 6 nodes in experiment 2, from 20 in experiment 1, localiza-
tion performance decreased with every algorithm. With the
lower node density, SpringLoc was the only algorithm that
managed to maintain a sub-meter median error. SpringLoc
also outperformed other approaches in experiment 3 which
featured both a low node density, and complex multipath
propagation paths caused by the environment itself. It was the
only approach that managed to maintain an RMSE below 2m,
and a 90th percentile error below 3m.

Though SpringLoc outperformed all other approaches,
it did experience a significant increase in median error
from 0.83m in the open church hall, to 1.57m in the clut-
tered office space. SpringLoc utilizes EWMA weighted his-
tograms, which actively dampen the effect of any spurious
outlier values. However, it still suffers increased error if the
multipath propagation introduces significant non-transient
fading. This shows that while SpringLoc does not presume
the noise will follow a zero mean gaussian distribution, it is
still detrimentally affected if the complex propagation envi-
ronment interferes with the average variance that a person
introduces to the environment. If an accurate noise model
could be attained for complex indoor environments, the accu-
racy of SpringLoc could improve by better understanding
how the attenuation introduced by a target fluctuates due to
noise.

Since SpringLoc can form its long-term histogram dur-
ing live operation, it does not require offline measurements.
Therefore, its parameters can be optimized in advance and
deployed at an unknown environment without a signifi-
cant setup cost. Parameters were tuned empirically within
a test room, before being deployed in both the Church Hall
and Office Space shown. Only the affected link threshold
parameter (β) optimized for Church Hall and Office Space
respectively.With the other parameters being kept unchanged

TABLE 2. Numerical results.

from their initial test room tuning, SpringLoc still managed
to outperform all existing approaches. This shows that the
parameters are largely transferable between varying environ-
ments, while maintaining an acceptable localization accu-
racy. Since the affected link threshold is largely coupled
with the number of nodes deployed, this could be further
generalized based on a given number of nodes and deploy-
ment area. An end user only needs to know the number
of deployed nodes, and approximate localization area to
set up a SpringLoc based system. For example, based on
our empirical testing, the maximum β value can be heuris-

tically estimated as: 2 ×
(√

Nodes/
√
Area

(
m2
))
. Thus,

a 140m2 house utilizing 8 nodes would have an estimated
maximum β value of 0.53. When a large number of links
are available, a large value can be set for β, which causes
the system to only react to strongly affected links, result-
ing in increased accuracy. For low node deployments, there
may be multiple areas with very sparse link density. Since
this reduces the likelihood that moving subjects will trig-
ger strong link interactions, the threshold is reduced. This
acts to reduce the number of potential blind spots within an
environment.
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VI. CONCLUSIONS AND FUTURE WORKS
SpringLoc has shown that careful ‘affected link’ selec-
tion based on histogram difference, coupled with spring-
relaxation can increase the performance of an RSSI based
DFL approach in real life scenarios. In the initial 20 node
benchmark, SpringLoc surpassed all other algorithms,
achieving median and 90th percentile errors of 0.60m and
1.16m respectively. SpringLoc achieved a median localiza-
tion accuracy of 0.83m in the church hall and 1.57m in the
office space, surpassing existing approaches median error by
up to 59%, when the node density was reduced.

Though SpringLoc does not require any offline mea-
surements, it does need to know the location of the
transceiver nodes. Future work could include performing
self-localization [53-55] on the nodes themselves, while
following a deployment strategy that could be realistically
followed by end users. This paper only investigated single
entity localization; multi-entities is left for future work. This
could be accomplished by using a separate set of springs for
each detected entity, after accurately counting the number
of subject’s present, and the affected links for each. Fur-
thermore, RSSI is a coarse metric when compared to Wi-Fi
CSI. If CSI ever became readily accessible in COTS equip-
ment, SpringLoc could be implemented using CSI to further
improve the performance.
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