
Received April 2, 2019, accepted April 20, 2019, date of publication April 30, 2019, date of current version May 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2914188

Hybrid VARMA and LSTM Method for Lithium-ion
Battery State-of-Charge and Output Voltage
Forecasting in Electric Motorcycle Applications
ANGELA C. CALIWAG , (Student Member, IEEE), AND WANSU LIM , (Member, IEEE)
Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, South Korea

Corresponding author: Wansu Lim (wansu.lim@kumoh.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) under Grant 2017R1C1B5016837, in part by the
ITRC Program under Grant IITP-2019-2014-1-00639, and in part by the Global Excellent Technology Innovation Program under Grant
10063078.

ABSTRACT Electric vehicles (EVs) have gained attention owing to their effectiveness in reducing oil
demands and gas emissions. Of the electric components of an EV, a battery is considered as the major
bottleneck. Among the various types of battery, lithium-ion batteries are widely employed to power EVs.
To ensure the safe application of batteries in EVs, monitoring and control are performed using state
estimation. The state of a battery includes the state-of-charge (SoC), state-of-health (SoH), state-of-power
(SoP), and state-of-life (SoL). The SoC of a battery is the remaining usable percentage of its capacity. This
mainly depends on variations of the operating condition of the EV in which the battery is applied. The SoC of
a battery is reflected by its output voltage. That is, the SoC is considered to be zero when the output voltage
of a battery drops below a cut-off voltage. This study proposes an SoC and output voltage forecasting method
using a hybrid of the vector autoregressive moving average (VARMA) and long short-termmemory (LSTM).
This approach aims to estimate and forecast the SoC and output voltage of a battery when an EV is driven
under the CVS-40 drive cycle. Forecasting using the hybrid VARMA and LSTM method achieves a lower
root-mean-square error (RMSE) than forecasting with only VARMA or LSTM individually.

INDEX TERMS Battery output voltage, lithium-ion battery, neural network, state-of-charge, VARMA.

I. INTRODUCTION
Electric vehicles (EV) have gained attention owing to their
effectiveness in reducing oil demands and gas emissions.
Research on EVs addresses aims such as reducing costs and
greenhouse gas emissions, and increasing the energy conver-
sion efficiency [1]–[4]. Among the electric components of an
EV, the battery is considered the major bottleneck [5]. The
battery supplies the power required by an electric motor to
drive an EV at a certain speed. The power required by the
electric motor increases as the speed of the EV increases [6].

The various types of utilized battery include lead-acid,
nickel–cadmium (Ni-Cd), nickel–metal hydride (Ni-MH),
and lithium-ion (Li-ion) batteries. Among the different types
of battery, it is known that Li-ion batteries have a longer cycle
life, higher energy efficiency, higher power density, broader
range of temperature operation, faster charging capability,
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lower self-discharge rate, higher voltage efficiency, and lower
memory effect [4], [7]–[9]. Owing to the advantages of
Li-ion batteries over other types, they have been widely
employed to power electric devices such as EVs, air vehicles,
automated and remote-controlled systems, bio-implanted
devices, medical instrumentations, and other power tools and
machines [8], [10]–[12].

The state estimation of batteries is essential to ensure the
safe application of batteries in EVs [5]. This includes estimat-
ing the states of batteries such as the state-of-charge (SoC),
state-of-health (SoH), state-of-power (SoP), and state-of-life
(SoL). This study focuses on a battery’s SoC. The SoC of
a battery is the remaining usable percentage of the capacity
of a battery. Thus, a 100% SoC indicates that the maximum
available capacity can be used, while a 0% SoC indicates that
no more available capacity can be used [5].

In addition to providing information on a battery’s usable
capacity, the SoC also provides information on the reliability,
efficiency, and safety of an EV [5]. However, a battery’s
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SoC cannot be directly measured [6]. Some researchers have
dedicated effort to SoC estimation to obtain the SoC of a
battery. SoC estimation methods are classified into five types:
lookup table-based, ampere-hour integral, model-based esti-
mation, data-driven, and data–model fusion methods [5].
Lookup table-based methods use the relationship between
the open circuit voltage (OCV) and SoC of a battery. With
a known OCV and OCV curve, the SoC of a battery can be
estimated directly. The ampere-hour integral method employs
the relationship between the measured output current and
SoC of a battery. With a known initial SoC, output current
from the initial time to a certain time, and coulomb efficiency,
the current SoC of a battery can be accurately calculated.
Model-based estimation methods combine a lookup table-
based method with the ampere-hour integral method. This
approach employs nonlinear state estimation algorithms and
adaptive filters to estimate the SoC of a battery. Data-driven
methods exploit the nonlinear relationship between the mea-
surable parameters and SoC of a battery. The measurable
parameters of a battery include the current, voltage, and tem-
perature. Data–model fusion methods combine data-driven
and model-based methods. In this approach, a data-driven
method is employed to identify the system parameters needed
to improve the SoC estimation accuracy in the model-based
method [3], [5]–[7].

Hannan M.A. et al. presented a review of state-of-charge
estimation algorithms andmethods in the different literatures.
The result of their study shows that the conventional methods,
such as the lookup table-based, ampere-hour integral-based,
and model-based methods, are easy to implement but are
affected by the battery aging, operating temperature, and
external disturbances. Their study highlights the data-driven
method which has good precision and high accuracy but has
poor robustness and expensive computational cost. Hannan
M.A. et al. further divides the data-driven method into three
according to the algorithm used: adaptive filter algorithms
learning algorithm, and nonlinear observer. They concluded
that first, the adaptive filter algorithms yield good precision
and high efficiency in predicting a non-linear dynamic battery
SoC. However, using this algorithm has poor robustness and
computationally expensive. Among the adaptive algorithms,
the extended Kalman filter (EKF) used in estimating the SoC
(Jiang et al.) has the least average error (less than 1%). Then,
they also elaborated that the learning algorithm has also a
good performance in predicting a non-linear dynamic battery
SoC. Its advantage over the adaptive filter algorithm is the
robustness in considering the effect of aging, temperature
and noise. However, learning algorithm is more computa-
tionally expensive which require large memory unit to store
and train data. Among the learning algorithms, the genetic
algorithm (GA) used in estimating the SoC (Zheng) has
the least average error (less than 2%). Finally, according
to Hannan M.A. et al., the non-linear observer has highest
accuracy and the greatest robustness against the disturbances
at low computational cost. However, it is the most complex
algorithm. Among the nonlinear observer algorithms, the

proportional-integral observer (PIO) used in estimating the
SoC (Xu et al.) has the least average error (less than 1%).

Battery SoC estimation and forecasting helps to prevent
deep discharging and deterioration of a battery, and ensure
reliable operation of an EV. SoC forecasting could help
reduce ‘‘range anxiety,’’ and provide assurance that a charg-
ing station can be reached before the electric power of the bat-
tery runs out [13]. ‘‘Range anxiety’’ is defined as the fear of
losing power in the middle of a long-distance drive [13]–[15].

In an EV, the SoC of a battery dependsmainly on variations
in the operating conditions. The rate of charge consumption is
affected by varying mechanical forces, road conditions, and
traffic flow dynamics [1], [6], [14]. Aside from the rate of
charge consumption, variations in the operating conditions
also affect the output voltage of the battery [3], and in practice
the output voltage reflects the SoC of the battery. The SoC of
a battery is said to be zero when the output voltage of a battery
drops below a cutoff voltage Vcut−off [14].

Forecasting the output voltage of a battery could provide
an estimate of the time at which the output voltage of the
battery will drop below the cutoff voltage Vcut−off. In EV
applications, the variation in the output voltage of the battery
depends on the driving speed of the EV [6], and variations in
the driving speed cause variations in the load current.

Forecasting approaches are categorized into three types:
(i) physical, (ii) statistical, and (iii) artificial-intelligence.
Statistical and artificial-intelligence approaches, forecasting
can be performed without the need for knowledge of the
underlying data generation process. A hybrid of statistical
and artificial-intelligence approach has been utilized in differ-
ent fields to improve the forecasting accuracy. For instance,
Zhang G. demonstrated the effectiveness of using hybrid
autoregressive integrated moving average (ARIMA) model
and neural network (NN) in various fields by forecasting
sunspot activity, number of lynxes trapped in a year and
exchange rate between British pound and US dollar. Results
of the study conducted by G. Zhang shows higher accuracy
of the forecasting the sunspot activity, number of lynxes
and exchange rates compared to ARIMA model and NN
model. Another study on hybrid statistical and artificial-
intelligence approaches is performed by Alencar D. B. et al.
They proposed a hybrid seasonal autoregressive moving
average (SARIMA) and NN to forecast the windspeed in
Brazil. Compared with SARIMA model, hybrid SARIMA
and wavelet model, and NN model; hybrid SARIMA and
NN model yields higher forecasting accuracy. To the best
of authors’ knowledge, the forecasting of battery voltage
response in an electric motorcycle is not explored in previous
studies.

This study proposes an SoC and output voltage forecasting
method, using a hybrid of the vector autoregressive moving
average (VARMA) and long short-term memory (LSTM).
To consider the variations and uncertainties in operating
conditions, we use real data from an electric motorcycle
(discussed further in Section II). We also consider the driving
speed of an EV, to consider the dynamic state of the battery
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under real driving conditions. Thus, in this study we aim to
estimate and forecast the SoC and output voltage of a battery
when an EV is driven under the CVS-40 drive cycle.

The contributions of this work are summarized as follows:
(i) A hybrid forecasting approach based on VARMA and

LSTM is proposed to forecast the battery output voltage and
SoC; (2) a thorough analysis of the dynamic behavior of a
Li-ion battery in an electric motorcycle at 0 and 25◦C is
performed using real data; and (3) an analysis of the effects
of driving an electric motorcycle at various speeds on the
battery output voltage is presented, as only explored by few
previous studies to the best of the authors knowledge. This
study is limited to considering the CVS-40 driving cycle in
South Korea.

The remainder of this paper is organized as follows.
Section II presents the dataset utilized in this work. Section III
presents the proposed forecasting approach. Section IV
presents and discusses the results. Finally, Section V sum-
marizes the paper and states the conclusions.

II. ELECTRIC MOTORCYCLE DATASET AND
CVS-40 DRIVING CYCLE
To reduce the complexity and scope of the study, we assume
that a vehicle runs under the CVS-40 drive cycle of South
Korea, as shown in Fig. 1. A driving cycle depicts a variation
in the vehicle driving speed with time. It is used to simulate
and evaluate the performance of vehicles, such as energy
consumption and range. In this study, we utilized CVS-
40 driving cycle produced by South Korea. CVS-40 drive
cycle consists of three speed categories: low, medium, and
high. A summary of the statistics for each speed category
is presented in Table 1. Each CVS-40 cycle consists of six
repetitions of consecutive low,medium, and high speeds, with
rests in between.

FIGURE 1. CVS-40 drive cycle of South Korea.

The first, second and third columns in table 1 contains
the minimum (Min), mean, and maximum (Max) value of
each speed category in all of the CVS-40 drive cycles at
both 25◦C and 0◦C. This shows that the low speed varies
from 14.95 − 18.28 km/h; the medium speed varies from
31.39− 35.35 km/h; and the high speed varies from 36.36−
46.61 km/h. These variations are reflected by the SD and Var
in the fourth and fifth columns. The SD and Var values in

TABLE 1. Speed type summary statistics (units: km/h).

table 1 shows low variations in the values at low and medium
speed (SD of 0.60 and 0.76 for low and medium speeds
respectively and Var of 0.36 and 0.58 for low and medium
speeds respectively) but a high variation in the values at high
speed (SD of 4.82 and Var of 23.23).

Data was collected while driving an electric motorcycle
under the CVS-40 drive cycle in accordance to Interna-
tional Standard of battery-electric mopeds and motorcycles
– performance (ISO13064-1). After completing each cycle,
the electric motorcycle was placed at rest for 10 min. The
cycles continued until the battery ran out of charge.

Two different operating temperatures were considered in
this work: 0 and 25 ◦C.As illustrated in Fig. 2, the discharging
time at 25 degrees is longer than that at 0 degrees. The
dataset for 25 degrees consists of eight CVS-40 cycles until
the battery was fully discharged, while that for 0 degrees
consists of only six CVS-40 cycles before the battery was
fully discharged. The summary statistics of the battery output
voltage for each CVS-40 cycle at 0 and 25 ◦C are presented
in Tables 2 and 3, respectively.

FIGURE 2. Battery output voltage for an electric motorcycle driven under
the CVS-40 driving cycle, measured from fully charged to fully discharged
at (a) 25 and (b) 0 ◦C.

In tables 2 and 3, the first, second and third columns
contain the Min, mean, and Max values of the battery out-
put voltage in each cycle at 25 and 0◦C respectively. The
minimum battery voltage corresponds to the voltage response
of the battery when the EV is driven at the highest speed
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TABLE 2. Battery output voltage (V) summary statistics: 25 ◦C.

TABLE 3. Battery output voltage (V) summary statistics: 0 ◦C.

(approximately 40 − 45 km/h) while the maximum voltage
corresponds to the voltage level of the battery at the beginning
of each drive cycle. Decreasing value of minimum voltage
is affected by the decreasing value of the maximum voltage.
That is, the voltage level of the battery decreases but it still
has to supply the power need to drive the EV at the same
driving cycle. The fourth and third column in tables 2 and
3 corresponds to the SD and Var of the battery voltage at
25 and 0◦C. SD and Var measure of the deviations of the
measured battery output voltage from the average battery
output voltage. A decreasing SD and Var implies a decreasing
voltage response of the battery to the same driving cycle used
to drive the EV.

Aside from driving speed, the datasets for both 0 and 25 ◦C
also include the battery output voltage, battery output current,
motor input power, and motor output torque. The data con-
tainsmeasurements taken every 0.1 s. The electric motorcycle
driving speed, battery output voltage, battery output current,
motor input power, and motor output torque are considered as
potential explanatory variables, which can be used to forecast
the battery’s output voltage, output current, and SoC. The
summary statistics of the potential explanatory variables at
0 and 25 ◦C are presented in Tables 4 and 5, respectively.

III. BATTERY SOC AND OUTPUT VOLTAGE FORECASTING
Forecasting approaches are categorized into three types:
(i) physical, (ii) statistical, and (iii) artificial-intelligence
[16]–[18]. Physical approaches employ physical data to build
a physical model. This requires a detailed description of the
physical aspects of the system, such as the motor power,
battery type and size, weight, and so on [13], [19] Sta-
tistical approaches employ historical data to build a sta-
tistical model [9], [17]. Meanwhile, artificial-intelligence
approaches also employ features from historical data, to train
an artificial neural network (ANN). ANN is an artificial

TABLE 4. Explanatory variable summary statistics: 25 ◦C.

TABLE 5. Explanatory variable summary statistics: 0 ◦C.

intelligence modelling approach that imitates the informa-
tion processing of the human brain [23]. In both statistical
and artificial-intelligence approaches, forecasting can be per-
formedwithout the need for knowledge of the underlying data
generation process [23].

In this study, we propose a hybrid statistical and artificial-
intelligence approach to forecast the battery output voltage
and SoC. We combine VARMA, a statistical approach, with
LSTM, an artificial-intelligent approach.

VARMA represents the application of the ARMA model
to multivariate time series. It forecasts the next step in each
time series using the past values of the same time series
and other correlated time series [21], [22]. VARMA can
represent other models, such as pure vector autoregressive
(VAR), pure moving average (VMA), and combined VAR
and VMA (VARMA) models. Similar to ARMA, VARMA
is limited to the assumption that there is a linear correlation
among the time series values. Thus, VARMA is only capable
of capturing the linear patters in the data [23].

LSTM is a type of recurrent neural network (RNN), which
is capable of learning long-term dependencies [8]. LSTM is
a flexible computing framework, used to model nonlinear
problems. Unlike VARMA, LSTM is capable of capturing the
nonlinear patterns in the data. [23] However, it requires a huge
amount of data to learn the nonlinearity, which could lead to
overfitting. Thus, LSTMalone is not capable of handling both
linear and nonlinear patterns concurrently.

To overcome the disadvantages of utilizing VARMA or
LSTM independently, a hybrid VARMA and LSTM is
adopted in this work. The battery output voltage and SoC
forecasting is divided into three sections: (i) selection of the
explanatory variables, (ii) battery output voltage forecasting,
and (iii) battery SoC forecasting.

A. SELECTION OF EXPLANATORY VARIABLES
To account for the effects of variations in the operating con-
ditions, five potential explanatory variables are considered in
this study: the battery output voltage, battery output current,
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motor speed, motor input power, and motor output torque.
These variables can be obtained by direct measurement.

To determine which of the potential explanatory vari-
ables affect the battery output voltage and SoC forecasting,
we compute the Pearson correlation between the potential
explanatory variables with the battery output voltage and
output current.

After selecting the explanatory variables, we also deter-
mine the effects of removing the explanatory variables with
weaker relationships with the battery output voltage and out-
put current, and three models are utilized. One considers all
explanatory variables, both influential and non-influential.
The second only considers the influential explanatory vari-
ables. The third only considers speed as the influential
explanatory variable. The accuracies of both models are
compared.

B. BATTERY OUTPUT VOLTAGE FORECASTING
In forecasting the battery output voltage, only the speed is
considered as an explanatory variable.

In this study, we forecast the battery output voltage using
a hybrid VARMA and LSTM model. The historical data of
the battery output voltage is decomposed into its linear and
nonlinear components. That is,

VO (t) = VOL (t)+ VON (t) (1)

where VO(t) is the battery output voltage time series, and
VOL (t) and VON (t) are its linear and nonlinear components,
respectively.

The forecasted battery output voltage time series is then
expressed as

V̂O (t) = V̂OL (t)+ V̂ON (t) (2)

where V̂OL (t) and V̂ON (t) are the forecasted linear and non-
linear components of the battery output voltage time series,
respectively.

First, VARMA is utilized to forecast the linear component
of the battery output voltage V̂OL (t). Then, the nonlinear
component V̂ON (t) is obtained by subtracting the forecasted
linear component of the battery output voltage from the orig-
inal time series. That is,

VON (t) = VO (t)− V̂OL (t)+ eL(t) (3)

where eL(t) is the error between the actual and predicted
linear components of the batter output voltage time series.
VON (t) also denotes the residual of the linear model, or the
error when only VARMA is used in forecasting the battery
output voltage.

Then, LSTM is employed to forecast the nonlinear com-
ponent of the battery output voltage V̂ON (t). In other words,
LSTM is used to forecast the residual of the linear model, or
the error when only VARMA is used in forecasting the battery
output voltage.

Finally, the forecasted battery output voltage time series
V̂O (t) is obtained using (1).

C. BATTERY SOC FORECASTING
In forecasting the battery SoC, both the battery output voltage
and speed are considered as explanatory variables.

We first forecast the battery output current in response to
the motor speed, with the assumption that the EV is driven
under CVS-40. Then, we compute the charge consumed by
the EV at each point in time, and the total charge consumed
by the EV from a fully charged to fully discharged state.
Finally, the SoC of the battery is computed as

SoC (t) = 1−
Q(t)
Qall

(4)

whereQ(t) is the charge consumed by the EV at each point in
time, and Qall is the total charge consumed by the EV from
the fully charged to fully discharged state.

Similar to the battery output voltage forecasting, we fore-
cast the battery SoC using the hybrid VARMA and LSTM
method. The historical data of the battery output current is
decomposed into its linear and nonlinear components. That is,

IO (t) = IOL (t)+ ION (t) (5)

where IO (t) is the battery output current time series, and
IOL (t) and ION (t) are its linear and nonlinear components,
respectively.

The forecasted battery output current time series is then
expressed as

ÎO (t) = ÎOL (t)+ ÎON (t) (6)

where ÎOL (t) and ÎON (t) are the forecasted linear and non-
linear components of the battery output current time series,
respectively.

First, VARMA is utilized to forecast the linear component
of the battery output current ÎOL (t). Then, the nonlinear
component of the battery output current ÎON (t) is obtained
by subtracting the forecasted linear component of the battery
output current from the original time series. That is,

ION (t) = IO (t)− ÎOL (t)+ eL(t) (7)

where eL(t) is the error between the actual and predicted
linear components of the batter output voltage time series.
ION (t) also denotes the residual of the linear model, or the
error when only VARMA is utilized in forecasting the battery
output voltage.

Then, LSTM is employed to forecast the nonlinear com-
ponent of the battery output current ÎON (t). In other words,
LSTM is used to forecast the residual of the linear model, or
the error when only VARMA is used in forecasting the battery
output current.

Finally, the forecasted battery output current time series
ÎO (t) is obtained using (2).

After obtaining the forecasted battery output current time
series ÎO (t), the SoC is obtained using (4). The charge con-
sumed by the EV at each point in time, Q (t), is obtained as

Q (t) =
∫ t

0
ÎO (t) dt (8)
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where t is the current time. The charge consumed by the
EV from the fully charged to fully discharged state, Qall ,
is obtained as

Qall =
∫ T

0
ÎO (t) dt (9)

where T is the time at which the battery reaches its fully
discharged state. The values obtained in (8) and (9) are used
to compute the SoC using (4).

IV. RESULTS
A. SELECTION OF EXPLANATORY VARIABLES
The Pearson correlation between the five potential explana-
tory variables at 25 and 0 ◦C is presented in Tables 6 and 7,
respectively. The explanatory variables at both 25 and 0 ◦C
exhibit weak correlations between the current, speed, power,
and torque with the voltage (−0.33,−0.20,−0.26, and
−0.24), and strong correlations between the speed, power,
and torque with the current (0.64, 1, and 0.78). This may be
due to the fact that the voltage level of the battery decreases
over time while the load it has to supply remains constant.
In obtaining the correlations, the behavior of the variables
when the battery is at fully-charged state to fully-discharged
state is considered.

TABLE 6. Correlation matrix of explanatory variables summary statistics:
25 ◦C

TABLE 7. Correlation matrix of explanatory variables summary statistics:
0 ◦C

The results shown in Tables 6 and 7 suggest that the
explanatory variables have little effect on the output voltage
of a battery, and that considering these variables may not
efficiently increase the accuracy of the voltage forecasting.
On the other hand, the results also suggest that the explana-
tory variables have a considerable effect on the output current
of a battery, and that considering these variables may increase
the SoC estimation and forecasting accuracy.

Among the explanatory variables, the speed has the lowest
correlation with the output voltage of the battery. This con-
tradicts our hypothesis that the driving speed of an electric
motorcycle should affect the output voltage of the battery.

TABLE 8. Average RMSEs of three models.

We hypothesize that the output voltage of the battery varies
to supply the power required by the electric motor to drive
the electric motorcycle at a certain speed. To further investi-
gate this issue, we performed output voltage level forecast-
ing using three models: (i) Model 1, developed using five
explanatory variables; (ii) Model 2, developed using four
explanatory variables; and (iii) Model 3, developed using
only the electric motorcycle driving speed as an explanatory
variable.

The battery output voltage time series forecasting for
100 steps ahead was performed for seven and five iterations
using the data for 25 and 0 ◦C, respectively. The numbers of
iterations were chosen based on the total number of CVS-
40 driving cycles performed before the battery was fully dis-
charged. On the first iteration, the models were trained using
data from the first CVS-40 driving cycle of each temperature
type. On the second iteration, the models were trained using
the data from the first and second CVS-40 driving cycles
of each temperature type, and so on. On the final iteration,
the models were trained using the data from the second to
the last CVS-40 driving cycle for each temperature type. The
root-mean-square errors (RMSEs) obtained in forecasting the
battery output voltage using the three models are depicted
in Fig. 3. The x-axis denotes the number of CVS-40 cycles
used as training data, and the y-axis denotes the RMSE for
each forecast iteration.

From Fig. 3 (a), three observations can be drawn: (i) the
RMSE of Model 2 is always higher than those of Models
1 and 3, except with one and four cycles; (ii) the RMSE of
Model 3 is the lowest among the models, except with two
and four cycles; and (iii) the difference between the RMSEs
of Models 1 and 3 is small except with seven cycles, where a
difference of over 0.2 is observed. These observations imply
that the Model 3 is best. Model 3 has the lowest RMSE for
most of the numbers of cycles, and the lowest computational
cost, because only one explanatory variable is considered.

In Fig. 3 (b), the order of the models based on their RMSEs
differs for each number of cycles. That is, for one cycleModel
1 exhibits the highest RMSE, while Model 3 exhibits the
lowest; for two cycles Model 3 has the highest RMSE while
Model 2 has the lowest; for three cycles, Model 1 has the
highest RMSEwhileModel 3 has the lowest; and so on. These
observations do not support the implications of Fig. 3 (a).
To provide more points of comparison, we took the average
RMSE, as shown in Table 8.

In Table 8, the average RMSE of Model 3 is the lowest
for both 25 and 0 ◦C. The results in Table 8 support the
implications of Fig. 3 (a). The ambiguous observation from
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FIGURE 3. RMSE for predicting 100 steps ahead with varying numbers of
CVS-40 cycles as training data at (a) 25 and (b) 0◦C.

Fig. 3 (b) could be a result of the effect of driving the EV at
a very low temperature.

B. BATTERY OUTPUT VOLTAGE FORECASTING
Based on the results shown in Table 8, only the speed is
utilized as an explanatory variable for forecasting the battery
output voltage.

We performed one cycle ahead forecasting for six and four
iterations using the data for 25 and 0 ◦C, respectively. The
results are presented in Tables 9 and 10 for the data at 25 and
0 ◦C, respectively.

Table 9 lists the RMSEs obtained in one cycle ahead battery
output voltage forecasting using only VARMA, only LSTM,
and hybrid VARMA and LSTM at 25 ◦C. The number of
training samples differs in each iteration. That is, in the first
iteration data measured during the first and second CVS-
40 driving cycles are used as training data, in the second
iteration data measured during the third cycle are additionally
used for training, and so on. Thus, in the last iteration data
measured from the first to the seventh CVS-40 driving cycles
are used as training samples to predict the last cycle before
the battery reaches the fully discharged state. At 25 ◦C, for
dataset we utilized the electric motorcycle was driven for
eight CVS-40 driving cycles before its battery reached a fully
discharged state.

TABLE 9. One cycle ahead forecasting error (RMSE): 0 ◦C.

Overall, it is clear that the RMSE obtained using the
hybrid VARMA and LSTMmethod is the lowest. In addition,
it is notable that the RMSEs obtained using only LSTM
and hybrid VARMA and LSTM are relatively close, while
that obtained using only VARMA is far from the others.
Looking more closely at Table 9, one can observe that
the RMSE obtained using the hybrid VARMA and LSTM
approach decreases with the number of training iterations.
The only exceptionwas for the last iteration, where the RMSE
increased from 0.142 to 0.201. On the one hand, the decrease
in the RMSE with the number of training iterations may be a
result of the increase in the number of training samples at each
iteration. On the other hand, the increase in the RMSE for the
last iteration is due to the failure of the forecasting model to
predict the erroneous behavior of the battery as it approaches
a fully discharged state. Moreover, the RMSE obtained using
only LSTM also decreases with the number of training itera-
tions except at the last iteration, where the RMSE increased
from 0.0.273 to 0.410. In contrast, the RMSE obtained using
only VARMA increased with the number of training itera-
tions except at the last iteration, where the RMSE decreased
from 5.5081 to 2.2148. The increase in the RMSE with the
number of training iterations may be a result of the failure
of the forecasting model to learn and predict the nonlinear
behavior of the battery as it approached a fully discharged
state. On the other hand, further investigation of the cause
of the decrease in the RMSE for the final iteration reveals
that the battery reached a fully discharged state while driving
the electric motorcycle approximately one third through the
CVS-40 drive cycle. Thus, only one third of the CVS-40 drive
cycle is forecasted by the VARMA-only approach in the
last iteration, causing its RMSE decrease compared to the
previous iteration.

TABLE 10. One cycle ahead forecasting error (RMSE): 25 ◦C.

Table 10 presents the RMSEs obtained for one cycle ahead
battery output voltage forecasting using only VARMA, only
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LSTM, and the hybrid VARMA and LSTM method at 0 ◦C.
Similar to the observations from Table 9, it is observed that
the RMSE obtained using hybrid VARMA and LSTM is
the lowest. Further, the RMSEs obtained using only LSTM
and hybrid VARMA and LSTM are relatively close, while
that obtained using only VARMA is far from the others.
In comparing the results in Tables 9 and 10, one can observe
that the trend of the RMSE in Table 9 differs from that
in Table 10. The difference in the trend of the RMSE is
assumed to be a result of the difference in the operating
temperature. Operating the EV at a lower temperature tends
to result in erratic behavior of the battery.

C. BATTERY SOC FORECASTING
For the battery output current forecasting, we performedmul-
tiple cycles ahead forecasting for six and four iterations with
the data for 25 and 0 ◦C, respectively. Unlike for battery out-
put voltage forecasting, where only one cycle ahead was fore-
casted, in the battery output current forecasting the remaining
cycles before the battery reached its fully discharged state
were forecasted. The results are presented in Tables 11 and
12. Table 11 presents the RMSEs obtained in multiple cycles
ahead battery output current forecasting using only VARMA,
only LSTM, and hybrid VARMA and LSTM at 25 ◦C. The
number of training samples differs in each iteration. That is,
in the first iteration data measured during the first and second
CVS-40 driving cycles is used as training data, in the second
iteration datameasured during the third CVS-40 driving cycle
is additionally used, and so on. Thus, in the last iteration data
measured from the first to the seventh CVS-40 driving cycles
are utilized as training samples to predict the last cycle before
the battery reaches the fully discharged state. At 25 ◦C, for
the dataset we utilized the electric motorcycle was driven for
eight CVS-40 driving cycles before its battery reached a fully
discharged state.

TABLE 11. Battery output current forecasting error (RMSE): 25 ◦C.

Overall, it is clear that the RMSE obtained using the
hybrid VARMA and LSTM approach is the lowest. Further,
the RMSEs obtained using only LSTM and hybrid VARMA
and LSTM are relatively close, while that obtained using only
VARMA is distinct from the others. Looking more closely
at Table 11, one can observe that the RMSEs obtained using
only VARMA, only LSTM, and hybrid VARMA and LSTM
decrease with the number of training iterations. The number
of training samples increases in each iteration, while the
number of remaining cycles before the battery reaches its

fully discharged state decreases. This results in a decreasing
RMSE for each iteration.

In comparing Tables 9 and 11, it is clear that the RMSEs
in Table 9 is lower than in Table 11. This may be a result of
forecasting for different numbers of steps ahead. In Table 9,
one cycle ahead forecasting was implemented. In Table 10,
multiple cycle ahead forecasting was implemented. The train-
ing samples in both Tables 9 and 11 are the same in each
iteration. Thus, a greater RMSE is expected for multiple cycle
ahead forecasting than in one cycle ahead forecasting.

TABLE 12. Battery output current forecasting error (RMSE): 25 ◦C.

Table 12 presents the RMSEs obtained in multiple cycle
ahead battery output current forecasting using only VARMA,
only LSTM, and hybrid VARMA and LSTM at 0 ◦C. Sim-
ilar to the observations in Table 11, it is observed that the
RMSE obtained using hybrid VARMA and LSTM is the
lowest. Further, the RMSEs obtained using only LSTM and
hybrid VARMA and LSTM are relatively close, while the
RMSE obtained using only VARMA is far from the others.
In comparing the results in Tables 11 and 12, one can observe
that the trend of the RMSE in Table 11 differs from that
in Table 12. The difference in the trend of the RMSE is
assumed to be a result of the difference in the operating
temperature. Operating the EV at a lower temperature tends
to lead to erratic behavior of the battery.

The small difference in the RMSE obtained using LSTM
only and VARMA + LSTM model is due to the high RMSE
in using VARMA in the latter model. Still, the result shows
that LSTM is effective in improving the forecasting result of
VARMAonlymodel. Optimization in theVARMAmodel can
be performed to increase its accuracy and reduce the RMSE
obtained in using the hybrid VARMA and LSTM model.
In addition to that, integration ofVARMA to the LSTMmodel
reduces the risk of overfitting wherein LSTM uses the value
at time t − 1 as a forecasted value at time t .
Based on Tables 9, 10, 11, and 12, it is clear that the RMSE

using hybrid VARMA and LSTM is the lowest. As observed,
LSTM is effective in compensating for the error in forecasting
with only VARMA. On the other hand, VARMA is also
effective in compensating for the error in forecasting with
only LSTM, although the difference between forecastingwith
only LSTM and hybrid VARMA and LSTM is small.

Following the battery output current forecasting, the bat-
tery SoC was predicted using (4), (8), and (9). The pre-
dicted and actual battery SoCs are compared and depicted in
Figs. 4 and 5 for 25 and 0 ◦C, respectively.
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FIGURE 4. Predicted and actual battery SoCs at 25 ◦C.

FIGURE 5. Predicted and actual battery SoCs at 0 ◦C.

Figure 4 shows the predicted and actual battery SoCs per
time step at 25 ◦C, where an SoC of 1.0 corresponds to a
100% SoC, or a fully charged state, and an SoC of 0.0 cor-
responds to a 0% SoC, or a fully discharged state. As shown
in Fig. 4, the SoC of the battery reduces from 1.0 to 0.0 after
60,000 time steps, where each timestep has a duration of 0.1 s.
It is clear that the SoC decreases linearly over time. Looking
more closely, the sub-figure of Fig. 4 clearly shows that the
battery SoC predicted using the battery output current fore-
casted using the first to seventh drive cycles yields the closest
prediction to the actual battery SoC. Moreover, the battery
SoC predicted using the battery output current forecasted
with the first to second drive cycles yields the furthest pre-
diction to the actual battery SoC. In comparing the predicted
values, it is clear that the distance from the actual value
decreases as the number of training samples or the number
of drive cycles increases.

Figure 5 shows the predicted and actual SoC per time step
at 0 ◦C. Similar to Fig. 5, an SoC of 1.0 corresponds to a 100%
SoC and an SoC of 0.0 corresponds to a 0% SoC. Unlike
in Fig. 4, the SoC of the battery reduces from 1.0 to 0.0 after

FIGURE 6. Predicted and actual battery SoCs at 25 ◦C, and a linear
reference line between 0 and 8,000 timesteps.

50,000 time steps, where each timestep has a duration of 0.1 s.
It is again clear that the SoC decreases linearly over time.
However, as shown in Figs. 4 and 5, the battery at 0 ◦C
reached 0% SoC earlier than that at 25 ◦C.
Figure 6 shows the predicted and actual battery SoCs at

25 ◦C, with a linear line for reference. This figure illustrates
the effect of the variation in the EV driving speed on the SoC
of the battery. A variation in the SoC is caused by the variation
in the driving speed of the EV. Higher variations in driving
speed cause higher variations in SoC. Overall, the trend is
decreasing. However, if we look more closely the SoC curve
deviates away from the linear reference line over time. Thus,
the SoC is consumed more quickly over time.

V. CONCLUSION
In this paper, we presented real data gathered by driving
an electric motorcycle under the CVS-40 driving cycle,
described the CVS-40 driving cycle of South Korea, derived
factors that affect the battery output voltage and SoC, pro-
posed a hybrid forecasting approach based on VARMA and
LSTM to forecast the battery output voltage and SoC, and
presented an analysis of the effect of driving an EV at various
speeds on the battery output voltage.

An electric motorcycle was driven under the CVS-40 driv-
ing cycle of South Korea at 25 and 0 ◦C. The results of the
experiment show that the electric motorcycle’s driving speed
could be utilized as an explanatory variable in forecasting the
battery output voltage and SoC. To forecast the battery output
voltage and SoC, we employed a hybrid VARMA and LSTM
method. The hybrid VARMA and LSTM approach was capa-
ble of capturing both the linear and nonlinear features of
the battery voltage and battery SoC. First, the battery output
voltage is forecasted at one cycle ahead. Forecasting using
hybrid VARMA and LSTM achieved RMSEs of 0.161 and
0.193 for data at 25 and 0 ◦C, respectively. Then, the battery
SoC was forecasted at multiple cycles ahead. Forecasting at
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one cycle ahead achieved the lowest error. The error increased
as the number of cycles to be forecasted increased. The results
of the experiment demonstrate that the variation in the electric
motorcycle speed causes a variation in the SoC of its battery.
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