
Received March 22, 2019, accepted April 19, 2019, date of publication April 30, 2019, date of current version May 28, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2913847

Deep Learning Framework for Alzheimer’s
Disease Diagnosis via 3D-CNN
and FSBi-LSTM
CHIYU FENG 1, AHMED ELAZAB 1,2, PENG YANG1, TIANFU WANG1, FENG ZHOU3,
HUOYOU HU4, XIAOHUA XIAO4, AND BAIYING LEI 1, (Senior Member, IEEE)
1National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound
Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
2Computer Science Department, Misr Higher Institute of Commerce and Computers, Mansoura 35516, Egypt
3Industrial and Manufacturing Systems Engineering, University of Michigan–Dearborn, Dearborn, MI 48128, USA
4Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 530031, China

Corresponding authors: Xiaohua Xiao (tu_xi8888@163.com) and Baiying Lei (leiby@szu.edu.cn)

This work was supported partly by National Natural Science Foundation of China (Nos. 61871274, 61801305 and 81571758), National
Natural Science Foundation of Guangdong Province (Nos. 2017A030313377 and 2016A030313047), Shenzhen Peacock Plan (No.
KQTD2016053112051497 and KQTD2015033016104926), and Shenzhen Key Basic Research Project (Nos. JCYJ20170818142347251
and JCYJ20170818094109846) and Open Fund Project of Fujian Provincial Key Laboratory of Information Processing and Intelligent
Control (Minjiang University) (No. MJUKF201711).

ABSTRACT Alzheimer’s disease (AD) is an irreversible progressive neurodegenerative disorder. Mild
cognitive impairment (MCI) is the prodromal state of AD, which is further classified into a progressive state
(i.e., pMCI) and a stable state (i.e., sMCI). With the development of deep learning, the convolutional neural
networks (CNNs) have made great progress in image recognition using magnetic resonance imaging (MRI)
and positron emission tomography (PET) for AD diagnosis. However, due to the limited availability of these
imaging data, it is still challenging to effectively use CNNs for AD diagnosis. Toward this end, we design
a novel deep learning framework. Specifically, the virtues of 3D-CNN and fully stacked bidirectional long
short-termmemory (FSBi-LSTM) are exploited in our framework. First, we design a 3D-CNN architecture to
derive deep feature representation from bothMRI and PET. Then, we apply FSBi-LSTMon the hidden spatial
information from deep feature maps to further improve its performance. Finally, we validate our method
on the AD neuroimaging initiative (ADNI) dataset. Our method achieves average accuracies of 94.82%,
86.36%, and 65.35% for differentiating AD from normal control (NC), pMCI from NC, and sMCI from NC,
respectively, and outperforms the related algorithms in the literature.

INDEX TERMS Alzheimer’s disease, 3D-CNN, FSBi-LSTM, multi-modal fusion.

I. INTRODUCTION
Alzheimer’s disease (AD) is an irreversible and progressive
neurodegenerative disorder, which mainly occurs in the pop-
ulation of 65 and older. Mild cognitive impairment (MCI) is
the prodromal state of AD and can be further categorized
into progressive MCI (pMCI) and stable MCI (sMCI) [1].
Alzheimer’s Disease International released that 50 million
people worldwide were suffering from dementia in 2018 and
the number will increase to 152 million by 2050 [2]. The
total estimated worldwide expenses of AD in 2018 are
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1 trillion dollars and will be doubled by 2030 [2]. To date,
AD is incurable. However, we can prevent patients from dete-
rioration effectively by early detection and diagnosis of AD.
Medical imaging techniques, including magnetic resonance
imaging (MRI) and positron emission tomography (PET),
provide rich and complementary imaging information for
diagnosis [3]–[9]. Early diagnosis of AD mainly depends on
the doctor’s experience, and such human visual inspection
is often too subjective. Thus, computer aided diagnosis in
evaluating the early stages of AD is highly desirable.

Many studies in literature focused on developing automatic
algorithms for discovering the changes of functional and
anatomical neural structures that are related to AD by using
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traditional machine learning techniques [3]–[18]. Generally,
traditional machine learning methods exploit two types of
features in early diagnosis of AD, including region of inter-
est (ROI) based features [4], [12]–[14], [16], [18] and voxel
based features [7], [8], [10]. More specifically, the former
relies heavily on specific assumptions about structural or
functional abnormalities in the brain, such as regional cortical
thickness [19], hippocampal volume [20], and gray matter
volume [21]. However, these feature extraction methods are
limited since they require complex preprocessing steps and
advanced clinical domain knowledge. In addition, the brain is
a huge interconnected network, and ROIs cannot sufficiently
express these connections. Moreover, extraction of ROIs
yields a large amount of information loss due to compression.
The latter focuses on acquiring features by measuring tissue
density, such as gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) without relying on any hypothesis
on the brain structure. However, image volumes come with
a huge number of voxels (in millions), while the number of
samples is limited. Hence, the overfitting issue can occur.
Traditional machine learning methods rely on manual feature
extraction, which depends heavily on professional knowl-
edge, repeated attempts, and tends to be time-consuming and
subjective.

To solve these problems and to further improve per-
formance, convolutional neural networks (CNNs) are an
effective solution and have showed great success in AD
diagnosis [22]–[30]. However, these studies were unable to
build a deep 3D-CNN network, such as VGG [31], since it
is difficult to obtain a huge amount of labeled clinical data.
Hence, shallow 3D-CNN networks are preferred. However,
in traditional CNNmodels, the fully connected (FC) layer can
only input 1D data. The feature maps of 3D-CNN parts are
always in 3D, thus the 3D spatial information in the feature
maps will be lost in the flattening operation. As a result,
many efforts have been devoted to solving the shortcomings
of CNNs in this aspect [23], [24], [29] by using other layer to
replace the fully-connected (FC) layer.

Recurrent neural network (RNN) is a powerful model in
sequence analysis. Since RNN adopts a ‘‘state’’ vector in
its hidden units, it implicitly contains information of the
sequence’s all history information [32]. Recent studies have
shown that, RNN and related structure networks not only
can analyze sequence information, but also can achieve good
results in structure analysis [24], [33]. Compared with RNN,
its improved version long short-term memory (LSTM) can
effectively solve problems of gradient explosion or gradient
disappearance by using several gates to control information
flow [34]. Furthermore, bidirectional LSTM (Bi-LSTM) can
have contextual information in both directions [35]. In fact,
Bi-LSTM can get more information without choosing the
scanning direction, which can be enhanced by stacking the
LSTM to explore the spatial information of featuremaps from
3D-CNN as well.

Therefore, we propose to use the stacked Bi-LSTM
(SBi-LSTM) instead of the traditional Bi-LSTM [36] in

this paper. In addition, each output of LSTM is related to
historical input, but the current input has a greater impact.
Hence, the FC layer can boost accuracy by enhancing the
connection between different output nodes of SBi-LSTM.
Motivated by this observation, we design a novel deep
learning network that uses multimodal data for AD diag-
nosis via 3D-CNN and fully stacked bidirectional LSTM
(FSBi-LSTM). Specifically, the image of eachMRI or PET is
transferred to the 3D-CNN network to extract features from
a more macroscopic perspective. In addition, FSBi-LSTM is
used to extract high-level semantic and spatial information
instead of the traditional FC layer. By inputting one pixel
of all features to the corresponding position at each step,
FSBi-LSTM can preserve the spatial information of feature
maps corresponding to different parts of the data. Because the
output of LSTM is closely related to the neighboring input,
we add a FC layer for feature extraction after the output of
SBi-LSTM. Accordingly, the output of each step is closely
related to other steps. Finally, the features from MRI and
PET are fused and fed into the SoftMax classifier for disease
diagnosis.

The rest of this paper is organized as follows. We briefly
recall the relevant researches in Section II. Then, we give the
detailed description of our method in Section III. Section IV
describes the experimental results. The advantages and lim-
itations of the proposed method are discussed in Section V.
Finally, we summarize conclusions in Section VI.

II. RELTEAD WORK
A. TRADITIONAL MACHINE LEARNING BASED METHODS
Many studies in literature focused on developing automatic
algorithms to observe the functional and anatomical neural
lesions related to AD by traditional machine learning meth-
ods [3]–[18]. For example, Gray et al. introduced a mul-
timodal classification method by using similarity measure
generated from random forest classifier [10]. Zhang et al. pro-
posed a multi-layer classifier, where the first layer is multi-
view input and explores the complex correlation between the
feature and the label by building a latent representation [15].
A discriminative sparse learning method was recommended
by Lei et al. to predict the clinical score jointly with relational
regularization and use multimodal features to classify AD
stages [16]. However, these methods are computationally
intensive and mainly depend on the handcrafted features,
which are not appealing and difficult to obtain.

B. DEEP LEARNING BASED METHODS
To address the traditional machine learning problems, some
studies have used the deep learning for AD diagnosis,
recently [22]–[30]. For instance, Islam et al. presented an AD
diagnosis method based on 2D DenseNet and sliced the MRI
data in three directions. Three parallel 2D DenseNets were
then used to analyze and fuse the final diagnosis results [28].
Liu et al. proposed a deep multitask multichannel learning
configuration for clinical score regression and brain disease
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FIGURE 1. General framework of the proposed FSBi-LSTM method for AD diagnosis from MRI and PET neuroimages. C is
convolutional layer, the P is mean pooling layer, @ is the number of filters such as 15@3× 3× 3 is 15 filters which size
are 3× 3× 3 and P2 × 2 × 2 is pooling layers, which size are 2 × 0 × 2.

classification via MRI data and subjects’ demographic infor-
mation[24]. They identified the landmarks of discriminative
anatomical from MRI data via data driven technique and
then extracted multiple image patches from these detected
landmarks. However, flattening operation before using the
FC layer always ignores the spatial information in the fea-
ture map. In addition, Liu et al. recommended a framework
based on 2D CNN and bidirectional gated recurrent unit (Bi-
GRU) to alleviate the effect of this problem[30]. However, the
way of converting 3D data into a series of 2D slices causes
CNNs to completely ignore the characteristics of 3D data,
and different slicing methods may lead to loss of different
features. Moreover, existing CNN-based methods use the
flattening layer after the CNN because the FC layer can only
process 1D information. Using flattening layer will lead to
the feature maps loss in all the 3D spatial information. In our
work, we propose to utilize FSBi-LSTM to get rich spatial
and semantic information from feature maps for efficient
diagnosis of AD from MRI and PET.

III. METHODOLOGY
The framework of our proposed method is shown in Fig. 1.
We employ 3D-CNN to extract the primary features of both

MRI and PET inputs. Then, FSBi-LSTM is used to extract
high level semantic and spatial information from the out-
put of 3D-CNN instead of traditional FC layer. Finally,
the learned features are concatenated and further passed to
SoftMax classifier for disease diagnosis. In the following,
a detailed description of the proposed method is presented.

A. DATA PREPROCESSING
For the MRI data, we conduct Anterior Commissure
(AC)–Posterior Commissure (PC) reorientation and resam-
ple the data to 256 × 256 × 256 via MIPAV Software
(https://mipav.cit.nih.gov/). Tissue intensities inhomogeneity
is then corrected using N3 algorithm [37] followed by skull
stripping and cerebellum removal. Afterwards, we segment
the brain to GM, WM, and CSF using FSL package [38].
Existing research shows that compared with WM or CSF,
GM demonstrated higher relatedness to AD/MCI [7]. There-
fore, we choose the GM masks in this work. Finally, we use
the hierarchical attribute matching mechanism for elastic
registration (HAMMER) algorithm [39] to spatially register
the GM masks to the MNI brain atlas coordinate space and
extract the regional volumetric maps by image warping and
tissue preserving method [40]. For the PET, firstly, we rigidly
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align them to the MRI space. Then, we use Gaussian kernel
with zeromean and unit standard deviation to handleMRI and
PET. Finally, all the MRI and PET data are down-sampled to
64 × 64 × 64 to save memory without compromising the
classification as suggested by Suk et al. [7].

B. FEATURE LEARNING BASED 3D-CNN
The CNN is a powerful multilayer neural network in image
analysis. However, 2D-CNN structures are designed for ana-
lyzing 2D images, which is inefficient to extract 3D medical
images’ spatial information. Therefore, we adopt the 3D con-
volution kernel instead of 2D one. For hierarchical learning
the multi-level features, we use alternatively stacking con-
volutional layers and down-sampling layers to build the 3D
convolutional kernel. Finally, we get feature maps from CNN
model.

The input image is convolved with a list of kernel filters
in convolutional layer. Then, a bias term is added between
the activation function and convolutional layer. In this work,
the rectified linear unit (ReLU) is chosen as the activation
function. Finally, the CNN model can output a series of fea-
ture maps.We define the voxel positions for a given 3D image
as x, y,and z,respectively, the j-th 3D kernel weight represents
as W l

kj

(
δx , δy, δz

)
connects the l-1 layer’s k-th feature maps

and the j-th feature maps of the l layer, the k-th feature maps
of the l-1 layer as F l−1k , the kernel size corresponding to the
x, y, and z is δx , δy, and δz, respectively. The convolutional
response of the kernel filter is ulkj (x, y, z). Then, the 3D
convolutional layer is defined as

ulkj (x, y, z) =
∑

δx

∑
δy

∑
δz
F l−1k

(
x + δx , y+ δy, z+ δz

)
×W l

kj
(
δx , δy, δz

)
, (1)

After convolution, we add a ReLU to activate features:

F lj (x, y, z) = max
(
0, blj +

∑
k
uljk (x, y, z)

)
, (2)

where blj is bias term from the l-th layer’s j-th feature map,
F lj (x, y, z) is obtained by summation of the response maps of
the j-th 3D feature map’s different convolution kernels.

After convolutional layer, a max-pooling layer is added to
obtain more efficient and compact features. Besides, by using
max-pooling layer, the features become more compact from
low level to high level which can achieve the robustness
against some variations.

In our model, the 3D-CNN architecture is adapted from
Liu et al. [29]. However, since input data are not exactly
the same, we modify the 3D-CNN structure of Liu et al. [29]
by increasing the number of convolutional filters and lay-
ers. In addition, to avoid overfitting, we have appropriately
reduced the number of filters in each convolution layer. More
details can be found in Fig. 1. After 6 stacking convolutional
and max-pooling layers, we add 2 FC layers and SoftMax
classifier for training. All the features before the FC layers
are flattened into an 1D vector. After training, we extract
the feature before the last max-pooling layer as input to the
FSBi-LSTM.

FIGURE 2. Relations among feature maps and the input data.

C. FSBI-LSTM BASED CLASSIFICATION
Typically, FC layers are used to do high level analysis in
the CNN. However, the FC layers are unable to effectively
extract all the spatial information from the feature map as
it just simply connects all neurons. Fig. 2 shows the spa-
tial information, which represents the relation between the
feature maps and the input data. We can see each model’s
output of our 3D-CNN network contains 200 features with
each dimension at 2 × 2 × 2. In this figure, each column
(i.e., the black box in Fig. 2) shows the whole features of the
brain. Then, each row (i.e., the red box in Fig. 2) shows all
the features of a part of the brain. If we intercept a row-by-
row feature maps like a red box, it is actually a part-by-part
examination of the brain. Existing research shows that RNN
and similar networks have the function of fusing different
structures [24], [33]. Therefore, we design a FSBi-LSTM
instead of FC layer to extract all the spatial information from
the feature maps.

In traditional RNN, the output of the current cell state is
defined as ht and is expressed as

ht = f (Uxt +Wht−1) , (3)

where the xt is input of the t-th unit, U is the weight from
the input layer to the hidden layer, and W is the connection
weight from the previous unit to the current unit. The f (·)
is the tanh function. However, the traditional RNNs have
problems of gradient explosion or gradient disappearance.
To address this problem, we introduce the concept of gate
and cell state using LSTM. In LSTM, the gate is an FC layer
and the current cell state is defined as ct . In order to control
ht and ct , LSTM mainly uses three gates, including the input
gate, the forget gate, and the output gate, respectively. The
input gate is given as

it = σ (Wxixt +Whiht−1 + bi) , (4)

where Wxi is the weight of input xt , Whi is the weight of the
last cell output ht−1, bi is bias of the input gate, and σ is the
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sigmoid function. Similarly, the forget gate is given as

ft = σ
(
Wxf xt +Whf ht−1 + bf

)
, (5)

The weight of input xt is defined as Wxf , the weight of the
last cell output ht−1 is Whf and bif is bias of the forget gate.
In addition, we calculate the state of the input modulation

(i.e., short memory) based on the last output and the current
input. It is computed as

gt = ϕ (Wxcxt +Whcht−1 + bc) , (6)

where Wxc is the weight of input xt , Whc is the weight of last
cell output ht−1, bc is bias of the output gate, and ϕ is the tanh
function. We calculate the cell state at the current time. It is
generated by multiplying the element by the forget gate from
the last unit state, multiplying the element by the input gate
with the current input unit state, and adding the two products
together. The long memory, ct , is denoted as

ct = it � gt + ft � ct−1, (7)

where � denotes element-wise multiplication. In this way,
we combine LSTM’s current and long-term memory to form
a new unit state. By controlling the forget gate, we can
choose useful historical information. While controlling the
input gate, we can avoid feeding insignificant current content
into memory. The output gate controls the long-term memory
on current output, which is represented as

ot = σ (Wxoxt +Whoht−1 + bo) , (8)

whereWxo is the weight matrix of input xt ,Who is the weight
matrix of the last cell output ht−1 and bio is bias for the output
gate. Finally, the output of LSTM is determined by the output
gate and the unit state, which is formulated as

ht = ot � ϕ(ct ). (9)

Eqs. 4 to 9 are the calculation process of single LSTM cell.
We use H (·) to denote a LSTM cell. The idea of a Bi-LSTM
assumes that each training sequence has to input forward and
backward via two LSTMs. In output layer, two LSTMs are
connected. This structure provides each point to complete
future and previous contextual information in the output layer.
Bi-LSTM computes the forward hidden sequence

−→
h and

backward hidden sequence
←−
h as

−→
ht = H

(
W
x
−→
h
xt +Wh

−→
h

−−→
ht−1 +

−→
bh
)
, (10)

←−
ht = H

(
W←−

h
xt +Wh

←−
h

←−−
ht−1 +

←−
bh
)
, (11)

where W
x
−→
h

is the forward calculation of Wx , Wh
−→
h

is the

forward calculation of Wh,
−→
bh is the parameter of forward

calculation in H (·), and the W←−
h .
,W

h
←−
h .
, and

←−
bh are the

parameters of backward calculations in H (·), respectively.
We combine

−→
ht and

←−
ht to generate the final output yt :

yt = H
(
W−→

h y

−→
ht +W←−h y

←−
ht + by

)
, (12)

where W−→
h y

(forward hidden state weights),W←−
h
y (backward

hidden state weights), b is a bias vector for each layer.

By superimposing a basic LSTM cell in both forward and
backward LSTM of Bi-LSTM and adding a FC layer in the
output, we can get the FSBi-LSTM. For the hidden layer of
FSBi-LSTM, the forward calculation is the same as LSTM
except that the input sequence is opposite to the two hidden
layers. FSBi-LSTM computes the forward hidden sequence
−→
hs and backward hidden sequence

←−
hs , which is expressed as

−→
hst = H

(
W
x
−→
hs
xt
−→
ht +Wh

−→
hs

−−→
hst−1 +

−→
bhs
)
, (13)

←−
hst = H

(
W
x
←−
hs

←−
ht +Wh

←−
hs

←−−
hst−1 +

←−
bhs
)
, (14)

where W−→
hy
, W

h
−→
hs
,
−→
bhs, Wx

←−
hs
, W

h
←−
hs
, and

←−
bhs are the same as

Eqs. 10 and 11, respectively. Finally, the output of SBi-LSTM
is denoted as

yst = H
(
W−→

h y

−→
ht +W←−h y

←−
ht + by

)
. (15)

In fact, yst can be used as the final feature processing
after fusion. However, the feature maps used are the brain
structure feature maps, and all features are related to each
other. Therefore, each output node is related to the current
input. The outputs of every repeating cell can be of equal
importance and shall be concatenated into a full connection
layer. We may extract a common closely connected brain
structure information from all the SBi-LSTM cells to repre-
sent constant ‘‘trait’’ information of each subject via the FC
layer, instead of the part of the brain structure information.
This is the whole computing process of FSBi-LSTM.

FIGURE 3. Different fusion strategies. A) Single modality without fusion,
B) FSB, C) FFC, D) FFS.

Since MRI and PET modalities are used in this study,
fusion is an effective way for performance boosting. Based
on our data and network structure, we devise 3 fusion strate-
gies: fusion before SBi-LSTM (FSB), fusion before FC
layer (FFC) and fusion before final SoftMax classifier (FFS).
Fig. 3 shows the structure of different fusion strategies. Since
FSB needs to fuse forward LSTM and backward LSTM,
we choose FFS as our integration strategy. As a result,
we can avoid modal fusion influence on the performance of
FSBi-LSTM. After the fusion, we use SoftMax classifier to
get the final diagnosis result.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
In this paper, our dataset is based on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu/).
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TABLE 1. Performance evaluation of different classification tasks using different configurations (%).

We choose the baseline MRI data and 18-Fluoro-
DeoxyGlucose PET data acquired from 93 AD, 76 pMCI,
128 sMCI, and 100 normal control (NC). To verify the
efficacy of our model, we set up the following experiments:
AD vs. NC, pMCI vs. NC, and sMCI vs. NC instead of
AD vs. NC, MCI vs. NC, and pMCI vs. sMCI. The main
reason for this setup is that more meaningful pathological
structures can be found by comparing with healthy people.
We use two duals by alternatively stacking 6 convolutional
and max-pooling layers to get the feature maps from MRI
and PET, separately. In order to facilitate training, we add two
FC layers and SoftMax as the classifier. To avoid overfitting,
we randomly drop out ten percent of neurons during training
in the 3D-CNN. In 3D-CNN part, we set all the convolu-
tional layer stride to 2 and padding is the same with layer
input, we choose Adam optimizer [41] for optimization and
categorical cross entropy as the loss function. In addition,
we set the batch size as 20, the number of epochs as 60,
the learning rate as 10−4, the fuzz factor as 10−9, the first
order exponential decay rates for themoment estimates as 0.9,
and the second order exponential decay rates for the moment
estimates as 0.999. After 3D-CNN training via two models,
we extract the feature before the last max-pooling layer as
input to the FSBi-LSTM. In FSBi-LSTM part, we choose
RMSprop as the optimizer [42] for speeding up training and
categorical cross entropy as the loss function. We set the
batch size as 30, the number of epochs as 25, the learning
rate as 10−3, the fuzz factor as 10−8, the rho as 0.9, and the
learning rate decay as 10−5.
For classification performance evaluation, we use dif-

ferent performance metrics, namely, accuracy (ACC),
sensitivity (SEN), specificity (SPEC), F1 score (F1),

balanced accuracy (BAC), and area under receive operation
curve (AUC). A 10-fold cross-validation algorithm is adopted
to assess both classification performance. Specifically, all
samples are divided into 10 portions, then samples in one
portion are successively used as the testing data while the
rest are utilized as the training data. All the experiments are
conducted on a Windows machine with NVIDIA TITAN Xt
GPU and implemented using Keras library with Tensorflow
as backend.

B. DEPTH EFFECTS ON SBI-LSTM AND FSBI-LSTM
For investigating the influence of depth on the FSBi-LSTM
performance, we test our model with varied number of layers
while fixing the other parameters. In order to compare the
impact of the FC layer on the performance, we also set
up different layers of SBi-LSTM for comparison. Namely,
we test the following models: 1 layer FBi-LSTM (FBL1),
1 layer Bi-LSTM (BL1), 2 layers FSBi-LSTM (FSBL2),
2 layers SBi-LSTM (SBL2), 3 layers FSBi-LSTM (FSBL3),
3 layers SBi-LSTM (SBL3), 4 layers FSBi-LSTM (FSBL4),
and 4 layers SBi-LSTM (SBL4). We use the same CNN
output feature maps to test these configurations. We then use
t-test statistical analysis to evaluate the significance of the
obtained results. Our results show statistical significance with
the confidence interval at 0.001.

Table 1 summarizes the influence of the number of LSTM
layers and the FC layer on the FSBi-LSTM (boldfaces denote
the best performance). Fig. 4 illustrates the corresponding
results on different classification tasks under different con-
figurations of the proposed method. As shown in Table 1 and
Fig. 4, our model outperforms other LSTM-based models.
We find the optimal number of LSTM layers by changing
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FIGURE 4. Effects of different layers on SBi-LSTM and FSBi-LSTM
performances for different classification tasks.

the number of layers of LSTM in FSBi-LSTM. From these
experiments, we have the following observations:

(1) Model performance can be improved by increasing
LSTM layers, but this is not always true. In our experiment,
the best performance is obtained when the number of LSTM
layers is set to 2. The reason is that, if the number of layers is
smaller than 2, the FSBi-LSTMmodel cannot extract enough
deep features. On the other hand, if the layer number is
bigger than 2, the performance decreases due to the gradient
vanishing problem, which occurs when the network depth is
increased. In addition, as layer number increases, the overfit-
ting issue occurs with the increased number of parameter and
fixed training data samples. Therefore, we choose 2 layers
LSTM in our FSBi-LSTM model.

(2) FSBi-LSTM performs better than SBi-LSTM as the
former can better preserve extracted features from the input
since the feature maps represent the brain structure feature
maps, and all the features are related to each other. Due to
the characteristics of LSTM, the output of each node is the
most relevant to the current input, and the outputs of every
repeating cell can be of equal importance. Therefore, we can
extract closely connected brain structure information from all
the SBi-LSTM cells to represent constant ‘‘trait’’ information
of each subject by FC layer. Thus, FSBi-LSTM performs
better than SBi-LSTM.

C. EFFECT OF FUSION STRATEGIES
The previous studies demonstrated that different fusion
strategies with modal choices can have varied classifica-
tion results [7], [43]. Thus, we evaluate the effectiveness
of our FSBi-LSTM using different feature fusion strategies.
Fig. 3 shows the three different strategies and model struc-
tures. Furthermore, we use the t-test to evaluate the sig-
nificance of the obtained results. Our results again show
statistical significance with the confidence interval at 0.001.
Likewise, we use the same CNN output feature maps to test
different fusion strategies. Table 2 and Fig. 5 show the influ-
ence of fusion strategies on the FSBi-LSTM performance
(boldfaces denote the best performance).

From the results in Fig. 5 and Table 2, it is clear that the
multi-modal fusion can get better results than a single modal-
ity. The results also show that MRI has better performance
than PET since MRI can sufficiently capture structural infor-
mation of brain regions. In addition, comparisons of different
fusion strategies show that FFS has the best performance. The
main reasons are as follows. In case of FFC, forward LSTM,
backward LSTM fusion and mode fusion will interfere with
each other. On the other hand, in FSB, fusion can be either
along the edge of the feature map, which causes the input size
too long (400×8). If fusion is along the short edge of feature
map, which makes the feature map size becomes 200×16.
Accordingly, MRI is the forward input of SBi-LSTM, while
PET is the backward input of SBi-LSTM, which will have an
influence for fusion forward and backward.

TABLE 2. Performance evaluation of different classification tasks using different fusion strategies (%).
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FIGURE 5. Effects of different fusion strategies on FSBi-LSTM
performances for different classification tasks.

D. FUSION METHOD COMPARISON
In this sub-section, we compare FSBi-LSTMwith other com-
monly used feature fusion methods. There are three main
types of fusion methods. The first type is to use the other
RNN cell instead of the LSTM cell such as simple RNN and
GRU [44], we denote them as FSBi-RNN and FSBi-GRU.
The second type is to use the CNN model instead of the

FIGURE 6. Classification performances of different information extraction
methods for different classification tasks.

RNNmodel including both 2D-CNN and 3D-CNN. The third
type is the traditional machine learning method via Fisher
vector (FV) [45] and support vector machine (SVM) [46].
We use the t-test to evaluate the significance of the results.
When the confidence interval is set as 0.001, our results have
statistical significance. We use the same CNN output feature
map to test different feature fusion methods. Table 3 and
Fig. 6 illustrate the influence of the number of feature
fusion methods. In addition, Fig.7 shows the ROC curves
of different models. From these results, we observe that the

TABLE 3. Classification accuracies of different feature fusion methods in different classification tasks (%).
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FIGURE 7. ROC curves of different information extraction models.

result of FSBi-LSTM is better than that of FSBi-RNN and
FSBi-GRU.

The main explanations of the superior performance are as
follows. Compared with the simple RNN cell, the LSTM cell
can use three gates to solve the gradient exploding/gradient
vanishing problem. In addition, as a variant of LSTM cell,
GRU cell synthesizes a single update gate from the forget
gate and the input gate, which can train the network faster
with decreased accuracy. However, our network is insensi-
tive to time but sensitive to accuracy. Hence, we choose the
LSTM instead of the GRU. Compared with 2D-CNN and
3D-CNN, we use CNN to extract spatial information from
feature maps. FSBi-LSTM can provide a better result than the
FSBi-LSTM with progressive scans, which is more effective
than direct convolution using convolution kernels to iden-
tify the informative features. Because CNN structure cannot
output 1D feature, LSTM structure can output 1D feature to
avoid space information loss caused by the flattening oper-
ation. Compared with 2D-CNN, 3D-CNN can get a better
result, because 2D-CNN loses 3D information. Accordingly,
the FSBi-LSTM can produce better results than traditional
machine learning methods as our method can extract deep
features.

E. VISUALIZATION ANALYSIS
For the visualization analysis, we have conducted two
experiments: t-SNE feature visualization and disease-related
region search. For the t-SNE feature visualization experi-
ments, we visualize the feature maps before and after input
FSBi-LSTM through the t-SNE model. We also visualize the
feature maps obtained from different models and tasks. The
results shown in Fig. 8 demonstrates FSBi-LSTM plays an
important role in feature discrimination. However, the last
subfigures show that the diagnostic performance of sMCI is
still limited. From Fig. 8, we can see that intra-class differ-
ences are even greater than inter-class differences between
sMCI and NC.

Brain consists of many regions which are responsible for
many tasks and not all regions are closely related to AD.
Hence, we attempt to utilize our proposed method to search
for these relevant ROIs for understanding brain abnormalities.
To achieve this aim, we exclude brain images’ different local
areas systematically with a 3D ROI grey box and monitor
the classifier outputs. If the grey box covers the important
area that is related to AD, the correct class’ prediction will
significantly drops. Here, we use the 93 brain ROIs proposed
by Kabani et al. [47] as a reference. We use the whole
brain as a control group. We then shield 93 brain regions
in turn and get 93 classification results after shielding. The
classification accuracy obtained by shielding different brain
regions is shown in Table 4. We also choose the top 10 brain
regions, which have the greatest impacts on the diagnosis of
AD, pMCI, and sMCI, respectively, as illustrated in Fig. 9.

From the results, we conclude that the top 10 ROIs with the
greatest impact on the diagnosis of AD are: uncus right, supe-
rior frontal gyrus right, parahippocampal gyrus left, superior
temporal gyrus right, hippocampal formation right, subtha-
lamic nucleus right, thalamus right, middle frontal gyrus
left, precuneus left, and inferior temporal gyrus left. The
top 10 ROIs with the greatest impact on the diagnosis of

FIGURE 8. The t-SNE visualization result of feature maps from different models and different tasks.
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TABLE 4. The 93 ROIs and their corresponding classification accuracy obtained from the proposed method (%).

pMCI are: medial frontal gyrus left, postcentral gyrus right,
medial front-orbital gyrus left, postcentral gyrus left, middle
frontal gyrus left, lateral front-orbital gyrus right, fornix left,
caudate nucleus right, a cingulate region left, and entorhinal
cortex left. Finally, the top 10 ROIs with greatest impact on
the diagnosis of sMCI are: superior temporal gyrus right,
parahippocampal gyrus left, caudate nucleus right, medial
front-orbital gyrus right, occipital lobe WM right, inferior
occipital gyrus left, lateral ventricle right, anterior limb of
internal capsule right, nucleus accumbens left, and middle
temporal gyrus right.

F. COMPARISION WITH OTHER DEEP LEARNING MODEL
In this subsection, we compare the performance of the
proposed method with other related deep learning models.

To guarantee fair comparison, we choose the models that
used the same dataset. Tables 5, 6, and 7 show that our
method can obtain higher accuracies than existing methods.
In [30], Liu et al. used 2D-CNN to capture the features
of image slices, then the SBi-GRU was cascaded to learn
and integrate the inter-slice features for image classification.
Our method outperforms this method due to the following
reasons. The 3D-CNN can preserve more space information
than 2D slices without information loss although GRU can
replenish 3D information. Compared with Liu et al [29],
the FSBi-LSTM with progressive scans is more effective
than direct convolution using a 2D convolution kernels to
identify the informative features. Because flattening may
lead to a large loss of 3D spatial information when feature
maps output from 3D-CNN is input into 2D-CNN network
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FIGURE 9. Top 10 brain regions that have the greatest impact on the diagnosis of AD, pMCI, and sMCI shown in top, middle, and
bottom row, respectively.

TABLE 5. Algorithm comparisons for AD vs. NC classification(%).

TABLE 6. Algorithm comparisons for pMCI vs. NC classification(%).

TABLE 7. Algorithm comparisons for sMCI vs. NC classification(%).

to extract high level semantic features. Comparing with the
input data that is cut into several blocks to train several
relatively independent 3D-CNNmodules and then fusion, our
method of down-sampling can greatly reduce the demand
for data as we have less training parameters. Compared with
our previous work [36], LSTM can effectively alleviate the
gradient vanishing problem by controlling information flow
with several gates. In addition, if we use the FC layer, we can
further extract and sort out the output of SBi-LSTM. Thus,
our method can achieve the best result.

V. DISCUSSIONS AND LIMITATIONS
In this study, the proposed framework efficiently shows
good performance on the three binary classification tasks
(i.e. AD vs. NC, pMCI vs. NC, and sMCI vs. NC). In our
proposed framework, there are 3D-CNN and FSBi-LSTM.
Compared with the traditional computational algorithms
(such as strength and similarity guided group-level brain
functional network), our method does not need prior knowl-
edge to extract features manually, which can avoid the
subjectivity.

It is important to know whether further processing of
extracted features in the CNN network can further improve
the early diagnosis of AD. Hence, we provide a com-
prehensive investigation about the influence of the model
performance. In fact, the brain structural and functional infor-
mation extracted using CNN are regarded as sequences and
then further analyzed by FSBi-LSTM to get the high-level
space information. In addition, FSBi-LSTMhas fewer param-
eters than FC layers (27938 vs. 57578), which can make
convergence faster.

Also, we enhance the relationship between features
extracted by SBi-LSTM to further boost AD early diagnosis
performance. From the experimental results, it is clear that
our method is statistically superior to the related algorithms
(i.e., SBi-LSTM and SBi-GRU) and previous studies. The
primary explanation is that the input feature maps are the
brain structure feature maps, and all the features are related
to each other. Therefore, the outputs of every repeating cells
are equally important. Besides, each output node of LSTM is
more relevant to the current input node. Hence, with this layer,
we may extract common closely connected brain structure
information from all the SBi-LSTM cells, which may rep-
resent constant ‘‘trait’’ information of each subject, instead
of the part of the brain structure information. Finally, it is
noteworthy that the experimental results of our method are
consistent with the related previous studies [36].
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Despite the promising performance achieved by the pro-
posed method, it still suffers from few limitations. First,
despite the good accuracies obtained for AD vs. NC and
pMCI vs. NC tasks, the diagnostic performance of sMCI
is still limited. This is probably due to that the anatomical
changes of sMCI are very subtle and cannot be well observed.
Second, our method cannot directly find the brain lesion
structure by up-sampling or deconvolution due to the cascade
of CNN and LSTM. Instead, it is only found by shielding the
brain area. Third, in this study, we do not utilize the longi-
tudinal MRI data, which can further provide complementary
information about disease evolution.

Since we only focus on the voxel features currently,
it might be beneficial to use the state-of-the-art methods
to integrate the visual features computer vision techniques
as well. For processing, we can maximize the preservation
of structural information in the brain. Besides, the sharing
and common information can be uncovered by us among
different features to facilitate the prognosis and diagnosis in
the clinical application. These insights and limitations are yet
to be explored in our future work.

VI. CONCLUSIONS
In this paper, a novel framework composed of 3D-CNN and
FSBi-LSTM is proposed for diagnosing AD. Specifically,
we propose a new LSTM network framework instead of
the FC layer in 3D-CNN. Our method can preserve space
information from feature map as much as possible. Compared
with traditional SBi-LSTM, FSBi-LSTM extracts common
closely connected brain structure information from all the
SBi-LSTM cells, which can represent constant ‘‘trait’’ infor-
mation of each subject via the FC layer, instead of the part
of the brain structure information. We perform extensive
experiments based on the ADNI dataset and demonstrate the
effectiveness of ourmethod. Ourmethod also outperforms the
other competitive methods by using CNN for label identifi-
cation. Furthermore, we enhance the clinical explanation of
in-depth learning in clinical diagnosis through brain shielding
experiments.
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