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ABSTRACT The fault diagnosis of the gearbox is a complex and important work. In this paper, a multilayer
gated recurrent unit (MGRU) method is proposed for spur gear fault diagnosis, that is, three-layer gated
recurrent unit (GRU). The vibration signals are firstly monitored on the test bench, and then extracted in both
time domain and time-frequency domain. Finally, MGRU is used to learn representation and classification.
The MGRU can improve the representation of information and identify the features of fault types more
precisely with the increasing number of layers. The proposed method was tested by two spur gears with
10 state modes. To evaluate the method’s classification accuracy, four methods were utilized for comparison,
i.e., the GRU, long short-term memory (LSTM), multilayer LSTM (MLSTM), and support vector machine
(SVM), respectively. In addition, the separability and robustness analysis are also discussed for the proposed
MGRU performance. All of the results exhibited that the proposed MGRU approach is effective for spur gear

fault diagnosis.

INDEX TERMS Fault diagnosis, vibration, gated recurrent unit, separability, robustness.

I. INTRODUCTION
With the improvement of automation in modern production,
the demand for equipment is increasing sharply, and the main-
tenance of equipment is also paid more attention [1]. As an
important part of mechanical equipment, gearbox is a crucial
connection and transmission device. In the gearbox, the gear
failure rate is the highest [2], such as wear, pitting and broken
teeth [3]-[5]. These faults may lead to the interruption of the
production of machinery and equipment, resulting in huge
losses and even human casualties [1]. Therefore, the study
of gear fault monitoring and diagnosis is extremely critical.
In the early stage of the development of statistical science,
researchers and engineers can only make some assumptions
about the background distribution of a small sample, such
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as independent normal distribution, and then establish some
hypothetical mathematical models. But these methods cannot
deal with complex big data. With the development of com-
putational systems, scholars have researched many compu-
tational methods (or data-driven model) to deal with a large
number of problems. For instance, artificial decision trees [6],
random forests [7], support vector machines (SVM) [8] and
other algorithmic models [9], [10] have been reported and
widely used in this field.

As reported in literature [11], a hierarchical clustering
selection based weighted random forests scheme is pro-
posed for fault classification in complex industrial processes.
Literature [12] presented a novel signal processing scheme,
bandwidth empirical mode decomposition, and adaptive
multi-scale morphological analysis for early fault diagnosis
of rolling bearings. In these methods, the SVM has been
successfully applied for fault diagnosis because of its accurate
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classification ability [13]-[15]. The viewpoint of HVCBs
based on an adaptive kernel principal component analysis and
the SVM method is put forward in literature [16].

Data sequence information collected by sensors is
very important for describing machine state. However,
the machine learning methods mentioned above may not
capture the intrinsic relationship between data and state [17].
As a branch of machine learning model, deep learning has
great advantages in this respect [18], [19]. It mainly extracts
hierarchical representation from input data by establishing
a depth neural network of multi-layer non-linear transfor-
mation. By connecting layers with layers, the conversion
from input value to output value can be achieved, and the
information behind the data can be explored sufficiently.
Literature [20] proposed a deep classifier model, which indi-
cated the superiority of deep learning.

In deep learning, long short-term memory (LSTM) model
with memory function has received a lot of attention and
research [21], [22]. But the LSTM has little potential for
more complex tasks. To solve this problem, gated recurrent
unit (GRU), proposed by Cho [23] in 2014, can better handle
large training data. The GRU synthesizes a single update gate
with the forgetting gate and the input gate. The final model
is simpler and faster than the standard LSTM model [24].
It has been used in video recognition [25], atmosphere quality
management [26], and some other fields. In the machine
health monitoring, [27] experimented the local feature-based
GRU on machine health monitoring tasks to verify the
effectiveness.

However, these data-driven approaches are limited to
specific research sample style to some extent. Therefore,
the study of different data characteristics of samples can more
accurately establish a high-performance analysis model [28].
For fault diagnosis, extracting common time, frequency and
time-frequency domain analysis features and using them as
input of the model can achieve better data fusion [29]. Fol-
low these principles, the structural steps of this paper are
divided into the following three phases: (1) signal acquisition.
Acquisition of useful signals is the precondition. Generally,
the signals of vibration [30], sound [31], electric current [32]
and some other signals are collected in most cases [33], [34].
A fault monitoring test bench is constructed in this paper, and
vibration signals are collected, which is also the most com-
monly used signal acquisition method for researchers [35].
(2) Signal processing. Manual extraction of some representa-
tive features. (3) Fault diagnosis using appropriate models.
In this paper, the author uses the deep learning method to
construct the neural network gear fault diagnosis, and pro-
poses a gear fault diagnosis method based on multilayer gated
recurrent unit (MGRU) model.

The main original contributions of this research are pre-
sented as follows:

1) The multi-layer neural network model has a very strong
learning ability. The feature data processed by the
multi-layer model can simulate the original data better,
which is conducive to the realization of classification
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problems. The advantage of this method is that it can
express features more deeply and has stronger function
simulation ability. Each layer of neurons learns the
more abstract representation from the former layer, thus
gaining better discrimination and classification ability.
At the same time, due to adding a small number of
layers and parameters, the computational complexity is
within the acceptable range.

2) For gear fault diagnosis, this paper compared the
LSTM, the multilayer long short-term memory
(MLSTM), the GRU, the MGRU and the SVM models
respectively. The experimental analysis of these models
shown that the MGRU network can effectively improve
the accuracy of gear fault diagnosis.

The rest of this paper is organized as follows. Section II
describes the modeling methods used in this paper. Section III
illustrates experimentation test bench, data set and feature
extraction method. Section IV gives the experimental results
of the proposed model and compares the other machine learn-
ing algorithm for fault diagnosis. Finally, conclusions are
given in Section V.

Il. METHODOLOGIES

In this section, the systematic methodologies are described in
detail. The first subsection introduces the feature extraction
method, the classifier MGRU for the modes’ fault diagnosis is
described in the second subsection, the third subsection sum-
marizes our experimental steps, and the compared approaches
are drawn in the last subsection.

A. FEATURE EXTRACTION
Sensors can only be placed outside the shell, and the sig-
nals collected are the synthesis of vibration information.
Therefore, it is difficult to distinguish whether a machine
has a fault or not only by extracting the time-domain fea-
tures. Wavelet Packet Transform (WPT) can intuitively and
effectively describe the fault characteristics of signals [36].
The process of extracting characteristic parameters of
WPT energy spectrum is as below.

Firstly, choose suitable mother wave to decompose the
vibration signal with n-layer wavelet packet, and the coef-
ficient vectors are obtained as follows:

Oxlx2 . 2 (1
where x,’;(i =0,1,2,...,2" — 1) denotes the coefficients of

the i-th node of the n-th layer decomposed.

Secondly, when the wavelet packet decomposition coeffi-
cient is reconstructed, the reconstructed total signal S can be
expressed as:

2"—1
S=Y5 2)
i=0
where S,’; denotes signal of the i-th node in the n-th layer.
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TABLE 1. Description of 12 time-domain statistical features.

Time-domain features

Formula

Description

Average value

Standard deviation

Skewness A, (x)=—"=

A =12 x(0)

A= LS - 4,
N

%ﬁ(x(i) A

A, (x): measures the average change of signals.

A>(x): measures the energy evolution of a signal.

3 As(x): measures the asymmetry of vibration Signals.

[%gxsz

Peak-to-peak value

A, (x) = max(x(i)) — min(x(7))

As(x): measures the asymmetry of the data about its mean
value.
As(x): measures the fluctuation degree of signal deviation

Variance As(x) = A, (x)° from center trend.
N
Kurtosis Z(x(i )— 4 (x)* As(x): measures the peakedness, smoothness, and the
Ag(x)= W heaviness of tail in a data set.
x A (x
N
Root mean square A,(x) = %sz(i) A7(x): measures the energy evolution of a signal.
i=1
PPNAE R N
Waveform factor G (x) = 1< As(x): a dimensionless index which is more sensitive to
N Zx(i) the operation state of the unit.
i=1
Peak factor 4, (x) = max(x(i)) Ao(x): measures how extreme the peaks are in a
A, (x) waveform.
Kurtosis factor A,(x)= Af,(x) Aio(x): measures the shock characteristics in vibration
10 A7(x)4 signals.
A (x) = max(x(i))
Impulse factor ! 1 ix(i) A11(x): measures the shock in the signals.
N i=1
. max(x(i)) . A

Margin factor A, (x)= W Aj2(x): measures the wear of machinery and equipment.

1

Then the energy values corresponding to each sub-band are

calculated.
E} = /

where x,i represents the amplitude of the reconstructed sig-
nal S}, and N denotes the number of vibration signal samples.

Finally, the eigenvector of energy spectrum F is finally
constructed.

2 N
Sio)| e =3 bl 3)
k=1

m_1]
E= Y (E)
i=0

0 1 2"—1
EY En E?

This paper uses common time domain features and
the WPT to extract features in different time and time-
frequency domains, thus providing an effective method for
more complex fault diagnosis. For the signals measured
in the accelerometers, the 20 considered features are used.
There are 12 time-domain statistical features summarized
in TABLE 1 and 8 time-frequency features, extraction of

“
F =
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time-frequency features by WPT. In the experiment of the
vibration signal, the WPT with “daubechies 1"’ (mother wave
function) is applied to perform 3-levels decomposition, and
results in 8 decomposed frequency bands. Through calcula-
tion, the energy sum for each frequency band can be obtained,
which represents the 8 features of vibration signal in time-
frequency domain (w; — wg).

B. MGRU

Gated Recursive Unit (GRU) [23] is a model of the classifica-
tion and prediction algorithm variation from long short term
memory network (LSTM) [24]. The core idea of the LSTM
and GRU is ““cell state”. It controls the ability of information
to flow to the cell state by a structure called “gate”. A gate
includes a sigmoid neural network layer and a multiplication
operation, which is shown in FIGURE 1.

The values between 0 and 1 are outputs by the *“Sigmoid™
layer, where O stands for “no quantity allowed to pass’ and
1 means ‘“‘any quantity allowed to pass”. The LSTM has
three gates to protect and control the “unit” state in order to
maintain long-term dependence on information. Each black
carries an entire vector, and the circle represents a point-wise
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O—

FIGURE 1. The illustrations of a “gate”.

operation (The function values of each point in the definition
field are calculated separately). The main steps of LSTM are
as follows:

1) Forget gate f;. It’s used to decide what information to
throw away from a cell. For the #-th sample of a set
of data, the current input x; and neuron information /;
are read by this layer, and the discarded information is
determined by f;.

fi=8W x, + U 1,_y) o)

where the § is activation function, W/ is the weight
matrices of f; gate, and the U/ is parameter matrix.

2) Input gate i;. It is used to identify new information
stored in cells state, including input gate layer and
a new memory cell. These two layers represent the
values i; to be updated and add a new candidate value
vector dt/ , respectively. That is, adding new ones to
the cell state to replace the old ones that need to be
forgotten.

ir = 8(Wix; + U'l,_y) (©6)
d, = tanh(W9 x, + U4 I,_) 7)

where the fanh is activation function, W', wd' are
weight matrices of i; and dt/ gates, respectively. The
U’ and U? are parameter matrixes.

3) Output gate m;. It is used to update the state of old cells.
That’s to turn d;_; into d;.

di =fiod,_,+iod, ®)
my = S(W"x; + U"l;—1) 9

where the o denotes the element-wise product, W™ is
the weight matrices of m; gate, and the U™ is parameter
matrix.

4) Output the final result /,. It is based on cell state.
Specific steps are as follows:

l; = my; o tanh(d;) (10)

The GRU is a very popular variant of the LSTM, and the
same gate control mechanism is also used in the GRU. It can
overcome the problem of gradient disappearance. But there
are some differences in the GRU. That is, the forget gate f;
and input gate i; in the LSTM are synthesized into an update
gate. Similarly, cell state and hidden state are mixed. Hence
the GRU has only two gates: update gate z; and reset gate ;.
Compared with the LSTM, the structure is simpler and the
calculation of the GRU is much less. Its structure is explained
in FIGURE 2.
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FIGURE 2. The illustrations of GRU model.

The update gate z; is used to control the extent of the state
information between the previous moment and the current
state. The reset gate r; is used to control the degree of ignoring
the state information of the previous moment. For an input
vector x;, conversion functions in the GRU hidden elements
are given as follows:

7z = 6(Wx + V*H, 1) (11)
re =8W'x; +V'H,_y) (12)
hy = tanh(Wx; + VE(ry 0 hy—1)) (13)
H =0-z)oH—1+zoh (14

where W?, W' are weight matrices of z; and r; gates, respec-
tively, W€ is the weight matrix of the output state, H,_ is the
input data at time #- 1, o denotes the element-wise product,
h; and H, are candidate states and output states at time 7,
8 and tanh are activation functions for update gate and reset
gate, and V¢, V" are parameter matrices and vector.

For the neural network models, increasing the layers and
time steps will enhance the memory ability of the model.
On the contrary, if add too many layers, the complexity of the
model will also increase significantly. Therefore, this paper
uses the layer-by-layer optimization method [37]. That is, on
the basis of the trained model, add new levels and retrain,
and then fine-tune the whole network. The first layer of the
proposed model MGRU takes geometric features as inputs,
and the upper GRU layer takes the output from the lower
GRU layer as the inputs. After three layers of the GRU model
training, the final results of fault diagnosis are obtained.

C. OVERVIEW OF OUR APPROACH ARCHITECTURE

The process of the fault diagnosis is shown in FIGURE 3.
In the proposed framework, the experimental steps of fault
diagnosis are summarized as follows:

1) Step 1: Collect vibration signals from sensors installed
on test-bench;

2) Step 2: Features calculating. Extract the time domain
{Ajli = 1,2,...12} and the time-frequency domain
{B;jli =1, 2, ...8} of the vibration signals.

3) Step 3: Determine parameter values layer and epoch.
Classification of each spur gear status {s_ili =
1,2,...10} by executing MGRU model.
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Fault diagnosis

Output
Input ‘

3nd layer
MGRU§ 2nd layer

Ist layer

Matrix after
feature extraction

aC
j

Vibration | TN TN [T T b‘“ oA

signal

A
Carried out
arriec ou The Test bench I
experiments

FIGURE 3. The architecture of our proposed approach. This framework is
able to classify target from vibration signal.

0
T

D. PRECISION INDEX
To assess the accuracy, the criterion is formulated as follows:

S
Acc = S— x 100% (15)

t

where S, is the right number and S; is the total number.

E. BASELINE

To evaluate the method’s performance, four methods were
applied to compare, i.e., GRU, LSTM, MLSTM, and support
vector machine (SVM), respectively. The GRU model and
LSTM model have been introduced in detail in Section II.
In order to maintain the consistency principle of experimental
comparison, the structure of the MLSTM is similar to MGRU
to a great extent. But the units with three gates are used
in MLSTM.

The SVM is a typical machine learning algorithm [38], and
it is widely used in the field of fault diagnosis, so this paper
chooses it as a comparative model. According to the limited
sample information in machine statistical learning, it is able to
find the best balance between the complexity of the model and
the learning ability. It can map samples from original space
to high-dimensional feature space, and separates them as far
as possible in order to obtain the best classification ability.
Given a training set {(x;, y))|i = 1,2, ...n} with the input
vector x; € R" and the output value y; € {—1,1}, n is the
number of training samples. They can be separated by a hyper
plane, it is as follows:

wx+b=0 (16)
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FIGURE 4. Experimental configurations: E xperimental set-up. (a): Motor;
(b): Electromagnetic torque break, (c): Controller; (d): Accelerometer;
(e): Data acquisition box.

where w is the weight coefficient vector in the feature space,
and b € R is a constant. For linear inseparable problems,
the kernel function k is needed to achieve linear separable.

I 1 I
1
pla) = E ai =5 E Zaiajymk (i)
i=1

i=1 j=1
1
s.t. Zaiy,- =0, 0<ag;<B (17
i=1

where k(x;, x;) is the kernel function, g; is the Lagrange
operator; B is the punishment factor, that is, tolerance of
errors. Generally, the radial basis function (RBF) is used as
the kernel function [36]. It can be expressed as follows:

k(xi ;) = exp(—g |[xi — x5 g>0 (18)

where g is the kernel parameter, it implicitly determines the
distribution of data after mapping to a new feature space.

Ill. EXPERIMENTAL TEST BENCH

In this study, experiments are carried out on the gear box
fault diagnosis test bench. The experimental system is shown
in FIGURE 4. The coupling connects the motor (Spec-
ification: SIEMENS, 3~, 2.0HP), the input shaft of the
gearbox. The output shaft of the gearbox is connected with
the electromagnetic torque circuit breaker (Specification:
ROSATI, 8.83kW). The controller (Specification:
TDK-Lambda, GEN 100-15-IS510) manually adjusts the
torque breaking load. The vibration signal is collected by
an accelerometer (Specification: PCB ICP 353C03), and
then through a data acquisition box (Specification: DAQ,
NI cDAQ-9234), it is sent to a laptop computer.

As shown in FIGURE 5, two spur gears (number of teeth
Gearl = 53, and Gear2 = 80) were installed on the gearbox.
Fault diagrams and type descriptions of single spur gears
are shown in TABLE 2. There are nine failure modes in
combination of the two spur gears, plus a healthy state, there
are ten different modes. The type state diagram of spur gear
faults is indicated in TABLE 3.
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TABLE 2. Condition patterns of the sun gear used in the experiment.

Fault State Diagram fault type Description
1
1: a small part of the gear
Broken tooth 25%
| roxett oo ’ teeth has been broken.
\
2
Broken tooth 50% 2: half of the teeth of the
gear are broken.
s Chaffing tooth 3: The whole independent

B Y

Missing tooth

Worn tooth

Crack tooth 25%

Crack tooth 100%

Chaffing tooth 50 %

groove appears.

4: breaking of whole
teeth.

5: cracks like meshes.

6: the slippery part of the
tooth surface produces
shallow grooves.

7: the sliding part of the
tooth surface produces
deeper grooves.

8: half independent
groove appears.

TABLE 3. The type of fault in the spur gear.

state modes Gearl Gear2

s 1 Normal Normal

s 2 Chaffing tooth Normal

s 3 Worn tooth Normal

s 4 broken tooth 25% Normal

s 5 broken tooth 50% Normal

s 6 Missing tooth Normal

s 7 Normal Crack tooth 25%
s 8 Normal Crack tooth 100%
s 9 Normal Chaffing tooth 50 %
s 10 broken tooth 25% Crack tooth 25%

In the experiment, the load condition is 30V. With the
sampling frequency 50 kHz, signals each with the duration
0.5 sec were collected. After receives the vibration signal,
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FIGURE 5. The spur gear configuration.

4500 sample points are consist the whole data sets. Each fault
condition includes 5000 sample points. In the experimental
process, the sample is split into two sets: 3000 samples
for training and 1500 samples for testing. Since there are
20 features, a total of 4500 characteristic signals in the time
domain and time-frequency domain are extracted. Then a
4500 x 20 original feature matrix is obtained.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In the task of gearbox fault diagnosis, as mentioned before,
the 3000 samples are chosen to train the classifiers, and the
1500 samples are selected for testing. For each classifier,
five experiments were carried out to compare the stability
of the classification results. The training and testing data
are selected randomly from the compressed feature matrix in
each trial.

In order to test the performance of the designed MGRU
spur gear fault diagnosis, three capabilities of accuracy, sep-
arability and robustness are studied respectively.

A. CLASSIFICATION CAPACITY

Through the previous work [27] and the characteristics of
our data, structures of MGRU are defined as that the number
of hidden layers are 3, 400 nodes in the first hidden layer,
300 nodes in the second hidden layer, and 200 nodes in the
third hidden layer, respectively. The epoch number is 50.
Based on these settings, the average result is 98.13%.

Regarding the MLSTM model [37], the nodes of layer 1,
layer 2 and layer 3 are set to be 200, 100 and 100, respectively.
The epoch number is also 50. In this case, the average of
accuracy is 94.08%.

Regarding the GRU and the LSTM, the hidden layer units
are 300 and 100 respectively. The epoch number is 50, too.
The average of the five experiments results is 94.41% in GRU
and 93.62% in LSTM respectively.

Regarding the SVM model in this paper, B is 1.0 and g
is 200, and the average result is 91.4%.

Detailed results are shown in TABLE 4, and the Box-plot
in FIGURE 6. Four findings can be drawn:

1) Among the MGRU, the GRU, the MLSTM, the LSTM
and the SVM models, the MGRU has the highest aver-
age classification accuracy in fault diagnosis.
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TABLE 4. Five test results of different models and their average accuracy.

Value of 4cc in each time (%)
1 2 3 4 5
MGRU 97.61 9826  97.86 98.53 98.4 98.13
GRU 95.66 94.12 93.78 94.36 94.12 94.41
MLSTM  95.13 95.33 91.60 95.86 96.06 94.08
LST™M 93.92 92.07 94.64 93.4 94.07 93.62
SVM 91.46 90.83 91.3 91.02 92.38 91.40

Model

Average

T T T T T
9% I _ —

S

== =

£

3 94T

3

<
| + é _

L L L L L
MGRU GRU MLSTM LSTM SVM
Models

FIGURE 6. Box-plot of different models.

2) Multi-layer neural network has better classification
effect than single-layer neural network. The MGRU
model is improved by 3.72% on the basis of GRU and
MLSTM improved by 0.46% on the basis of LSTM.

3) The four neural network models (MGRU, GRU,
MLSTM, and LSTM) perform better than the tradi-
tional data-driven model of SVM.

4) When these five experiments were carried out,
the value distribution of MGRU model was concen-
trated and the veracity is highest. The MLSTM experi-
ment produces outliers. The other three models (GRU,
LSTM, and SVM) deviate greatly from the maximum
and minimum values.

B. SEPARABILITY

Mechanical signals are chaotic. Whether the proposed model
can extract effective information from them and classify
them accurately is very important. To illustrate the effective-
ness of the proposed method intuitively, the representation
of fault classification results are visualized in FIGURE 7.
In this paper, principal components analysis (PCA)
algorithm [39]-[41] are used to reduce the dimension of
features and project the high-dimensional representation into
two-dimensional space. It can compress data as much as
possible to retain the main features of variables, while min-
imizing the loss of information. Scatters of different colors
and shapes represent ten different categories froms_1tos_10
in Table 3, respectively.
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s 1

FIGURE 7. 2D Projection of Fault classification results. The representation
is learned by MGRU.

TABLE 5. Settings with different parameters.

Experi-

Layer 1 Layer 2 Layer 3 epoch

ment
[600,500,400

ex_1 300 200 50

,300,200]

[500,400,300,
ex_2 400 200 50
200,100]
[400,300,200,
ex_3 400 300 50
100,50]
[70,60,50
ex_4 400 300 200
~ ,40,30]

The graph shows that there are a small part of the classifi-
cationresults of s_2 ands_7, s_4 and s_8 coincide, because of
signal aliasing when collecting vibration signals. It may exist
due to some uncontrollable factors. However, several other
fault types show a strong classification effect, especially the
s_1,s_3,s_5,s_6,s_9,s_10 fault types.

The separability indicates that our model can learn from
mechanical signals to identify fault types, and through train-
ing, can carry out strong information representation, which
provides a powerful tool for fault diagnosis.

C. ROBUSTNESS

In addition, the robustness of our approach was investigated.
There have two main parameters in the MGRU model, that
is, the number of neurons per layer, Layer_i, (i = 1,2, 3) and
the number of iterations epoch. Four experiments are shown
in the TABLE 5 for testing its robustness. In the ex_1, we vary
the number of Layer_1 in the range [600, 500, 400, 300, 200],
and keep other parameters unchanged as original parameters
(The original parameters are: Layer_I = 400, Layer_2 =
300, Layer_3 = 200 and the epoch = 50). In the same way,
compared with the original parameters, the different in ex_2
just changed the number of Layer_2 with the range [500, 400,
300, 200, 100], the number of Layer_3 in the range [400, 300,
200, 100, 50] is changed in ex_3, and the range of epoch is
[70, 60, 50, 40, 30] in ex_4.
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100,

500 400 300 200 100
Numbers of Layer 2
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400 300
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FIGURE 8. Performances of MGRU under different parameters of the sizes of different layers. (a) is the
results of ex_1; (b) is the results of ex_2; (c) is the results of ex_3.

FIGURE.8 summarizes the classification accuracy using
different numbers of the layer units. The same experiment
was repeated five times for each combination of parame-
ters. The abscissa represents the parameter values of the
experimental robustness, and the ordinate represents the clas-
sification accuracy. The experimental results of ex_1 are
shown in FIGURE. 8(a). In ex_1, When the parameter set is
(Layer_1 = 300, Layer_2= 300, Layer_3 = 200 and the
epoch = 50), the average prediction accuracy of the five
experiments is the worst, 97.938%; when the parameter set
is (Layer_I= 400, Layer_2 = 300, Layer_3 = 200 and the
epoch = 50), the average prediction accuracy of the five
experiments is the best, 98.126%. So even though the param-
eters vary greatly, the effect on the experimental results is
only 0.188%. The experimental results of ex_2 are shown in
FIGURE.8(b). The best average prediction accuracy of five
experiments is 98.318%, the worst is 97.764%, and the dif-
ference is 0.554%. Similarly, the experimental results of ex_3
are shown in FIGURE.8(c). The best average prediction accu-
racy of five experiments is 97.912%, the worst is 97.504%,
and the difference is 0.408%.

FIGURE.9 shows the classification accuracy using differ-
ent numbers of the epoch numbers. The best average pre-
diction accuracy of five experiments is 98.01%, the worst
18 97.222%, and the difference is 0.788%.

The red lines in FIGURE.8 and FIGURE.9 show the
overall average accuracy of the experiment in ex_1, ex_2,
ex_3 and ex_4. They are 98.034%, 98.026%, 97.691%
and 97.566% respectively. In summary, the different setting
of parameters has little effect on classification accuracy.
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FIGURE 9. Performances of MGRU under different epoch numbers, that
is, ex_4.

Obviously, the robust performance of the proposed method
validates its generalization ability to diagnose various fault
severity and mechanical equipment faults under different
parameters.

V. CONCLUSION

Fault diagnosis plays an essential role in equipment main-
tenance. This paper introduces a fault diagnosis method
based on a multi-layer GRU model. In this method, a deeper
feature simulation is performed by adding layers of neural
networks. Specifically, the vibration signals of healthy spur
gears and nine different fault types are firstly collected on
the experimental platform. Secondly twelve kinds of time
domain feature extraction and eight WPT time-frequency
domain feature extraction are carried out, and they are input
into the three-layer GRU model to diagnose fault at last.
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To verify the classification accuracy, four comparative exper-
iments is carried out, i.e., the LSTM, the MLSTM, the
GRU, and the SVM. In addition, the diagnostic performance
of the proposed method is verified in terms of separabil-
ity and robustness analysis. The following conclusions are
drawn:

1) Based on the average classification accuracy gener-

ated by five classifiers, the results show that the fault
classification accuracy of multi-layer model is higher
than that of single-layer model, and the proposed model
MGRU has the best classification accuracy.

2) The separability analysis of the proposed method indi-

cates that the MGRU model can extract the information
behind the chaotic mechanical signals and separate the
fault types. It has strong information representation
ability.

3) Based on the robustness analysis of the different param-

eters in the experiment MGRU, the fluctuation of clas-
sification accuracy in each trial are relatively small,
illustrating that the model is insensitive to parameter
change and has high stability. Therefore, the proposed
model has a great contribution to the research of fault
diagnosis.

ACKNOWLEDGMENT

The authors thank for the data provided by the China-Ecuador
Joint International Laboratory for Intelligent Manufactur-
ing State Monitoring. In addition, the authors are indebted
to the editors/reviewers for their valuable comments and
suggestions.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

M. Cerrada, G. Zurita, D. Cabrera, R.-V. Sanchez, M. Artés, and C. Li,
“Fault diagnosis in spur gears based on genetic algorithm and random
forest,” Mech. Syst. Signal Process., vols. 70-71, pp. 87-103, Mar. 2016.
doi: 10.1016/j.ymssp.2015.08.030.

C. Li, J. L. V. de Oliveira, M. L. Cerrada, D. Cabrera, R. Sanchez,
and G. Zurita, “A systematic review of fuzzy formalisms for bear-
ing fault diagnosis,” [EEE Trans. Fuzzy Syst., to be published.
doi: 10.1109/TFUZZ.2018.2878200.

B. Chen, Z. Zhang, C. Sun, B. Li, Y. Zi, and Z. He, ‘‘Fault feature extraction
of gearbox by using overcomplete rational dilation discrete wavelet trans-
form on signals measured from vibration sensors,” Mech. Syst. Signal Pro-
cess., vol. 33, pp. 275-298, Nov. 2012. doi: 10.1016/j.ymssp.2012.07.007.
Y. Li, Y. Wei, K. Feng, X. Wang, and Z. Liu, “Fault diagnosis of
rolling bearing under speed fluctuation condition based on Vold-Kalman
filter and RCMFE,” IEEE Access, vol. 6, pp. 37349-37360, Jul. 2018.
doi: 10.1109/ACCESS.2018.2851966.

C. Li et al., “A comparison of fuzzy clustering algorithms for bearing
fault diagnosis,” J. Intell. Fuzzy Syst., vol. 34, no. 6, pp. 3565-3580, 2018.
doi: 10.3233/JIFS-169534.

E. Scheurwegs, M. Sushil, S. Tulkens, W. Daelemans, and K. Luyckx,
“Counting trees in random forests: Predicting symptom severity in psy-
chiatric intake reports,” J. Biomed. Inform., vol. 75, pp. S112-S119,
Nov. 2017. doi: 10.1016/j.jbi.2017.06.007.

B.-S. Yang, X. Di, and T. Han, “Random forests classifier for machine
fault diagnosis,” J. Mech. Sci. Technol., vol. 22, no. 9, pp. 1716-1725,
Sep. 2008. doi: 10.1007/s12206-008-0603-6.

Y. Bai et al., “A comparison of dimension reduction techniques for sup-
port vector machine modeling of multi-parameter manufacturing quality
prediction,” J. Intell. Manuf., pp. 1-12, Jan. 2018. doi: 10.1007/s10845-
017-1388-1.

56888

9

—

[10]

(11]

[12]

[13]

(14]

(15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

(27]

H. Darong, K. Lanyan, C. Xiaoyan, Z. Ling, and M. Bo, “Fault diagnosis
for the motor drive system of urban transit based on improved hidden
Markov model,” Microelectron. Rel., vol. 82, pp. 179-189, Mar. 2018.
doi: 10.1016/j.microrel.2018.01.017.

G. Zhang, T. Yi, T. Zhang, and L. Cao, “A multiscale noise tuning
stochastic resonance for fault diagnosis in rolling element bearings,” Chin.
J. Phys., vol. 56, pp. 145-157, Feb. 2018. doi: 10.1016/j.cjph.2017.11.013.
Y. Liu and Z. Ge, “Weighted random forests for fault classification
in industrial processes with  hierarchical clustering model
selection,” J. Process Control, vol. 64, pp. 62-70, Apr. 2018.
doi: 10.1016/j.jprocont.2018.02.005.

Y. Li, M. Xu, X. Liang, and W. Huang, “Application of bandwidth
EMD and adaptive multiscale morphology analysis for incipient fault
diagnosis of rolling bearings,” IEEE Trans. Ind. Electron., vol. 64, no. 8,
pp. 6506-6517, Aug. 2017. doi: 10.1109/TIE.2017.2650873.

H.Yi, C. Y. Du, C. B. Li, A. G. Wu, and X. Ying, “Sensor fault diagnosis
of superconducting fault current limiter with saturated iron core based
on SVM,” IEEE Trans. Appl. Supercond., vol. 24, no. 5, Oct. 2014,
Art. no. 5602805. doi: 10.1109/TASC.2014.2352391.

G. Sun, Q. Hu, Q. Zhang, A. Qin, and L. Shao, “Fault diagnosis for rotating
machinery based on artificial immune algorithm and evidence theory,” in
Proc. 27th Chin. Control Decis. Conf. (CCDC), May 2015, pp. 2975-2979.
doi: 10.1109/CCDC.2015.7162380.

F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu, “Board-level func-
tional fault diagnosis using artificial neural networks, support-vector
machines, and weighted-majority voting,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 32, no. 5, pp. 723-736, May 2013.
doi: 10.1109/tcad.2012.2234827.

J. Ni, C. Zhang, and S. X. Yang, “An adaptive approach based
on KPCA and SVM for real-time fault diagnosis of HVCBs,”
IEEE Trans. Power Del., vol. 26, no. 3, pp. 1960-1971, Jul. 2011.
doi: 10.1109/TPWRD.2011.2136441.

C. Li, Y. Tao, W. Ao, S. Yang, and Y. Bai, “Improving forecasting accu-
racy of daily enterprise electricity consumption using a random forest
based on ensemble empirical mode decomposition,” Energy, vol. 165,
pp. 1220-1227, Dec. 2018. doi: 10.1016/j.energy.2018.10.113.

S. Zhang, Z. Sun, J. Long, C. Li, and Y, Bai, “Dynamic condi-
tion monitoring for 3D printers by using error fusion of multiple
sparse auto-encoders,” Comput. Ind., vol. 105, pp. 164-176, Feb. 2019.
doi: 10.1016/j.compind.2018.12.004.

Y. Bai, Y. Li, B. Zeng, C. Li, and J. Zhang, “Hourly PM,5 con-
centration forecast using stacked autoencoder model with emphasis
on seasonality,” J. Cleanner Prod., vol. 224, pp. 739-750, Jul. 2019.
doi: 10.1016/j.jclepro.2019.03.253.

W. Lu, B. Liang, Y. Cheng, D. Meng, J. Yang, and T. Zhang, “Deep model
based domain adaptation for fault diagnosis,” IEEE Trans. Ind. Elec-
tron., vol. 64, no. 3, pp. 2296-2305, Mar. 2017. doi: 10.1109/TIE.2016.
2627020.

V. N. Ghate and S. V. Dudul, “Cascade neural-network-based fault classi-
fier for three-phase induction motor,” IEEE Trans. Ind. Electron., vol. 58,
no. 5, pp. 1555-1563, May 2011. doi: 10.1109/TIE.2010.2053337.

X. Li, F. Duan, P. Loukopoulos, 1. Bennett, and D. Mba, “Canonical
variable analysis and long short-term memory for fault diagnosis and
performance estimation of a centrifugal compressor,” Control Eng. Pract.,
vol. 72, pp. 177-191, Mar. 2018. doi: 10.1016/j.conengprac.2017.12.006.
K. Cho et al. (2014). “Learning phrase representations using RNN
encoder-decoder for statistical machine translation.” [Online]. Available:
https://arxiv.org/abs/1406.1078

S. Hochreiter and J. Schmidhuber,
ory,” Neural Comput., vol. 9, no.
doi: 10.1162/nec0.1997.9.8.1735.

M. Jung, H. Lee, and J. Tani, “Adaptive detrending to accelerate
convolutional gated recurrent unit training for contextual video
recognition,” Neural Netw., vol. 105, pp. 356-370, Sep. 2018.
doi: 10.1016/j.neunet.2018.05.009.

Y. Bai, B. Zeng, C. Li, and J. Zhang, “An ensemble long short-
term memory neural network for hourly PMjs concentration
forecasting,” Chemosphere, vol. 222, pp. 286-294, May 2019.
doi: 10.1016/j.chemosphere.2019.01.121.

R. Zhao, D. Wang, R. Yan, K. Mao, F. Shen, and J. Wang, ‘“Machine
health monitoring using local feature-based gated recurrent unit networks,”
IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1539-1548, Feb. 2018.
doi: 10.1109/TTE.2017.2733438.

short-term  mem-
1735-1780, 1997.

“Long
8, pp.

VOLUME 7, 2019


http://dx.doi.org/10.1016/j.ymssp.2015.08.030
http://dx.doi.org/10.1109/TFUZZ.2018.2878200
http://dx.doi.org/10.1016/j.ymssp.2012.07.007
http://dx.doi.org/10.1109/ACCESS.2018.2851966
http://dx.doi.org/10.3233/JIFS-169534
http://dx.doi.org/10.1016/j.jbi.2017.06.007
http://dx.doi.org/10.1007/s12206-008-0603-6
http://dx.doi.org/10.1007/s10845-017-1388-1
http://dx.doi.org/10.1007/s10845-017-1388-1
http://dx.doi.org/10.1016/j.microrel.2018.01.017
http://dx.doi.org/10.1016/j.cjph.2017.11.013
http://dx.doi.org/10.1016/j.jprocont.2018.02.005
http://dx.doi.org/10.1109/TIE.2017.2650873
http://dx.doi.org/10.1109/TASC.2014.2352391
http://dx.doi.org/10.1109/CCDC.2015.7162380
http://dx.doi.org/10.1109/tcad.2012.2234827
http://dx.doi.org/10.1109/TPWRD.2011.2136441
http://dx.doi.org/10.1016/j.energy.2018.10.113
http://dx.doi.org/10.1016/j.compind.2018.12.004
http://dx.doi.org/10.1016/j.jclepro.2019.03.253
http://dx.doi.org/10.1109/TIE.2016.2627020
http://dx.doi.org/10.1109/TIE.2016.2627020
http://dx.doi.org/10.1109/TIE.2010.2053337
http://dx.doi.org/10.1016/j.conengprac.2017.12.006
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1016/j.neunet.2018.05.009
http://dx.doi.org/10.1016/j.chemosphere.2019.01.121
http://dx.doi.org/10.1109/TIE.2017.2733438

Y. Tao et al.: Spur Gear Fault Diagnosis Using a MGRU Approach With Vibration Signal I E E EACC@SS

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

A. Qin, Q. Hu, Y. Lv, and Q. Zhang, “Concurrent fault diagnosis based
on Bayesian discriminating analysis and time series analysis with dimen-
sionless parameters,” IEEE Sensors J., vol. 19, no. 6, pp. 2254-2265,
Mar. 2019. doi: 10.1109/jsen.2018.2885377.

Z. Li et al., “Online implementation of SVM based fault diagnosis strat-
egy for PEMFC systems,” Appl. Energy, vol. 164, no. 15, pp. 284-293,
Feb. 2016. doi: 10.1016/j.apenergy.2015.11.060.

Q. Hu, A. Qin, Q. Zhang, J. He, and G. Sun, “Fault diagnosis based on
weighted extreme learning machine with wavelet packet decomposition
and KPCA,” IEEE Sensors J., vol. 18, no. 20, pp. 8472-8483, Oct. 2018.
doi: 10.1109/JSEN.2018.2866708.

J. Lin, “Feature extraction of machine sound using wavelet and its appli-
cation in fault diagnosis,” NDT E Int., vol. 34, no. 1, pp. 25-30, Jan. 2001.
doi: 10.1016/S0963-8695(00)00025-6.

H. Yan, Y. Xu, F. Cai, H. Zhang, W. Zhao, and C. Gerada, “PWM-VSI
fault diagnosis for a PMSM drive based on the fuzzy logic approach,”
IEEE Trans. Power. Elect., vol. 34, no. 1, pp. 759-768, Jun. 2019.
doi: 10.1109/TPEL.2018.2814615.

I. Morgan and H. Liu, “Predicting future states withn-dimensional Markov
chains for fault diagnosis,” IEEE Trans. Ind. Electron., vol. 56, no. 5,
pp. 1774-1781, May 2009. doi: 10.1109/TIE.2008.2011306.

C. Li, R. V. Sinchez, G. Zurita, M. Cerrada, and D. Cabrera, “Fault
diagnosis for rotating machinery using vibration measurement deep sta-
tistical feature learning,” Sensors, vol. 16, no. 6, p. 895, Jun. 2016.
doi: 10.3390/s16060895.

R. Duan and F. Wang, “Fault diagnosis of on-load tap-changer in
converter transformer based on time-frequency vibration analysis,”
IEEE Trans. Ind. Electron, vol. 63, no. 6, pp. 3815-3823, Jun. 2016.
doi: 10.1109/TIE.2016.2524399.

C. C. Chang and Z. Sun, “Structural damage assessment based on wavelet
packet transform,” J. Struct. Eng., vol. 128, no. 10, pp. 1354-1361,
Oct. 2002. doi: 10.1061/(ASCE)0733-9445(2002)128:10(1354).

S. Zhang, X. Liu, and J. Xiao, “On geometric features for skeleton-
based action recognition using multilayer LSTM networks,” in Proc.
IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2017, pp. 148-157.
doi: 10.1109/WACV.2017.24.

Y. Xiao, Y. Hong, X. Chen, and W. Chen, “The application of dual-tree
complex wavelet transform (DTCWT) energy entropy in misalignment
fault diagnosis of doubly-fed wind turbine (DFWT),” Entropy, vol. 19,
no. 11, p. 587, Jan. 2017. doi: 10.3390/e19110587.

N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, ‘“Robust
subspace learning: Robust PCA, robust subspace tracking, and robust
subspace recovery,” IEEE Signal Process. Mag., vol. 35, no. 4, pp. 32-55,
Jul. 2018. doi: 10.1109/MSP.2018.2826566.

J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Netw., vol. 61, pp. 85-117, Jan. 2015. doi: 10.1016/j.neunet.2014.09.003.
J. Dozier, T. H. Painter, K. Rittger, and J. E. Frew, “Time-space
continuity of daily maps of fractional snow cover and albedo from
MODIS,” Adv. Water Resour., vol. 31, no. 11, pp. 1515-1526, Nov. 2008.
doi: 10.1016/j.advwatres.2008.08.011.

YING TAO (M’17) was born in Xinyang, Henan,
China, in 1996. She received the B.S. degree
in management from the Henan University of
Chinese Medicine, China, in 2017. She is currently
pursuing the M.S. degree with the Chongqing
Technology and Business University, China. She
is also a graduate with the National Research
Base of Intelligent Manufacturing Service, major-
ing in management science and engineering.
. Her research interests are in data analysis and
machinery health maintenance.

VOLUME 7, 2019

XIAODAN WANG was born in Shangqiu, Henan,
China, in 1988. She received the B.S. degree
in management from the Henan University of
Chinese Medicine, China, in 2017. Since 2017,
she has been a graduate with the National
Research Base of Intelligent Manufacturing Ser-
vice, Chongqing Technology and Business Univer-
sity, Chongging, China, majoring in management
science and engineering. Her research interests
include fault diagnosis, risk prediction, and health
management of manufacturing systems.

RENE-VINICIO SANCHEZ reccived the B.S.
degree in mechanical engineering from the Uni-
versidad Politécnica Salesiana (UPS), Ecuador,
in 2004, and the Ph.D. degree in industrial tech-
nologies research from the Universidad Nacional
de Educacioén a Distancia (UNED), Spain, in 2017.
He is currently a Professor with the Depart-
ment of Mechanical Engineering, UPS. His
research interests are in machinery health mainte-
nance, pneumatic and hydraulic systems, artificial
intelligence, and engineering education.

SHUAI YANG (M’17) was born in Chongqing,
China, in 1986. He received the B.S. and
M.S. degrees in mechanical engineering from
Chongqing University, China, in 2012, and the
Ph.D. degree in mechanical engineering from the
University of Ottawa, ON, Canada, in 2017.

He is currently an Associate Professor and a
Research Assistant with the National Research
Base of Intelligent Manufacturing Service,
Chongqing Technology and Business University,

Chonggqing. He is the author of a book, over 15 articles, and over 5 inventions.
His research interests include vibration control, fault diagnosis, and health
management of the manufacturing systems. He was a recipient of the Excel-
lent Reward of graduate studies from the Canadian Society of Engineering,
in 2016.

YUN BAI (M’17) received the Ph.D. degree from
Chongqing University, China, in 2014. He is cur-
rently an Assistant Professor with the National
Research Base of Intelligent Manufacturing Ser-
vice, Chongqing Technology and Business Univer-
sity, Chongqing, China, and is also a Postdoctoral
Researcher with the University of Algarve,
Portugal. His current research interests include
intelligent system modeling and management.

56889


http://dx.doi.org/10.1109/jsen.2018.2885377
http://dx.doi.org/10.1016/j.apenergy.2015.11.060
http://dx.doi.org/10.1109/JSEN.2018.2866708
http://dx.doi.org/10.1016/S0963-8695(00)00025-6
http://dx.doi.org/10.1109/TPEL.2018.2814615
http://dx.doi.org/10.1109/TIE.2008.2011306
http://dx.doi.org/10.3390/s16060895
http://dx.doi.org/10.1109/TIE.2016.2524399
http://dx.doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1354)
http://dx.doi.org/10.1109/WACV.2017.24
http://dx.doi.org/10.3390/e19110587
http://dx.doi.org/10.1109/MSP.2018.2826566
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.advwatres.2008.08.011

	INTRODUCTION
	METHODOLOGIES
	FEATURE EXTRACTION
	MGRU
	OVERVIEW OF OUR APPROACH ARCHITECTURE
	PRECISION INDEX
	BASELINE

	EXPERIMENTAL TEST BENCH
	EXPERIMENTAL RESULTS AND ANALYSIS
	CLASSIFICATION CAPACITY
	SEPARABILITY
	ROBUSTNESS

	CONCLUSION
	REFERENCES
	Biographies
	YING TAO
	XIAODAN WANG
	RENÉ-VINICIO SÁNCHEZ
	SHUAI YANG
	YUN BAI


