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ABSTRACT In this paper, we consider the combination of machine learning (ML) and wireless communica-
tion. We design a machine learning generated clusters model in a distributed antenna system (DAS), which is
constructed by two different ML clustering algorithms, i.e., k-means algorithm and Gaussian mixture model-
based (GMM) algorithm. Under the communication scenario of DAS with ML generated clusters model,
we investigate two different power allocation optimization problems with the interference of maximizing
spectral efficiency (SE) and energy efficiency (EE) in DAS, respectively. We compare the SE and EE of DAS
withML generated clustersmodel and the conventional model. The simulation results verify the effectiveness
of DAS with ML generated clusters model, which can obtain the much better performance of SE and EE
compared with the conventional communication model in DAS.

INDEX TERMS Machine learning, spectral efficiency, energy efficiency, k-means, mixture of Gaussian
model, distributed antenna system.

I. INTRODUCTION
The update and exchange of wireless data impose a huge
burden on the existing cellular networks, and at the same
time pose many serious challenges for the design, opera-
tion, and maintenance of the fifth generation (5G) wireless
networks. In order to reduce the pressure on the commu-
nication networks caused by the explosive growth of data
traffic, many new proposals for reforming and updating
traditional communication technologies to fit the 5G wire-
less networks have emerged in the existing research work
[1], and the effectiveness of many innovative approaches
has been confirmed, which can be seen from the changes
of the single-input single-output (SISO) techniques to the
multiple-input multiple-output (MIMO) techniques [2]–[4],
the traditional cellular communication modes to the commu-
nication mode with device to device [5]–[7], the centralized
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antenna systems (CAS) to the distributed antenna sys-
tems (DAS) [8]–[10], and the appearance of the ultra-dense
networks [11].

The research of designing the efficient power allocation
scheme to improve the energy efficiency (EE) [12], [13] and
spectral efficiency (SE) [14]–[16] has always been a hot spot.
In [17], Singh et al. discussed two transmit beamforming
design problems including sum-power minimization problem
and EE maximization problem in MIMO system. In [18],
Cirik et al. investigated a resource allocation problem of
joint power and subcarrier allocation to maximize the EE in
multiuser relay networks.

As discussed in the existing researchworks [19], [20], DAS
can significantly improve the EE and SE of the communi-
cation systems compared to CAS. However, it is inevitable
that there is a serious interference problem among users and a
problem of high computational complexity of the center unit,
which is connected with the other remote access units (RAUs)
by fibre [21], in the DAS. In order to solve the above two
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problems and ensure the good performance of the commu-
nication systems, we introduce the machine learning (ML)
algorithms into wireless communication systems. For more
complex and dynamic of 5G wireless networks, artificial
intelligence (AI) techniques provides us with a superior alter-
native option over traditional communication technologies in
terms of joint optimization, detection, estimation and other
communication behaviors [22]. Based on the channel state
information (CSI) as a training sample set, the antenna selec-
tion issue in MIMO is considered as a ML behavior by
constructing a multi-class classifier, which is achieved by
k-nearest neighbors (KNN), support vector machine (SVM),
naive-Bayes (NB) [23], [24], for a good communication
performance. In [25], a framework for resource allocation
based on ML elaborates on the process of applying ML
algorithms to resource allocation in wireless communication
networks, and a beam allocation problem has been solved
by the KNN algorithm under low complexity conditions in
a single cell MIMO system. The k-means algorithm has
been exploited to design the next generation 5G wireless
networks [26]. The gaussian mixture model-based (GMM)
algorithm contributes to clustering the users for interest esti-
mate in social networks [27]. The authors applied the k-NN
algorithm to classify the cellular users for getting the power
allocation schemes of DAS according to the historical data
constructing by the traditional method [28]. The Q-learning
was introduced to offer an alternative option to solve the high
complexity problem of the traditional resource allocation
solution in multi-cell, multi-user system, which is possibly
applied to DAS [22]. The authors applied the DNN (deep
neural network) to obtain the power allocation of maximizing
EE in a multi-cell interference network, which also provides
insights into the combination of ML and power allocation
in DAS [29]. From the previous works, it has become an
inevitable trend for ML to be applied to 5G wireless net-
works to provide communication systems with better com-
munication performance than conventional communication
technologies.

In this paper, firstly, we propose to use k-means algo-
rithm and GMM algorithm to form a ML generated clusters
communication model in DAS. By using the ML clustering
algorithms, the users in each cluster are served by the only one
base station selected by the clustering center, which signifi-
cantly reduces interference from the other RAUs and reduces
computational complexity of the center unit. Then, under the
communication scenario of DAS with ML generated clusters
model, we firstly discuss the problems of maximizing SE
and EE under the requirements of each users’ minimum SE
and the maximum transmit power of RAUs in DAS with ML
generated clusters model, respectively. Last, we compare the
computational complexity of the proposed algorithm and the
conventional algorithm to gain insight into the advantages of
DAS with the ML generated clusters mode. And we consider
the existing power allocation scheme appeared in the litera-
ture [32] as the comparison algorithm i.e., the conventional
method in this paper, and the conventional communication

model in DAS is typically used by each RAU, which serves
all the cellular users. However, when all RAUs serve the
kth cellular user in this model, it will bring severe interfer-
ence from the communication of RAUs to the other cellular
users [32]. Simulation results show that compared with the
conventional algorithm, the ML generated clusters model can
achieve themuch better communication performance inDAS.
When we consider the problem of maximizing SE in DAS,
using ML generated clusters model in DAS can improve the
SE of DAS, especially when the maximum transmit power
is large. When we investigate the problem of maximizing
EE in DAS, the communication model of ML generated
clusters also can obtain a better performance. For example,
when the maximum transmit power is 20 dBm, EE reaches
maximum and EE of using ML generated clusters model in
DAS constructed by k-means clustering algorithm and GMM
clustering algorithm is about 230% and 180% higher than EE
of conventional communication model in DAS.

The remainder of this paper is organized as follows.
Section II introduces the system configure. Specifically, there
are the systemmodel, total power consumption. In section III,
we investigate the ML generated clusters model achieved by
the k-means clustering algorithm and GMM clustering algo-
rithm, respectively. In section IV, we formulate the maximum
SE optimization problem and the maximum EE optimiza-
tion problem of ML generated clusters model in DAS, and
develop the corresponding optimal power allocation algo-
rithms to obtain the solutions, respectively. section V presents
the simulation results to demonstrate the effectiveness and
the validity of using ML generated clusters model in DAS.
We draw the conclusion in section VI.

II. SYSTEM CONFIGURE
In DAS, N RAUs with one antenna each are uniformly
distributed in the cell, and K singer-antenna cellular users
are randomly distributed in the cellular cell, respectively.
In this paper, we make the following assumptions: i) the users
share the same spectrum. ii) the total system bandwidth is
normalized to unit. iii) the cell is a circle with the radius R.

A. CHANNEL MODEL
As the work discussed in [30], the channel hn,k between kth
user and nth RAU can be modeled as the composite fading
channel, which can be expressed as the following

hn,k = gn,kwn,k , (1)

where gn,k is the small scale fading, and can be expressed
as independent and identically distributed complex Gaussian
random variables with zero mean and unit variance. The large
scale fading is denoted by wn,k , which is independent of the
small scale fading gn,k , and can be written as [12]

wn,k =

√
csn,k
dαn,k

, (2)

where c is the median of the mean path gain at a reference
distance of dn,k = 1 km, dn,k is the distance between kth user
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and nth RAU, α is the path loss factor and is typically between
3 and 5, and sn,k is log-normal shadow fading variable, which
means 10log10sn,k is a zero mean Gaussian random variable
with standard deviation σsh [12], [31].

B. ML ALGORITHM
In this part, we focus particularly on the combination of ML
and DAS. In DAS, the conventional communication model is
typically used by each RAU, which serves all cellular users.
However, when all RAUs serve the kth cellular user in this
model, it will cause severe interference from the communica-
tion of RAUs to the other cellular users [32]. Different from
the conventional communication of DAS, we propose a ML
generated clusters model in DAS that is based on the k-means
algorithm and GMM algorithm. With the ML generated clus-
ters model in DAS, unsupervised learning algorithm divides
K cellular users into several clusters with a certain number
of users. Meanwhile, a corresponding clustering center will
be generated in each cluster. The mth clustering center auto-
matically select the closest RAU to the clustering center for
all users in themth cluster, before communicatingwith RAUs.
When each cluster is associated with the corresponding RAU,
the nth RAU serves only these users that select nth RAU
as their unique serving base station. Finally, we discuss the
problems of maximizing SE and EE under the requirements
of each users’ minimumSE and themaximum transmit power
of RAUs in DAS with ML generated clusters model, respec-
tively.

III. ML CLUSTERS MODEL IN DAS
In this section, we will introduce two unsupervised learning
algorithm to form the ML generated clusters model in DAS,
which can significantly decrease the interference of the com-
munication systems.

A. K-MEANS CLUSTERING ALGORITHM
Given the d-dimension user data set X = {xi|xi ∈ Rd , i =
1, 2, . . . ,K , d = 2}, which illustrates the location distribu-
tion information of the K users, where xi denotes the position
coordinates of the ith cellular user, and K is the number of
the cellular users, and d is the dimension of the position coor-
dinates (i.e., d = 2). The k-means clustering algorithm [33]
minimizes the squared error, which is expressed as the fol-
lowing, based on the clustering results C = {c1, c2, . . . , cS},

E =
S∑
i=1

∑
x∈ci

‖x− µi‖
2
2, (3)

where µi =
1
|ci|

∑
x∈ci x denotes the clustering center (the

mean of all user samples) in the cluster ci, and |ci| is the
number of the user samples in ci [34].
Intuitively, the formulation (6) to a certain extent describes

the degree of the closeness of users around the clustering
center. The smaller the value of E is, the higher the degree
of similarity the user samples. The k-means clustering algo-
rithm divides the users of data set X into pre-determined

S clusters by minimizing the squared error function (6).
Specifically, S users are selected as the initial clustering
center in advance from the user set containing K user sam-
ples. For the rest of the user samples, according to their
similarity (distance) with these clustering centers, they are
respectively assigned to the clusters most similar to them.
Then calculate the clustering center of each newly obtained
cluster. The process is repeated until each clustering no longer
changes.

B. GMM CLUSTERING ALGORITHM
Different from the k-means clustering algorithm, which the
sample data prototype vectors are used to describe the clus-
tering structure, GMM clustering algorithm employed the
probability mode (gaussian distribution) to describe the clus-
tering prototype. According to [35], these Gaussian dis-
tributed components can be combined together to construct
the overall probability model, which means it is flexible
enough to approximate any distribution based on the Gaus-
sian mixture distributions. So we can describe the clustering
prototype of DAS users as the probability mode of Gaussian
distributions by using the GMM algorithm to progressively
approximate the distribution of the described data by Gaus-
sian mixture components. The clusters are determined by
the probability corresponding to the sample data prototype.
Specifically, gaussian mixture distribution, which can be
defined as following, consists of S mixture components, each
of which is a gaussian distribution,

PM (x) =
S∑
i=1

αiP(x|µi, εi), (4)

where µi and εi are parameters i.e., the mean and covariance
matrix of the ith gaussian mixture component, respectively.
P(x|µi, εi) can be expressed as

P(x|µi, εi) =
1

(2π)
d
2 |εi|

1
2

e−
1
2 (x−µi)T εi−1(x−µi), (5)

and αi > 0 is the corresponding mixture coefficient, which is
satisfied

S∑
i=1

αi = 1, (6)

where αi represents the probability of selecting the ith gaus-
sian mixture component.

Given the d-dimension user data set X = {xj|xj ∈ Rd , j =
1, 2, . . . ,K }, which illustrates the location distribution infor-
mation of the K users, where xi denotes the position coor-
dinates of the ith cellular user, and K is the number of the
cellular users, and d is the dimension of the position coordi-
nates (i.e., d= 2).. Let the random variable Zj ∈ {1, 2, . . . , S}
present the gaussian mixture component of user sample xj.
Obviously, the prior probability of variable Zj, i.e., P(Zj = i),
corresponds to αi, (i = 1, 2, . . . , S). According to Baye’s
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theorem, the posterior distribution of Zj can be expressed as

PM (Zj = i|xj) =
P(Zj = i)PM (xj|Zj = i)

PM (xj)

=
αiP(xj|µi, εi)∑S
l=1 αlP(xj|µi, εi)

. (7)

In other words, PM (Zj = i|xj) shows the posterior proba-
bility of user sample xj generated by the ith gaussian mixture
component, which is denoted as rj,i, (i = 1, 2, . . . , S) for
the convenience of description. When the gaussian mixture
distribution is known, GMM clustering algorithm will divide
the sample user set X into S clusters C = {c1, c2, . . . , cS},
and the cluster tag λj of each user sample xj is determined as
following

λj = argmax
i∈{1,2,...,S}

rj,i. (8)

For the given sample user set X, the maximum likelihood
is expressed as follows

L(X) = ln

 K∏
j=1

(PM (xj)


=

K∑
j=1

ln

(
S∑
i=1

αiP(xj|µi, εi)

)
. (9)

The model parameters of (11) are obtained by iterative
optimizations using the ExpectationMaximization (EM) [36]
algorithm to fit the GMM to the given user set X. In the ith
iteration of the EM algorithm, the mixture coefficient of each
gaussian component are calculated as

αi =
1
K

K∑
j=1

rj,i, (10)

which shows the mixture coefficient of each gaussian compo-
nent is determined by the average posterior probability of the
user sample belonging to the component. Whereas the mean
value and the covariance value of each gaussian component
are calculated as

µi =

∑K
j=1 rj,ixj∑K
j=1 rj,i

, (11)

εi =

∑K
j=1 rj,i(xj − µi)(xj − µi)T∑K

j=1 rj,i
. (12)

The formulation (14) presents that the mean of each mixed
component can be estimated by a sample weighted average,
which is the posterior probability of each user sample belongs
to the component.

After clustering user samples with the k-means algorithm
and GMM algorithm, we can get the the clustering results
and the clustering centers corresponding to each cluster. Next,
we will discuss how to select the appropriate unique serving
base station for the users in each cluster by calculating the

TABLE 1. K-means clustering algorithm in DAS.

distance between each clustering center and each RAU. The
specific process is as follows
Step1:Define the distance between the ith clustering center

and nth RAU, which can be expressed as

di,n = ‖RAUn − µi‖
2, (13)

whereµi is the ith clustering center and RAUn is the nth RAU,
n ∈ [1, 2, . . . ,N ], i ∈ [1, 2, . . . , S].
Step2:Determine the serving base station tagRi of the clus-

ter ci according to the nearest RAU, which can be described
as

Ri = argmin
i∈{1,2,...,S}

di,n. (14)

Step3: Put the all users of the cluster ci into the correspond-
ing set BRi , which can be described as

BRi = BRi
⋃
{ci}. (15)

After the discussions above, the detail steps of k-means
clustering algorithm and GMM clustering algorithm in DAS
are described in TABLE 1 and TABLE 2.

IV. POWER ALLOCATION SCHEME OF DAS WITH ML
GENERATED CLUSTERS
When we use the clustering algorithm to construct the ML
generated clusters model in DAS, the number of cellular users
severed by the jth RAU can be obtained, i.e., |Bj| = Bj, j ∈
[1,N ], and the cellular users can use the above communica-
tion mode to form the ML generated clusters model in DAS.
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TABLE 2. GMM clustering algorithm in DAS.

When the jth RAU selected by a cluster, the SE of the ith user
in this cluster can be expressed as

Ri = log2

(
1+

pi|hi,j|2

p1 + p2 + σ 2

)
, (16)

where p1 =
∑Bj

k=1,k 6=i pk |hi,j|
2 and p2 =

∑N
n=1,n6=j

∑Bn
t=1

pt |hi,n|2, let pi and pt denote the transmit power of the jth
RAU to the ith user and the nth RAU to the tth user in the
nth cluster served by the nth RAU, respectively. hi,j and hi,n
are the composite fading channels between the jth RAU and
the ith user and between the ith user and the RAU of the nth
cluster, respectively.

From the exiting work [37], the total power consumption
Ptotal contains two parts: i) the transmit power consumption.
ii) the extra circuit power consumption. Let the Ptrains denote
the transmit power consumption, which can be expressed as

Ptrains =
N∑
n=1

Bj∑
j=1

pj, (17)

The extra circuit power consumption includes the dynamic
power consumption Pdy, which is independent of the actual
transmit power [38], the constant basic power consump-
tion Pst , and the consumption circuit of optical fiber trans-
mission P0. Then the extra circuit power consumption Pcircuit
can be expressed as

Pcircuit = NPdy + Pst + P0. (18)

So, the Ptotal can be written as

Ptotal =
Ptrains
τ
+ Pcircuit

=
Ptrains
τ
+ NPdy + Pst + P0, (19)

where τ is the drain efficiency of the radio frequency power
amplifier.

A. MAXIMUM SE OF DAS WITH ML GENERATED
CLUSTERS MODEL
Under the following two constraints: i) the requirements of
users’ minimum SE. ii) the maximum transmit power of
RAUs. the optimization problem of maximizing SE of the
downlink DASwithML generated clusters can bemodeled as

max
PSE

Rc =
K∑
i=1

Ri (20)

s.t. Ri ≥ Rmin, ∀i ∈ [1,K ], (20a)
Bj∑
j

Pj ≤ Pmax , ∀j ∈ [1,N ], (20b)

where Rc is the total SE of DAS with ML generated clusters
mode. PSE = {pi, i ∈ [1,K ]}, Pmax is the maximum transmit
power of RAUs. Rmin denotes the minimum SE requirements
of the each user.

Here, firstly, an efficient optimization algorithm based on
difference of convex functions structure (D.C.) [39] program-
ming is employed to transform (20) into following formula-
tion

fSE (PSE) = f SEcave(PSE)+ f SEvex (PSE), (21)

where the concave function and convex function can be
denoted as the following

f SEcave(PSE) =
K∑
i=1

log2

(
N∑
n=1

Bn∑
i=1

pi|hi,n|2 + σ 2

)
, (22)

f SEvex (PSE) = −
K∑
i=1

log2

 Bj∑
k=1,k 6=i

pk |hi,j|2

+

N∑
n=1,n6=j

Bn∑
t=1

pt |hi,n|2 + σ 2

 . (23)

Then let C1 denote the constraint set of (20), which is the
nonlinear constraint condition, but (20a) can be transformed
into the linear expression as following

Pi|hi,j|2 − (2Rmin − 1)

 Bj∑
k=1,k 6=i

Pk |hi,j|2

+

N∑
n=1,n6=j

Bn∑
t=1

pt |hi,n|2 + σ 2

 . (24)

So the problem of maximizing SE of the downlink DAS
with ML generated clusters model under the above two con-
straints can be transformed into a D.C. optimization problem
with a convex constraint set, which is expressed as

max
PSE∈C1

fSE (PSE)

s.t. (20a), (20b). (25)
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TABLE 3. Maximum SE of DAS with ML generated clusters model.

When there is partial derivatives for the convex part of the
D.C. object function, a concave convex procedure (CCCP)
algorithm can be employed to solve the D.C. structure
optimization problems [40]. In the every iteration of the
algorithm, the first order taylor expansion is employed to
transform the f SEvex (PSE) into linear expression, and we solve
the formulation as following

PSE
(i+1)
= argmax

PSE∈C1

(f SEcave(PSE)

+Of SEvex (PSE
(i)) ∗ PSE

T ), (26)

where the Of SEvex (PSE
(i)) denotes the gradient of f SEvex (PSE) at

the point of PSE
(i), and i is the iteration step. According to

the discussion above, we convert the original problem (20)
into a standard convex optimization problem (25), which
can be solved by applying the interior point method to (26).
We summarize the specific algorithm process in TABLE 3.

B. MAXIMUM EE OF DAS WITH ML GENERATED
CLUSTERS MODEL
In this part, we will firstly discuss the EE model of DAS with
the ML generated clusters model, and then investigate the
objective problem of maximizing EE in the DAS with ML
generated clusters model.

From the existing work [41], the EE of the DAS with ML
generated clusters model can be expressed as

ηEE =
Rtotal
Ptotal

, (27)

where Rtotal denotes the total SE of all users, and Ptotal
denotes the total power consumption.

Next, maximizing EE of downlink DAS with the ML gen-
erated clusters model with requirements of the minimum SE
and the constraints of maximum transmit power of each RAU
can be expressed as

max
PEE

EE =
Rc

Ptrains
τ
+ NPdy + Pst + P0

(28)

s.t. Ri ≥ Rmin, ∀i ∈ [1,K ], (28a)
Bj∑
j

pj ≤ pmax , ∀j ∈ [1,N ], (28b)

where PEE = {pi, i ∈ [1,K ]} is the optimization variables.
From the exiting work [42], we can exploit the fractional

programming theory to rewrite the objective function as the
following subtractive optimization problem

argmax
PEE

h1(PEE, ω1) = Rc −
ω1

τ
Ptrains − ω1NPdy

−ω1Pst − ω1P0
s.t. (25a), (25b). (29)

In Theorem 1, which has been proved in the exiting work
[31], the relationship between problem (28) and (29) can be
explained.
Theorem 1: Let G1(ω1) = maxPEE h1(PEE, ω1) and

g1(ω1) = argmax PEE h1(PEE, ω1). The optimal power allo-
cation P∗EE reach the maximum EE in (28) if and only if
G1(ω∗1) = P∗EE.
According to Theorem 1, we can know that the rela-

tionship between problem (28) and its transformation (29)
is equivalent. In order to obtain the optimal solutions of
(29), we use the similar method used in Section to IV.A to
transform it into the following optimization problem

max
PEE
{f EEcave(PEE)+ f EEvex (PEE)}

s.t. (28a), (28b), (30)

where

f EEcave(PEE) =
K∑
i=1

log2(
N∑
n=1

Bn∑
i=1

pi|hi,n|2 + σ 2), (31)

f EEvex (PEE) = −ω1

(
Ptrains
τ
+ (N + Uac)Pdy + Pst

+P0)−
K∑
i=1

log2

 Bj∑
k=1,k 6=i

Pk |hi,j|2

+

N∑
n=1,n6=j

Bn∑
t=1

Pt |hi,n|2 + σ 2

 . (32)

f EEvex (PEE) has the partial derivative, so the CCCP algorithm
can be employed again to solve the objective problem (30),
and the specific iteration step can be described as

PEE
(i+1)
= argmax

PEE∈C1

(f EEcave(PEE)

+ Of EEvex (PEE
(i)) ∗ PEE

T ), (33)

where the Of EEvex (PEE
(i)) denotes the gradient of f EEvex (PEE) at

the point of PEE
(i), i is the iteration step. According to the

iterate step, we can obtain the optimal power optimal power
allocation for maximizing EE in DAS with the ML generated
clusters model, which is showed in TABLE 4.

V. SIMULATION RESULTS
In this paper, we chose the power allocation of maximizing
SE and EE with the proactive communication model that
has appeared in the literature [32], i.e., conventional model
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TABLE 4. Maximum EE of DAS with ML generated clusters model.

FIGURE 1. SE versus the maximum transmit power.

in DAS, as the comparison algorithm of the proposed algo-
rithm. And in this section, we provide the numerical results
to verify the validity and the effectiveness of applying ML
to the wireless communication systems by comparing the
performance of DAS using ML generated clusters mode and
DAS with conventional model [32]. The system parameters
in the simulations are listed in TABLE 5. We define the cell
as a circle with radius R. N RAUs with one antenna each
are uniformly distributed in the cell, and K singer-antenna
cellular users are randomly distributed in the cellular cell.

Fig.1 compares the SE of DAS with ML generated clusters
mode and conventional model versus the maximum transmit
power from 5 dBm to 30 dBm. From Fig.1, we can easily
know that the SE of DAS with ML generated clusters model
is much better than the conventional communication model
in DAS. While both the SE of DAS with and without ML
generated clusters model increase with the growth of the
maximum transmit power, the SE’s growth trend of DAS

TABLE 5. Simulation parameters.

FIGURE 2. EE versus the maximum transmit power.

with ML generated clusters model grows much faster than
conventional communication model in DAS, which is more
obvious when the maximum transmit power is higher. And
the SE of DAS with ML generated clusters model achieved
by k-means clustering algorithm is better than the DAS with
ML generated clusters model constructed byGMMclustering
algorithm. Moreover, When the maximum transmit power is
30 dBm, the SE of DAS with ML generated clusters model
achieved by k-means clustering algorithm and GMM cluster-
ing algorithm are approximately 220% and 170% higher than
the conventional communication model in DAS, respectively.
This represents using ML generated clusters model in DAS
can improve the SE of DAS, especially when the maximum
transmit power is large.

Fig.2 presents the change of EE in DASwithML generated
clusters mode and conventional model versus the maximum
transmit power from 5 dBm to 30 dBm. It shows that the
EE of DAS with ML generated clusters model is much bet-
ter than DAS without ML generated clusters model. With
the growth of the maximum transmit power, EE decreases
but it is still higher in DAS with ML generated clusters
mode than the conventional communication model in DAS,
where the EE of DAS with ML generated generated clusters
model obtained by k-means clustering algorithm is better than
the DAS with ML generated clusters model built by GMM
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clustering algorithm. Moreover, when the maximum transmit
power is 20 dBm, EE reaches maximum and EE of using
ML generated clusters model in DAS constructed by k-means
clustering algorithm and GMM clustering algorithm is about
230% and 180% higher than EE of conventional communi-
cation model in DAS. According to Fig.1 and Fig.2, we can
conclude that SE and EE of DAS with ML generated clusters
model are much better than the conventional communication
model.

In order to gain insight into the advantages of DAS with
the ML generated clusters mode, we compared the compu-
tational complexity of the conventional algorithm and the
proposed algorithm based on k-means and GMM. From the
existing work [16], the worst-case complexity of the interior
point method reaches O(1/ζ ), where ζ denotes the toler-
ance parameter. Therefore, the complexity of conventional
algorithms using interior point method in DAS without ML
generated clusters model is O(tNKL), where t represents the
number of iterations and L denotes 1/ζ . From the relevant
literature [45], [46], we can get the complexity of k-means
algorithm and GMM clustering algorithm are O(t(S + K )d)
and O(tSKd3), respectively, where S is the number of the
clusters, and d is the dimension of the user samples. The com-
putational complexity of the proposed algorithm achieved by
k-means and GMM are O(tKL + t(S + K )d) and O(tKL +
tSKd3), respectively. According to the simulation results, the
ML generated clusters mode in DAS performs a much better
performance than the conventional communication model
in DAS to solve the problem of maximizing SE and EE.
Moreover, when the ML generated clusters mode is used
in the future communication systems with more and more
RAUs to provide users with high quality service, the N part
will dominate the computation, which means the power
distribution obtained by the ML generated clusters mode
in DAS may be much better than the conventional power
allocation scheme in the case of ensure low computational
complexity.

VI. CONCLUSION
In this paper, we took ML generated clusters model into
DAS by k-means clustering algorithm and GMM clustering
algorithm, which was very different from the conventional
communication model of DAS. Firstly, we divided the users
into the clusters by using theML clustering algorithms so that
the clustering center of each cluster automatically selected the
closest RAU to the clustering center for the users in the cluster
as the users’ only one serving base station. And after all the
clusters selected their own serving base stations, the users can
use the ML generated clusters model to communication in
DAS. Under the communication scenario of DAS with ML
generated clusters model, we investigated the maximum SE
optimization problems and the maximum EE optimization
problems under the requirements of each user’s minimum SE
and the constraints of the maximum transmit power of RAUs
in DAS with the ML generated clusters model, respectively.
Firstly, we converted the original optimization problem of

maximizing SE into an equivalent problem with a D.C struc-
ture, and employed the CCCP algorithm to obtain the optimal
power allocation scheme of the maximizing SE in DAS with
the ML generated clusters model. Secondly, we discussed the
process of obtaining the optimal solution of the maximum
EE optimization problem, which included two steps. The
first step was to finish the conversion from the maximum
EE optimization problems to the equivalent optimization
problem with subtraction structure by employing fractional
programming theory, and then turned it into a solvable opti-
mization problem with a D.C. structure. The second step was
to use the CCCP algorithm to solve the optimization problem
with D.C. form. Simulations results presented the SE and EE
of DAS with ML generated clusters model are much better
than the conventional communication model in DAS. ML
algorithms provide unlimited possibilities for next generation
5G wireless networks. For the future study, the interesting
area for exploration is to extend ML to more communication
scenarios to solvemore practical problems and achieve higher
communication performance.
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