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ABSTRACT Based on the recently proposed projection twin support vector machine (PTSVM) and least
squares projection twin support vector machine (LSPTSVM), in this paper, we propose a weighted linear
loss projection twin support vector machine, namely WLPTSVM for short. By introducing the weighted
linear loss function, the proposed WLPTSVM not only solves systems of linear equations with lower
computational cost but also obtains comparable classification accuracy. In addition, it is able to dispose
of large scale classification problems efficiently without any extra external optimizers. The experiments
conducted on synthetic and several benchmark datasets illustrate the effectiveness of our WLPTSVM.

INDEX TERMS Pattern classification, twin support vector machine, projection twin support vector machine,
weighted linear loss function.

I. INTRODUCTION
Traditional support vector machine (SVM) is an excellent
kernel-based method for pattern classification and regres-
sion [1], [2], which has already been successfully applied
to a variety of real-world problems such as image classi-
fication [3], bioinformatics [4] and text categorization [5].
However, the training stage involves solving a quadratic
programming problem (QPP) with high computational com-
plexity O(m3), where m is the total size of training sam-
ples. This drawback restricts the application of SVM in
large-scale problems. On the one hand, many efficient algo-
rithms such as Chunking [2], SMO [6], LIBSVM [7],
PSVM [8] and LS-SVM [9] have been proposed to improve
the training speed. Recently, on the other hand, multiple
surface support vector machines such as twin support vector
machine (TWSVM) [10] and projection twin support vec-
tor machine (PTSVM) [11], as an extension direction of
SVM, have been studied extensively. In 2006, Mangasarian
and Wild [12] proposed generalized eigenvalue proximal
support vector machine (GEPSVM), which aims at seek-
ing two nonparallel proximal hyperplanes such that each
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hyperplane is closer to one of two classes and as far as
possible from the other. In the spirit of GEPSVM, in 2007,
Jayadeva et al. [10] proposed another nonparallel hyper-
plane classifier for pattern classification, namely twin sup-
port vector machine (TWSVM). It seeks two nonparallel
hyperplanes by resolving two smaller and related SVM-type
problems. From then on, many variants of TWSVM are
proposed, such as least square TWSVM (LSTSVM) [13],
twin bounded support vector machine (TBSVM) [14], twin
parametric-margin SVM (TPMSVM) [15], robust TWSVM
(RTSVM) [16], nonparallel SVM (NPSVM) [17], L2P-norm
distance TWSVM [18], angle-based TWSVM [19] and fuzzy
TWSVM (FTSVM) [20]. The more recent extensions and
developments in TWSVMs have been discussed in [21], [22].
Meanwhile, in order to avoid solving the QPPs in TWSVM,
Ye et al. proposed the multi-weight vector projection sup-
port vector machine (MVSVM) [23] based on GEPSVM,
which seeks one weight vector instead of a hyperplane
for each class. The weight vectors of MVSVM can be
found by solving a pair of eigenvalue problems. Inspired
by MVSVM and TWSVM, in 2011, Chen et al. proposed
the projection twin support vector machine (PTSVM) [11],
which aims at seeking two projection directions by solv-
ing a pair of SVM-type problems rather than eigenvalue
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problems. From then on, various improved algorithms based
on PTSVM are proposed [24]–[34], e.g. RPTSVM [24],
LSPTSVM [25], [26], IPTSVM [27], LIWLSPTSVM [28],
PNPSVM [29], NPTSVM [30], PTSVR [31] and other vari-
ants PTSVM algorithms [32]–[34]. Although LSTSVM has
been presented by using the squared loss function instead of
hinge loss function in TWSVM and obtains very fast training
speed since two QPPs are replaced by two systems of linear
equations, but may result in the reduction of classification
ability and the characteristic of constructing two nonparallel
hyperplanes may be weakened [35]. In order to mitigate this
problem, Shao et al. [36] proposed a twin-type support vector
machine with weighted linear loss function, called weighted
linear loss twin support vector machine (WLTSVM), which
achieved the comparable classification accuracy but with less
computational time.

Based on the above analysis and inspired by WLTSVM,
in this paper, we propose a novel projection twin support
vector machine with weighted linear loss function for pat-
tern classification, termed asWLPTSVM. However, different
from WLTSVM, the linear version of WLPTSVM aims at
seeking a projection direction instead of a hyperplane for
each class by solving a system of linear equations, which
inherits the main idea of PTSVM. Different from PTSVM,
in the linear version of our WLPTSVM, a weighted linear
loss function is introduced. Specifically, our WLPTSVM has
the following advantages: First, different from TWSVM and
PTSVM, weighted linear loss function is utilized to replace
the hinge loss function leading to solve two systems of lin-
ear equations that are much simpler than that of TWSVM
and PTSVM, where two QPPs are solved. Second, different
from LSPTSVM, weighted linear loss function is used to
replace quadratic loss function, improving the classification
accuracy of LSPTSVM. Third, different from PTSVM and
LSPTSVM, nonlinear version of our WLPTSVM is also pre-
sented, which is missing in original PTSVM and LSPTSVM.
At last, the systems of linear equations in our WLPTSVM
are solved efficiently by utilizing the well-known conjugate
gradient (CG) algorithm [37] such that our WLPTSVM can
deal with large-scale classification problems without any
extra external optimizers. Then, comparing to the existing
algorithms, e.g. TWSVM [10], PTSVM [11], RPTSVM [24],
LSPTSVM [25] and WLTSVM [36], some experimental
results on synthetic and benchmark datasets illustrate the
effectiveness of our WLPTSVM.

The rest of this paper is organized as follows. In Section II,
a brief review of PTSVM, LSPTSVM and WLTSVM are
given. Section III proposes linear and nonlinear version of our
WLPTSVM, respectively. And the experimental results on
both synthetic datasets and real-world benchmark datasets are
reported in Section IV. Last, Section V gives the conclusion.

II. RELATED WORKS
Let us consider a binary classification problem in the
n-dimensional real space Rn and a set of training data samples
is represented by T = {(x(i)j , yj)|j = 1, 2, · · · ,mi; i = 1, 2.},

where x(i)j ∈ Rn is the j-th input belongs to class Wi and
yj ∈ {+1,−1} are corresponding outputs. In addition, we set
m = m1 + m2 and organize the m1 samples of positive class
W1 by a m1 × n matrix A ∈ Rm1×n and the m2 samples of
negative class W2 by a m2 × n matrix B ∈ Rm2×n.

A. PTSVM
The key idea of projection twin support vector machine
(PTSVM) [11] is to find a projection axis for each class,
such that within-class variance of the projected data points
of its own class is minimized meanwhile the projected data
points of the other class scatter away as far as possible.
Thus, the primal problems of linear PTSVM are expressed
as follows.

min
w1

1
2w

T
1 S1w1 + c1eT2 ξ2

s.t. Bw1 −
1
m1
e2eT1 Aw1 + ξ2 ≥ e2, ξ2 ≥ 0, (1)

min
w2

1
2w

T
2 S2w2 + c2eT1 ξ1

s.t. − (Aw2 −
1
m2
e1eT2 Bw2)+ ξ1 ≥ e1, ξ1 ≥ 0, (2)

where c1 > 0 and c2 > 0 are trade-off parameters, e1 ∈ Rm1

and e2 ∈ Rm2 are vectors of ones, ξ1 and ξ2 are both non-
negative slack variables. S1 and S2 are within-class variance
matrices defined by

S1 =
m1∑
i=1

(x(1)i −
1
m1

m1∑
j=1

x(1)j )(x(1)i −
1
m1

m1∑
j=1

x(1)j )T (3)

S2 =
m2∑
i=1

(x(2)i −
1
m2

m2∑
j=1

x(2)j )(x(2)i −
1
m2

m2∑
j=1

x(2)j )T (4)

It has been shown that when S1 and S2 are nonsingular or
invertible, the solutions of the primal problems (1) and (2)
are obtained by solving the Wolfe dual problems

max
α

eT2 α −
1
2α

T (B− 1
m1
e2eT1 A)S

−1
1 (B− 1

m1
e2eT1 A)

Tα

s.t. 0 ≤ α ≤ c1e2 (5)

max
γ

eT1 γ −
1
2γ

T (A− 1
m2
e1eT2 B)S

−1
2 (A− 1

m2
e1eT2 B)

T γ

s.t. 0 ≤ γ ≤ c2e1 (6)

where α ∈ Rm2 and γ ∈ Rm1 are the Lagrangian multipliers.
Therefore, the projection axes are obtained from the solution
α and γ in (5) and (6) by

w1 = S−11 (B−
1
m1

e2eT1 A)
Tα (7)

w2 = −S
−1
2 (A−

1
m2

e1eT2 B)
T γ (8)

After the optimal projection axes are obtained according
to (7) and (8), the training stage of PTSVM is completed.
For testing, the label of a new coming data point x ∈ Rn is
assigned to class Wi, depending on the distance between the
projection of x and projected class mean which is expressed
as

x ∈ Wi, i = argmin
k=1,2

∣∣∣∣∣wTk (x − 1
mk

mk∑
j=1

x(k)j )

∣∣∣∣∣ (9)

57350 VOLUME 7, 2019



S. Chen et al.: Weighted Linear Loss PTSVM for Pattern Classification

The above procedure seeks a single direction for each class to
make the corresponding projected data points well separated.
Meanwhile, it has been extended to find multiple orthogonal
directions to further enhance its performance. The detailed
content can be seen in [11].

B. LSPTSVM
Different from PTSVM, LSPTSVM [25] has been presented
by using the squared loss function instead of the hinge loss
function in PTSVM and by using equality constraints instead
of inequality constrains. Thus, the primal problems of linear
LSPTSVM are expressed as

min
w1

1
2w

T
1 S1w1 +

c1
2 ξ

T
2 ξ2 +

c3
2 w

2
1

s.t. Bw1 −
1
m1
e2eT1 Aw1 + ξ2 = e2, (10)

min
w2

1
2w

T
2 S2w2 +

c2
2 ξ

T
1 ξ1 +

c4
2 w

2
2

s.t. − (Aw2 −
1
m2
e1eT2 Bw2)+ ξ1 = e1, (11)

where c1 > 0, c2 > 0, c3 > 0 and c4 > 0 are positive trade-
off parameters, e1 ∈ Rm1 and e2 ∈ Rm2 are vectors of ones,
ξ1 and ξ2 are both nonnegative slack variables. S1 and S2 are
within-class variance matrices defined by (3) and (4).

On substituting the equality constraints into the objective
functions, the formulas become

min
w1

1
2w

T
1 S1w1 +

c1
2 ||e2 − Bw1 +

1
m1
e2eT1 Aw1||

2
+

c3
2 w

2
1

(12)

min
w2

1
2w

T
2 S2w2 +

c2
2 ||e1 + Aw2 −

1
m2
e1eT2 Bw2||

2
+

c4
2 w

2
2

(13)

Setting the gradient of (12) with respect to w1 to zero
and setting the gradient of (13) with respect to w2 to zero,
the following solutions are obtained

w1 =

(
S1
c1
+ (−B+

1
m1

e2eT1 A)
T (−B+

1
m1

e2eT1 A)+
c3
c1
I
)−1

×(B−
1
m1

e2eT1 A)
T e2 (14)

w2 = −

(
S2
c2
+ (A−

1
m2

e1eT2 B)
T (A−

1
m2

e1eT2 B)+
c4
c2
I
)−1

×(A−
1
m2

e1eT2 B)
T e1 (15)

After the optimal projection axes are obtained according
to (14) and (15), the training stage of linear LSPTSVM is
completed and then the testing stage is similar to PTSVM.
In addition, the nonlinear version of LSPTSVMwas proposed
by Ding and Hua [26]. More detail about LSPTSVM can be
seen in [25], [26].

C. WLTSVM
For a binary classification problem, linear loss TSVM also
seeks two nonparallel hyperplanes. However, different from
TSVM, linear loss TSVM adopts linear loss to estimate the
misclassification loss and adds a modified regularization item

to minimize the structural risk. The primal problems of linear
loss TSVM are expressed as follows.

min
w1,b1

c3
2
(||w1||

2
+ b21)+

1
2
(ξT1 ξ1 + c1e

T
2 ξ2)

s.t. Aw1 + e1b1 = ξ1,

Bw1 + e2b1 + e2 = ξ2, (16)

min
w2,b2

c4
2
(||w2||

2
+ b22)+

1
2
(ηT2 η2 + c2e

T
1 η1)

s.t. Bw2 + e2b2 = η2,

− (Aw2 + e1b2)+ e1 = η1, (17)

However, the optimal values of (16) and (17) may be very
small since ξ2 and η1 could be negative. In this case, the QPPs
may suffer negative infinity problem. In order to address this
problem, following the notion of rough sets, a weighted linear
loss function with weighted vectors v1 and v2 is designed.
Then, the primal problems of weighted linear loss TSVM
(WLTSVM) [36] can be written as

min
w1,b1

c3
2
(||w1||

2
+ b21)+

1
2
(ξT1 ξ1 + c1v

T
2 ξ2)

s.t. Aw1 + e1b1 = ξ1,

Bw1 + e2b1 + e2 = ξ2, (18)

min
w2,b2

c4
2
(||w2||

2
+ b22)+

1
2
(ηT2 η2 + c2v

T
1 η1)

s.t. Bw2 + e2b2 = η2,

− (Aw2 + e1b2)+ e1 = η1, (19)

where υ2 = (υ21, υ22, · · · , υ2m2 )
T and υ1 = (υ11, υ12,

· · · , υ1m1 )
T are calculated by the following formula

υ2i =

{
10−4, if ξ2i ≥ J1,
1, otherwise,

(20)

υ1i =

{
10−4, if η1i ≥ J2,
1, otherwise,

(21)

where J1 ≥ 0 and J2 ≥ 0 are parameters.
The solutions of (16) and (17) can be obtained by{

c3w1 + c1BT v2 + AT (Aw1 + e1b1) = 0
c3b1 + c1eT2 v2 + e

T
1 (Aw1 + e1b1) = 0

(22){
c4w2 + c1AT v1 + BT (Bw2 + e2b2) = 0
c4b2 + c2eT1 v1 + e

T
2 (Bw2 + e2b2) = 0

(23)

In general, the training process of linear WLTSVM has
been divided into two stages. In the first stage,WLTSVMwill
be initialized with v1 = e1 and v2 = e2. Then, we solve (16)
and (17) to obtain ξ2 and η1 and set J1 as the average value of
|ξ2| and J2 as the average value of |η1|. In the second stage,
based on the values calculated by (20) and (21), we obtain the
solutions to (18) and (19), respectively.

Once the solutions of w1, b1 and w2, b2 are obtained from
(22) and (23), the nonparallel hyperplanes are known. A new
data points x ∈ Rn is then assigned to positive class W1 or
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negative class W2 by

x ∈ Wk , k = argmin
k=1,2

{
|wT1 x + b1|

||w1||
,
|wT2 x + b2|

||w2||
} (24)

In addition, more detail about WLTSVM can be seen
in [36].

III. WEIGHTED LINEAR LOSS PROJECTION TWIN
SUPPORT VECTOR MACHINE
In this section, we present the linear and nonlinear ver-
sion of weighted linear loss projection twin support vector
machine (WLPTSVM) for binary classification, respectively.

A. LINEAR WLPTSVM
For a binary classification problem, similar toWLTSVM [36],
by introducing the linear loss function, the primal problems
of the linear loss projection twin support vector machine are
expressed as

min
w1

c3
2
w2
1 + (

1
2
ξT1 ξ1 + c1e

T
2 ξ2)

s.t. Aw1 −
1
m1

e1eT1 Aw1 = ξ1,

e2 − (Bw1 −
1
m1

e2eT1 Aw1) = ξ2, (25)

min
w2

c4
2
w2
2 + (

1
2
ηT2 η2 + c2e

T
1 η1)

s.t. Bw2 −
1
m2

e2eT2 Bw2 = η2,

Aw2 −
1
m2

e1eT2 Bw2 + e1 = η1, (26)

where ci (i = 1, 2, 3, 4) are positive parameters, ξ1, ξ2, η1
and η2 are slack variables.

Observing the above formulas (25) and (26), we can find
that the optimal values of empirical risks 1

2ξ
T
1 ξ1 + c1eT2 ξ2

and 1
2η

T
2 η2+c2e

T
1 η1 may be very small since ξ2 and η1 could

be negative. In order to avoid this possible infinity problem
and balance the influence of each point to the projected class
mean, following the notion of rough sets [38], we introduce
the weighted linear loss function with the weighted vectors
υ1 and υ2, and then present our WLPTSVM formulations as
follows.

min
w1

c3
2
w2
1 + (

1
2
ξT1 ξ1 + c1υ

T
2 ξ2)

s.t. Aw1 −
1
m1

e1eT1 Aw1 = ξ1,

e2 − (Bw1 −
1
m1

e2eT1 Aw1) = ξ2, (27)

min
w2

c4
2
w2
2 + (

1
2
ηT2 η2 + c2υ

T
1 η1)

s.t. Bw2 −
1
m2

e2eT2 Bw2 = η2,

Aw2 −
1
m2

e1eT2 Bw2 + e1 = η1, (28)

where υ2 = (υ21, υ22, · · · , υ2m2 )
T and υ1 = (υ11, υ12,

· · · , υ1m1 )
T are determined by the following formula

υ2i =

{
10−4, if ξ2i ≥ J1,
1, otherwise,

(29)

υ1i =

{
10−4, if η1i ≥ J2,
1, otherwise,

(30)

where J1 ≥ 0 and J2 ≥ 0 are parameters.
Before solving the problems (27) and (28), we give the

geometric interpretation of the problem (27) + (29) while
the problem (28) + (30) is similar. For (27), the first term
in the objective function is to control the model complexity
for seeking the optimal projection direction w1. The second
term in the objective function is to minimize the empiri-
cal risk, which tries to make the within-class variance of
the projected samples of its own class is minimized, and
meanwhile, the projected samples of the other class scat-
ter away as far as possible. Moreover, the weighted vector
υ2 is to balance the influence of each point to the pro-
jected class mean. In the training process, the empirical
risk also tries to achieve the desired consistency. There-
fore, from this point of view, the problems (27) and (28)
with (29) and (30) are superior to the corresponding ones in
PTSVM.

The above problems can be solved by the following
approximation algorithm. Consider the problem (27), and
substitute the equality constrains into the objective function.
Thus, we obtain

L(w1)=
c3
2
w2
1+

1
2
(Aw1−

1
m1

e1eT1 Aw1)T (Aw1−
1
m1

e1eT1 Aw1)

+ c1υT2 [e2 − (Bw1 −
1
m1

e2eT1 Aw1)]

=
c3
2
w2
1 +

1
2
wT1 (A−

1
m1

e1eT1 A)
T (A−

1
m1

e1eT1 A)w1

+ c1υT2 [e2 − (B−
1
m1

e2eT1 A)w1], (31)

Let S1 = (A− 1
m1
e1eT1 A)

T (A− 1
m1
e1eT1 A), R1 = B− 1

m1
e2eT1 A,

the formula (31) translates into

L(w1) =
c3
2
w2
1 +

1
2
wT1 S1w1 + c1υT2 (e2 − R1w1), (32)

Setting the gradient of (32) with respect to w1 to be zero,
we can get

∂L
∂w1
= S1w1 + c3w1 − c1RT1 υ2 = 0, (33)

Then, the solution to QPP (27) can be obtained from the
systems of linear equation as follows.

(S1 + c3I1)w1 = c1 · RT1 υ2, (34)

where I1 is an identity matrix.
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Consider the problem (28), and substitute the equality
constrains into the objective function. Similarly, we obtain

L(w2)=
c4
2
w2
2+

1
2
(Bw2−

1
m2

e2eT2 Bw2)T (Bw2−
1
m2

e2eT2 Bw2)

+ c2υT1 [e1 + (Aw2 −
1
m2

e1eT2 Bw2)]

=
c4
2
w2
2 +

1
2
wT2 (B−

1
m2

e2eT2 B)
T (B−

1
m2

e2eT2 B)w2

+ c2υT1 [e1 + (A−
1
m2

e1eT2 B)w2], (35)

Let S2 = (B −
1
m2
e2eT2 B)

T (B −
1
m2
e2eT2 B),

R2 = A− 1
m2
e1eT2 B, the formula (35) translates into

L(w2) =
c4
2
w2
2 +

1
2
wT2 S2w2 + c2υT1 (e1 + R2w2), (36)

Setting the gradient of (36) with respect to w2 to be zero,
we can get

∂L
∂w2
= S2w2 + c4w2 + c2RT2 υ1 = 0, (37)

Then, the solution to QPP (28) can be obtained from the
systems of linear equation as follows.

(S2 + c4I2)w2 = −c2 · RT2 υ1, (38)

where I2 is an identity matrix.
In order to find suitable υ2 and υ1 defined in (29) and (30)

and the approximate solutions of problems (27) + (29) and
(28) + (30), a weight-setting method with two steps is con-
structed. Generally speaking, the first step is to solve prob-
lems (25) and (26) with the linear loss function and find
the corresponding ξ2 and η1. The second step is to calcu-
late υ1 and υ2 using the obtained ξ2 and η1, and then find
the solutions of problems (27) and (28) using the obtained
υ1 and υ2, and take these solutions as the approximate
solutions required. Thus, the detailed algorithm is given as
follows.

Algorithm 1 Linear WLPTSVM
Step 1. Given the training input matrices A and B. Set
υ1 = e1, υ2 = e2, and obtain the solutions w1

1 and w1
2

of (34) and (38) with the proper penalty parameters ci (i =
1, 2, 3, 4), respectively.
Step 2.Calculate the slack variables ξ12 and η11 fromw1

1 and
w1
2 in (27) and (28), then obtain υ11 and υ12 from (29) and

(30), where J1 = |ξ12 |
mean and J2 = |η11|

mean.
Step 3. Find the solutions w∗1 and w

∗

2 of (34) and (38) with
υ11 and υ12 .
Step 4. Construct the decision as

x ∈ Wi, i = argmin
k=1,2

∣∣∣∣∣wTk (x − 1
mk

mk∑
j=1

x(k)j )

∣∣∣∣∣ , (39)

where | · | is the absolute value.

B. NONLINEAR WLPTSVM
For nonlinear classification problem, first of all, we define
CT
= [AB]T and choose an appropriate kernel function

K , and then the primal problems of nonlinear version of the
weighted linear loss projection twin support vector machine
are expressed as follows.

min
w1

c3
2
w2
1 + (

1
2
ξT1 ξ1 + c1υ

T
2 ξ2)

s.t. K (A,CT )w1 −
1
m1

e1eT1K (A,CT )w1 = ξ1,

e2 − (K (B,CT )w1 −
1
m1

e2eT1K (A,CT )w1) = ξ2,

(40)

min
w2

c4
2
w2
2 + (

1
2
ηT2 η2 + c2υ

T
1 η1)

s.t. K (B,CT )w2 −
1
m2

e2eT2K (B,CT )w2 = η2,

K (A,CT )w2 −
1
m2

e1eT2K (B,CT )w2 + e1 = η1,

(41)

where υ2 = (υ21, υ22, · · · , υ2m2 )
T and υ1 = (υ11, υ12,

· · · , υ1m1 )
T are determined by (29) and (30).

Similar to the linear case, assuming that J1 and J2 are
determined, we can obtain the solutions to the problems (40)
and (41) as follows.

(KerS1 + c3I1)w1 = c1 ·MT
1 υ2, (42)

(KerS2 + c4I2)w2 = −c2 ·MT
2 υ1, (43)

where I1 and I2 are identity matrices, and the matrices
KerS1, KerS2, M1 and M2 are defined by

KerS1 = (K (A,CT )−
1
m1

e1eT1K (A,CT ))T ·

(K (A,CT )−
1
m1

e1eT1K (A,CT )), (44)

KerS2 = (K (B,CT )−
1
m2

e2eT2K (B,CT ))T ·

(K (B,CT )−
1
m2

e2eT2K (B,CT )), (45)

M1 = K (B,CT )−
1
m1

e2eT1K (A,CT ), (46)

M2 = K (A,CT )−
1
m2

e1eT2K (B,CT ), (47)

Similar to linear WLPTSVM, a weight-setting method
with two steps for nonlinear WLPTSVM is constructed. The
detailed algorithm is given in Algorithm 2 as follows.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS
In order to evaluate our proposed WLPTSVM, we evalu-
ate its classification accuracy and computational efficiency
on synthetic datasets, UCI datasets [39] and David Musi-
cant’s NDC Data Generator datasets [40]. In our experi-
ments, we focus on the comparison between the proposed
WLPTSVMand several state-of-the-art algorithms, including
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FIGURE 1. Two synthetic datasets. (a) XOR. (b) Complex XOR.

TABLE 1. Classification accuracy on synthetic datasets.

Algorithm 2 Nonlinear WLPTSVM
Step 1. Given the training input matrices A and B. Set
υ1 = e1, υ2 = e2, and obtain the solutions w1

1 and w1
2

of (42) and (43) with the proper penalty parameters ci (i =
1, 2, 3, 4) and kernel function K , respectively.
Step 2.Calculate the slack variables ξ12 and η11 fromw1

1 and
w1
2 in (40) and (41), then obtain υ11 and υ12 from (29) and

(30), where J1 = |ξ12 |
mean and J2 = |η11|

mean.
Step 3. Find the solutions w∗1 and w

∗

2 of (42) and (43) with
υ11 and υ12 .
Step 4. Construct the decision as

x ∈ Wi, i

= argmin
k=1,2

∣∣∣∣∣wTk ·
[
K (x,CT )− 1

mk

mk∑
j=1

K (x(k)j ,CT )

] ∣∣∣∣∣ ,
(48)

where | · | is the absolute value.

TWSVM [10], PTSVM [11], RPTSVM [24], LSPTSVM [25]
and WLTSVM [36]. All above algorithms are implemented
in MATLAB R2018a on a personal computer (PC) with an
Intel (R) Core (TM) i7-7700CPU(3.60GHz×8) and 32 GB
random-access memory (RAM). The ‘‘Accuracy’’, which is
used to evaluate the performance of the algorithms, defined
as Accuracy = (TP + TN) /(TP + FP + TN + FN), where
TP, TN, FP and FN are the number of true positives, true
negatives, false positives and false negatives, respectively.
The QPPs in TWSVM, PTSVM and RPTSVM are solved
by the optimization toolbox QP in MATLAB, while the
systems of linear equations in LSPTSVM, WLTSVM and
our WLPTSVM are solved by Hestenes-Stiefel conjugate
gradient (CG) algorithm [37]. In addition, the positive penalty

TABLE 2. The characteristics of benchmark datasets.

parameters ci and kernel wide parameter σ of Gaussian ker-
nel function K (x, y) = e−||x−y||

2/2σ 2 in all algorithms are
selected form the set {2i|i = −8,−7, · · · , 7, 8} by using the
standard 10-fold cross-validation methodology.

A. SYNTHETIC DATASETS
In this subsection, two synthetic datasets, including XOR
and complex XOR datasets have been used to demon-
strate that the proposed WLPTSVM can well solve lin-
early inseparable problems. In experiments, XOR dataset
contains 200 samples (100 positive and 100 negative) and
complex XOR dataset contains 260 samples (100 positive
and 160 negative). Figure 1 illustrates XOR and complex
XOR datasets. Specifically, for XOR and complex XOR
datasets, we have investigated the performance of linear
TWSVM, WLTSVM, PTSVM, RPTSVM, LSPTSVM and
our WLPTSVM. We randomly select 40% for training sets
and 60% for testing sets, each experiment repeat 10 times
and the average results are listed in Table 1. From Table 1,
we can observe that our proposed WLPTSVM obtains the
best performance on XOR and complex XOR datasets.
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TABLE 3. Test results of linear TWSVM, WLTSVM, PTSVM, RPTSVM, LSPTSVM and WLPTSVM.

B. UCI DATASETS
In order to further compare our WLPTSVM with TWSVM,
WLTSVM, PTSVM, RPTSVM and LSPTSVMM, we select
11 datasets from UCI machine learning repository [39].
Specifically, they are Australian, Bupa-Liver, House-Votes,
Heart-c, Heart-Statlog, Ionosphere, Musk, PimaIndian,
Sonar, Spect and Wpbc, respectively. The characteristics of
these datasets are shown in Table 2.

Note that, we use the standard 10-fold cross-validation
method to evaluate the performance of six algorithms. That
means the dataset is divided randomly into ten subsets, one of
those sets is reserved as a test set, and the others are regarded
as a training set. This process is repeated ten times, and then
the average of ten testing results is used as the performance
measure. Specifically, the experimental results of their linear
and nonlinear versions are given in Table 3 and Table 4,
respectively. The best accuracy for each dataset is shown in
bold font and the shortest CPU time is shown by underline
for each dataset. In Table 3, we can find that the accuracy
of our linear WLPTSVM is better than that of TWSVM,
WLTSVM, PTSVM, RPTSVM and LSPTSVM on most of
the datasets. Take the Heart-Statlog dataset for example,
the accuracy of ourWLPTSVM is 86.04%, while TWSVM is
85.07%,WLTSVM is 85.52%, PTSVM is 85.44%, RPTSVM
is 84.96% and LSPTSVM is 84.85%, respectively. In addi-
tion, experimental results for nonlinear TWSVM,WLTSVM,
PTSVM, RPTSVM, LSPTSVM and our WLPTSVM on
above 11 UCI datasets are listed in Table 4. It is easy to find
that the results in Table 4 are similar to those in Table 3.
Especially for Sonar dataset, the accuracy of our nonlinear

WLPTSVM obtains 90.43%, which is 1.44% higher than
TWSVM, 0.98% higher than WLTSVM, 1.58% higher than
PTSVM, 0.63% higher than RPTSVM and 2.06% higher
than LSPTSVM, respectively. The average accuracy andCPU
time for each algorithm are also reported in the penultimate
row of Tables 3 and Table 4, which confirm that the proposed
WLPTSVM also obtains the comparable classification accu-
racy with lower computational time.

Moreover, in order to make a statistic comparison on
the effectiveness with the compared algorithms, Friedman
test [41] is carried out. For this test, the average ranks of
the compared algorithms on the selected datasets are listed in
the last row of Table 3 and Table 4. Specifically, we consider
k(= 6) number of compared algorithms and n (= 11) number
of datasets. Let r ji be the rank of the j-th algorithms on the i-th
datasets and assume all algorithms are equivalent under null
hypothesis. Thus, the average rank of the j-th algorithm is
calculated as

Rj =
1
n

n∑
i=1

r ji , (49)

The Friedman statistic is defined as

χ2
F =

12n
k(k + 1)

∑
j

R2j −
k(k + 1)2

4

 , (50)

In fact, he Friedman statistic is distributed according
to χ2

F with (k − 1) degrees of freedom, when n and k
are reasonable large. Further, Iman and Davenport [42]
showed that Friedman’s χ2

F presents a pessimistic behavior.
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TABLE 4. Test results of nonlinear TWSVM, WLTSVM, PTSVM, RPTSVM, LSPTSVM and WLPTSVM.

Thus, they derived a better statistic as follow

FF =
(n− 1)χ2

F

n(k − 1)− χ2
F

, (51)

which is distributed according to the F-distribution with
(k − 1) and (k − 1)(n− 1) degrees of freedom.
For linear case, in Table 3, our WLPTSVM ranks the first

with an average score of 1.8182. To illustrate the measured
average ranks are significantly different from the mean rank
by the null hypothesis, according to (50) and (51), we obtain

χ2
F =

12× 11
6× 7

[(2.90912 + 3.54552 + 4.09092 + 3.72732

+ 4.90912 + 1.81822)−
6× 72

4
] = 17.4956

FF =
10× 17.4956

11× 5− 17.4956
= 4.6649

Moreover, for 6 linear algorithms and 11 datasets, FF is
distributed according to the F-distribution with (6 − 1) = 5
and (6 − 1) × (11 − 1) = 50 degrees of freedom. Thus,
we find that the critical value of F(5, 50) is 2.400 for the
level of significant α = 0.05 and it is less than the value of
FF = 4.6649, which indicates the null hypothesis is rejected.
It means that the compared algorithms are significantly dif-
ferent on selected datasets. Similarly, in Table 4, we can find
that the nonlinear WLPTSVM ranks the first with an average
score of 1.9091. According to (50) and (51), we obtain

χ2
F =

12× 11
6× 7

[(3.63642 + 4.18182 + 4.54552 + 3.18182

+ 3.63642 + 1.90912)−
6× 72

4
] = 15.2879

FF =
10× 15.2879

11× 5− 15.2879
= 3.8497

TABLE 5. The characteristics of benchmark datasets.

Thus, for 6 nonlinear algorithms and 11 selected datasets,
the critical value of F(5, 50) is equal to 2.400 for the level
of significant α = 0.05 and it is also less than the value of
FF = 3.8497. Then, the null hypothesis is rejected and the
compared nonlinear algorithms are significantly different.

C. NDC DATASETS
In this subsection, we conduct some experiments on large
scale classification datasets and the David Musicants NDC
Data Generator [40] is used to evaluate the computation time
for various algorithms with respect to number of data points.
Table 5 lists a description of NDC datasets, each dataset is
divided into a training set and testing set. For experiments
on NDC datasets, we fixed parameters of all algorithms to
be the same (i.e. ci = 1, σ = 1). The training accuracy,
testing accuracy and training time are reported in Tables 6 and
Table 7, respectively.

To be specific, Table 6 shows the comparison results
for the linear TWSVM, WLTSVM, PTSVM, RPTSVM,
LSPTSVM and ourWLPTSVM onNDC datasets. In Table 6,

57356 VOLUME 7, 2019



S. Chen et al.: Weighted Linear Loss PTSVM for Pattern Classification

TABLE 6. Comparison on NDC datasets for linear classifiers.

TABLE 7. Comparison on NDC datasets for nonlinear classifiers.

TABLE 8. The computational complexity of six classifiers.

we can see that WLPTSVM obtains the comparable accu-
racies and performs faster than other algorithms on most
datasets. For the nonlinear case, Table 7 shows the compari-
son results of all the algorithms conducted on NDC datasets
with Gaussian kernel. The results on these datasets show that

WLTSVM, LSPTSVM and our WLPTSVM are much faster
than TWSVM, PTSVM and RPTSVM. The reason might
be that the QPPs in TWSVM, PTSVM and RPTSVM are
solved by the optimization toolbox QP in MATLAB, while
the systems of linear equations in WLTSVM, LSPTSVM
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FIGURE 2. The training times of large scale NDC datasets.

and our WLPTSVM are solved by CG. For the linear case,
taking NDC-20000 dataset for example, the training time
of TWSVM is 127.3396 second, PTSVM is 131.2221 sec-
ond and RPTSVM is 125.2716 second, while WLTSVM is
0.0092 second, LSPTSVM is 0.0094 second and our pro-
posed WLPTSVM is 0.0109 second, respectively. For the
nonlinear case, the training times of all algorithms on four
large scale NDC datasets, e.g. NDC-5000, NDC-8000, NDC-
10000 and NDC-20000, are shown in Figure 2. So, the results
of Table 6, Table 7 and Figure 2 can indicate the efficiency of
our WLPTSVM when dealing with large scale problems.

D. DISCUSSIONS
In this subsection, we will give some discussions about
our WLPTSVM. First, according to optimization problems
(27)-(28) for the linear case and (40)-(41) for the nonlinear
case, there are many parameters, e.g. the penalty parameters
c1, c2, c3, c4 and kernel wide parameter σ for nonlinear case.
However, these parameters may significantly impact the per-
formance ofWLPTSVM. In order to investigate the influence
of these parameters to the proposed method, we discuss their
effect to the classification performance to our WLPTSVM on

2 UCI datasets, e.g. Australian, House-Votes. For simplicity,
the parameters are set c1 = c2 and c3 = c4 for linear case
and set c1 = c2 = c3 = c4 for nonlinear case. Figure 3 and
Figure 4 show the influence of the parameters on accuracy
with linear and nonlinear cases on above selected datasets,
respectively.

Second, in our experiments, we have compared the perfor-
mance of our WLPTSVM and other five algorithms. As we
know, TWSVM, PTSVM and RPTSVM need to solve two
quadratic programming problems (QPPs), while LSPTSVM,
WLTSVMandWLPTSVMonly need to solve two systems of
linear equations. Specifically, the main computational times
of TWSVM, PTSVM and RPTSVM are consumed in solving
two inverse matrices and two QPPs, while the main compu-
tational time is consumed in solving two systems of linear
equations for LSPTSVM and two systems of linear equations
for WLTSVM and WLPTSVM twice. The QPPs are solved
by the optimization toolbox QP in MATLAB, while the
systems of linear equations are solved by CG. We analyzed
the computational complexity of our WLPTSVM as follows.
According to algorithm 1 and algorithm 2, the systems of
linear equations (34), (38) or (42), (43) need to be solved
in our WLPTSVM. It is not hard to find that the matri-
ces of (34) and (38) are of dimension n × n, while the
matrices of (42) and (43) are of dimension m × m, where
m = m1 + m2 is the total number of training samples,
m1 and m2 are the number of positive and negative training
samples. For large values of m or n, these matrices cannot
be stored. Thus, similar to WLTSVM, CG algorithm is used
to solve our WLPTSVM. As we know, the computational
complexity of the direct method to solve systems of linear
equations is O(n3). Fortunately, by using the CG algorithm,
the computational complexity of our linear WLPTSVM is
O(2 ∗ n2r), where n is the dimension of samples and r is
the number of iterations. However, it should be noted that the
solution of linear WLPTSVM requires inversion of matrix of
size n × n twice and the solution of nonlinear WLPTSVM
requires inversion of matrix of size m×m twice. Thus, if the

FIGURE 3. The influence of the parameters for linear WLPTSVM on Australian and House-votes datasets. (a) Australian.
(b) House-votes.
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FIGURE 4. The influence of the parameters for nonlinear WLPTSVM on Australian and House-votes datasets. (a) Australian.
(b) House-votes.

number of samples becomes very large, the reduced kernel
technique [43] may be utilized to reduce the dimensionality
for our nonlinear WLPTSVM. Similarly, we can analyze
the computational complexity of other five algorithms. In a
word, the detailed comparisons are reported in Table 8. From
Table 8, we can find that LSPTSVM has the lowest com-
putational complexity and the computational complexity of
WLTSVMandWLPTSVM is almost the same, but lower than
TWSVM, PTSVM and RPTSVM.

Third, in this paper, we only have proposed the algo-
rithm for binary classification. However, multi-class classifi-
cation problems are also common in real-world applications.
In fact, our proposed WLPTSVM can be easily extended
to multi-class classification problem by the one-versus-one,
one-versus-rest strategies. Take K -class classification for
example, for one-versus-one strategy, it needs to consider
the samples of two classes for each binary classifier and
establish K (K − 1)/2 binary classifiers. For one-versus-rest
strategy, it needs to construct K binary classifiers and the
samples of one class are trained with the rest samples from
the other classes for each binary classifier. In general, how to
effectively extend binary classifier to multi-class classifier is
also an interesting issue, which may be our future work.

At last, according to [11], [44], [45], we can find that
recursive procedure to seek more than one directions for each
class maybe can boost the performance. Therefore, how to
extend ourWLPTSVM to recursive case is also an interesting
problem and we will address it in the future.

V. CONCLUSIONS
In this paper, we have proposed a novel weighted linear
loss projection twin support vector machine (WLPTSVM)
for binary classification problems. Instead of solving dual
QPPs in PTSVM, our WLPTSVM finds two projection
directions by solving systems of linear equations, allow-
ing it to classify large datasets efficiently. Experimental
results on synthetic and several benchmark datasets illus-
trate that our proposed WLPTSVM obtains comparable clas-
sification accuracy to that of PTSVM, but with reduced

computational cost. It should be pointed out that there are
many parameters in our WLPTSVM, so parameter selection
is a practical problem and needs to be investigated in the
future. In addition, the extension of our WLPTSVM to multi-
class classification [46]–[48], multi-label classification [49]
and feature selection problems [50], [51] are also interesting.
Furthermore, how to use our WLPTSVM to deal with the
large-scale classification problems in real world is also under
our consideration.
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