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ABSTRACT Small traffic sign recognition is a challenging problem in computer vision, and its accuracy
is important to the safety of intelligent transportation systems (ITS). In this paper, we propose the multi-
scale region-based convolutional neural network (MR-CNN). At the detection stage, MR-CNN uses a multi-
scale deconvolution operation to up-sample the features of the deeper convolution layers and concatenates
them to those of the shallow layer to construct the fused feature map. The fused feature map has the
ability to generate fewer region proposals and achieve higher recall values. At the classification stage,
we leverage the multi-scale contextual regions to exploit the information surrounding a given object proposal
and construct the fused feature for the fully connected layers. The fused feature map inside the region
proposal network (RPN) focuses primarily on improving the image resolution and semantic information
for small traffic sign detection, while outside the RPN, the fused feature enhances the feature representation
by leveraging the contextual information. Finally, we evaluated MR-CNN on the largest dataset, Tsinghua-
Tencent 100K, which is suitable for our problem and more challenging than the GTSDB and GTSRB
datasets. The final experimental results indicate that the MR-CNN is superior at detecting small traffic signs,
and that it achieves the state-of-the-art performance compared with other methods.

INDEX TERMS Context, deconvolution, small traffic sign, Tsinghua-Tencent 100K.

I. INTRODUCTION
Traffic sign recognition is playing an increasingly impor-
tant role in intelligent transportation systems (ITS). In the
real world, traffic signs vary due to different viewpoints,
motion blur, illumination, etc., all of which increase the dif-
ficulty of accurate recognition. Previous work usually used
hand-crafted features and machine learning models to rec-
ognize traffic signs. However, designing hand-crafted fea-
tures for a specific task, including specific colours [1], [2],
shapes [3], [4] and other discriminative features [5]–[9] is
both labour-intensive and difficult. As computational capac-
ity has increased and large-scale datasets have become
available, deep convolutional neural networks (CNNs) have
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become suitable for extracting features from raw images
without the need for hand-crafted features; thus, they have
been applied inmany applications. Various CNN-basedmeth-
ods [4], [10]–[17] have been proposed and obtained state-of-
the-art results on the GTSRB [18] and GTSDB [19] bench-
mark datasets. Unfortunately, these methods do not work well
in real-world applications, primarily because of the inade-
quacy of these benchmark datasets.

The GTSDB dataset provides only one of the 4 major
categories of traffic signs for detection, while each traffic
sign in the GTSRB images occupies a large proportion of
the image. Due to their use of both these datasets, most of
the existing studies separated traffic sign recognition into
two independent tasks, classification and detection, caus-
ing a gap between these tasks. In 2016, Zhu et al. [16]
proposed the Tsinghua-Tencent 100K dataset, the largest and
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most challenging traffic sign dataset. The Tsinghua-Tencent
100K dataset includes 100,000 images in 100 classes and
30,000 traffic sign instances. Compared with the GTSRB
and GTSDB datasets, each image has a higher resolution
(2,048×2,048), and each traffic sign instance generally occu-
pies a smaller proportion of the image, e.g., 1%, making the
Tsinghua-Tencent 100K dataset more suitable for the task of
small traffic sign recognition.

Because the proportions of traffic signs in the image are
determined by their distance from the camera and the overall
size of the traffic scene, small traffic sign recognition is very
important for ITS safety. Thus, this paper mainly aims to
small traffic sign recognition, which differs from the previ-
ous works on the GTSRB and GTSDB datasets. Note that
small traffic sign recognition is a difficult problem due to its
low resolution and noisy representation. Although the novel
object detection frameworks have been constantly proposed
recently and achieved the state-of-the-art performance on
PASCAL VOC and MS COCO, small object detection is
much more challenging than normal object detection and
good solutions are still rare so far.

Recently, faster region-based convolutional neural net-
work (Faster R-CNN) [23] is the representative of two-
stage object detection framework and has become a popular
object-detection framework; nonetheless, it still struggles to
detect small objects for the following reasons. First, when the
VGG-16 extracts the features as the backbone structure,
the feature map has low resolution and a large receptive
field in each pixel due to the small size of the feature map
(approximately 1/16) compared with the original image. This
coarseness leads to poor localization performance for small
traffic signs. For example, the dimensions of a traffic sign
might be 32×32 pixels in the original image but are repre-
sented by only 2×2 pixels in the feature map, which is insuf-
ficient to encode discriminative features. Second, the smaller
the dimensions of a region of interest (RoI) are, the more
disruptive information is imported from outside the RoI to
each pixel of the feature map, which unnecessarily increases
the uncertainty of traffic sign recognition.

To enhance the recognition accuracy, we propose themulti-
scale region-based convolutional neural network (MR-CNN)
detection framework that simultaneously employs fused fea-
ture representations in the detection and classification stages.
In the detection stage, the multi-scale deconvolution operator
up-samples the output of the deeper convolution layer. The
features from the shallow convolution layer and the decon-
volution layers are normalized to the same scale by L2 nor-
malization and concatenated along the channel axis. This
approach constructs the fused feature map by compressing
the concatenated feature using pointwise convolution. In the
classification stage, we assume that contextual information
can provide some important cues for small traffic sign recog-
nition (e.g., cues from the surrounding environment or dis-
criminative parts). Thus, the fused feature is designed to
provide more discriminative representation for small traf-
fic signs. It uses the contextual regions to leverage the

information surrounding an object proposal region. The final
fused feature is constructed by RoI-pooling, concatenation
and compression operations. In addition, pointwise convo-
lution is employed to weaken the interference caused by
background noise, which is potentially introduced by the
contextual information. Finally, we evaluated the perfor-
mance of the MR-CNN on the challenging new Tsinghua-
Tencent 100K dataset, where it obtained state-of-the-art
results and achieved a considerable improvement compared
with other methods. The experimental results demonstrate
the superiority of MR-CNN for small traffic sign recognition.
Our contributions can be summarized as follows.

1) In the detection stage, we combine the CNN fea-
tures and design a multi-scale fused feature map.
To ensure different feature maps have the same dimen-
sion, we leverage the deconvolution alleviated the loss
of information, which is obviously different from the
up-sampling operation used in the previous work.

2) For each object proposal, multiple contextual regions
with the same centre coordinate as the prede-
fined factors are generated. During the classifica-
tion stage, the fused feature leverage the multi-scale
contextual information and thus enhances the feature
representation.

3) Using a two-stage fusion strategy, MR-CNN is evalu-
ated on the Tsinghua-Tencent 100K dataset and obtains
state-of-the-art results (an F1-measure of 86.0% for
small (sizes∈ (0, 32] pixels), 93.5% for medium
(sizes∈ (32, 96] pixels), and 90.1% for large (sizes∈
(96, 200] pixels).

The remaining of this paper is organized as follows.
Section II reviews the related work. Section III details the
proposed object detection framework. Section IV provides
the experimental results and comparison between our method
and other frameworks on Tsinghua-Tencent 100K dataset.
Finally, the conclusion is drawn in Section V.

II. RELATED WORK
Previous research work usually used intuitive features (e.g.,
colour and shape) or more discriminative and sophisticated
hand-crafted features to detect the traffic signs. However,
these features show the limited feature representation power
and are not robust enough to accurately detect the traffic
signs. In addition, designing hand-crafted features is labour-
intensive and difficult because it consumes a lot of time
and needs abundant expertise. Recently, due to the increase
in computational capacity and the advent of large-scale
datasets, deep convolutional neural networks (CNNs) have
demonstrated their capabilities to self-learn features from raw
images. Thus, some efforts using CNNs have been devoted to
addressing traffic sign detection and classification. Regard-
ing traffic sign detection, Wu et al. [14] began employing
CNNs to address traffic sign detection as a candidate region
classifier. Zhu et al. [15] proposed a novel framework in
which a fully convolutional network generated the region
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proposals and CNNs was used for classification. In the
literature [16], a pipeline based on a fully convolutional
network was designed to perform both detection and
classification simultaneously. Unfortunately, the aforemen-
tioned methods do not work well in real-world applications,
primarily because of the inadequacy of GTSDB and GTSRB
datasets.

Note that small traffic sign recognition is quite important
for ITS safety because the proportions of signs in the image
are determined by their distance from the camera. However,
small object detection is much more challenging than nor-
mal object detection and good solutions are still rare so far.
The novel object detection frameworks have been constantly
presented in recent years and obtained state-of-the-art per-
formance on PASCAL VOC and MS COCO; nevertheless,
the objects in VOC and COCO had a large size. Recently,
Faster R-CNN [23], You Only Look Once (YOLO) [24] and
Single Shot MultiBox Detector (SSD) [25] have become
popular object detection frameworks. YOLO and SSD show
the fast detection speed while struggling to precisely localize
small objects because they both divide images intomany large
grids that contain perhaps two or more small objects. Faster
R-CNN, the two-stage object detection framework, shows a
higher accuracy than YOLO and SSD. However, the coarse-
ness of the feature map easily leads to poor localization
performance for small traffic sign due to its low resolution.

Most recently, some efforts based on the original Faster
R-CNN have been presented for small object detection
and fall into three categories: multi-scale input [26], multi-
scale detector [27], [28], multi-task learning [29], [30],
and multi-scale features [31]–[33]. To enhance the informa-
tion representation power of small object in the feature map,
multi-input method [26] produced the high-resolution feature
map. However, simply increasing the scale of images easily
leads to heavy time computation in the training stage. In the
literature [27], [28], the multi-scale detector was employed to
extract features from multiple consecutive layers to increase
the contextual information. However, multi-detectors also
increase the computation overhead in the training and test-
ing stage. In the literature [29], [30], multi-task learning
method was employed to improve the detection performance.
However, the feature map is the output only by the last
layer, and contains insufficient information for small object
detection. The multi-scale feature method [31]–[33] received
more attention than other aforementioned methods in the
field of small object detection. It can effectively enhance the
representation power of the small object in the feature map
by combining the features from different layers. To make the
lower-level features the same size as the higher-level features,
pooling was applied to the lower-level features. Note that
pooling is down-sampling operation and further leads to the
loss of small object details in the feature map.

Inspired by these methods, our work follows a similar
philosophy of gathering expressive features from different
convolution layers. But wemake the notablemodification and
use the deconvolution operation to up-sample the higher-level

features. In addition, themulti-scale contextual information is
leveraged to enhance the feature representation at the classi-
fication stage.

III. OUR PROPOSED APPROACH
Our proposed MR-CNN makes notable modifications to
improve the small traffic sign recognition performance.
As shown in Figure 1, the input traffic scene passes through
several convolution layers (conv3, conv4, and conv5), which
are operationally concatenated by a deconvolution and a nor-
malization layer and compressed into a fused feature map.
Then, the subsequent RPN generates the region proposals
from the fused feature map. Finally, a RoI-pooling layer
extracts a fixed size feature vector from each object proposal
and its proposed contextual regions. We design the fused
feature by concatenating and compressing the feature vectors,
and fed them into a subsequent fully connected layers.

A. MULTI-SCALE FUSED FEATURE MAP
For notational convenience, C = {Ci |i = 1, 2, . . . , 5 }
denotes the outputs of the different convolution layers in
VGG-16. The number of output channels of different con-
volution layer is 64, 128, 256, 512, and 512 in sequence. The
size of kernel, stride, and padding used in each convolution
layer is 3×3, 1, and 1, respectively.

To detect small traffic signs, we empirically compare the
performance of different convolution layers and find that
C3 is the most suitable for localization because it possesses
smaller receptive fields and higher resolution compared with
C4 and C5. However, when used as a feature map, C3 leads to
poor detection performance because it contains less seman-
tic information. Thus, we design a fused feature map that
improves the resolution of a small traffic sign and simultane-
ously includes more semantic information, which improves
the performance of the region proposals.

First, we use themulti-scale deconvolution operation to up-
sample the output of the deeper convolution layers. Notably,
this deconvolution operation is different from the original up-
sampling operation; it provides a set of parameters by which
to learn a nonlinear up-sampling of the features in the deep
layers. The outputs of the deconvolution layer are denoted as
D = {Di |i = 1, 2, . . . , 5 }, where Di is defined as

Di = Deconv(Ci, oi, ki, si,mi) (1)

where Deconv(·) specifies the deconvolution operation. The
parameters oi, ki, si and mi specify the size of the output
channel, kernel, stride, and padding, respectively.

Next, the features of different layers, C3, D4, and D5, are
assembled to concatenated feature (CF) that can be defined
as

CF {i=3,4,5} = concat(C3,D4,D5)

= L2(C3)⊕ L2(D4)⊕ L2(D5) (2)

where the concatenation operation is denoted as⊕, L2 speci-
fies the L2 normalization andD4 = Deconv(C4, 256, 4, 2, 1),
D5 = Deconv(C5, 256, 8, 4, 2).
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FIGURE 1. The architecture of our proposed multi-scale region-based convolutional neural network (MR-CNN).

The features of different convolution layers have a different
scale of value, and feature values from the shallower layer
are generally larger than them from the deeper layer. Directly
concatenating them easily leads to the smaller values being
dominated by the larger values. Thus, L2 normalization is
a crucial step before the concatenation operation because
it can effectively keep the feature values from the different
convolution layer on the same scale. For each pixel vector x =
(x1, x2, . . . , xd ) in the concatenated feature, L2 normalization
is defined as

x̂ = x/||x||2 = x/
(∑d

i=1
|xi|2

)1/2

(3)

where x̂ specifies the normalized vector, ||x||2 specifies the
L2 normalization of x, and the number of channels is denoted
as d .

Finally, to compress the number of channels within
the concatenated feature, we use the pointwise convolu-
tion to operate CF {i=3,4,5}. The final fused feature map
Fmap{i=3,4,5} can be defined as

Fmap{i=3,4,5} = Conv
(
CF {i=3,4,5}, o, k, s,m

)
(4)

where Conv(·) specifies the convolution operation, o = 256,
k = s = 1, and m = 0.

B. MULTI-SCALE CONTEXTUAL INFORMATION
The fused feature map in the RPN is intended to improve
the resolution and semantic information for small traffic sign
detection. The contextual information, which is drawn from
the neighbourhood of the object proposal outside of the RPN,
can provide important cues for object classification (e.g.,
the surrounding environment or a discriminative portion of an
object). In our problem, we hold that it can also benefit small
traffic sign classification. Thus, we design a simple method
to leverage contextual information for the object proposal; the
structure of this method is illustrated in Fig.1.

We denote an object proposal as p = (px , py, pw, ph),
where (px , py) specifies its centre coordinates and (pw, ph)
specifies its width and height. The contextual region, p̂i,
is cropped from the fused feature map Fmap{i=3,4,5} at two
scales (i.e., ϕ1 = 1.2 and ϕ2 = 1.6) and can be defined as

p̂i =
{
(px , py, ϕipw, ϕiph)|i = 1, 2

}
(5)

Note that in our proposedmethod, the centre coordinates of
each contextual region, p̂i, are the same as those of the given
object proposal, p.

Then, the object proposal p and its contextual regions p̂i
are fed into the RoI-pooling layer, which outputs the feature
representation vector, fi. This operation can be defined as

fi =

{
Pool(p), i = 0
Pool(p̂i), i = 1, 2

(6)

where Pool(·) specifies the pooling operation of the RoI-
pooling layer. In our problem, each feature representation has
a fixed size of 7×7×256.

In addition, due to the different scales of the three feature
representations in fi, we apply the L2 normalization. Then,
we concatenate the three feature representation vector intoK ,
which is defined as

K = concat{i=0,1,2} (L2(fi)) (7)

where concat(·) specifies the concatenation operation along
the channel axis.

Next, a 1×1 convolution is employed to compress the
number of channels within the concatenated feature, K , from
7×7×3×256 to 7×7×256. The final fused feature can be
defined as

F = Conv(K , o, k, s,m)

= Conv
(
concat{i=0,1,2}(L2(fi)), o, k, s,m

)
(8)

where o = 7× 7× 256, k = 1, s = 1 and m = 0.

VOLUME 7, 2019 57123



Z. Liu et al.: MR-CNN for Small Traffic Sign Recognition

FIGURE 2. Number of instances for each traffic sign size in the
Tsinghua-Tencent 100K dataset.

In addition, note that the contextual information is not
always helpful because it can potentially introduce invalid
background noise to small traffic sign recognition. Thus,
the pointwise convolution used in MR-CNN provides a set
of parameters for learning the weights between the object
features and the contextual features, which weaken the inter-
ference caused by invalid background noise.

Last, the final fused feature vector is fed into the fully con-
nected layers (i.e., fc6 and fc7) that branch into two sibling
output layers. One layer is used for the object classification
according to the estimated probability calculated by softmax.
Another layer is implemented to the bounding-box (bbox)
regression and outputs the localization of each object.

IV. EXPERIMENTS
A. DATASETS
We evaluate MR-CNN on the Tsinghua-Tencent 100K
dataset. Compared with the GTSRB and GTSDB datasets,
the images are higher resolution and the traffic sign instances
are smaller, more variable, and more numerous. The number
of instances in the size range [0, 32] pixels and (32, 96] pixels
are approximately 41.6% and 49.1% of the total, respectively.
This shows that the Tsinghua-Tencent 100K dataset is more
suitable for small traffic sign recognition. Fig.2 provides the
number of instances of each traffic sign size.

We select 45 categories of traffic signs, and each category
includes more than 100 images. Each instance has a unique
label in the dataset. As shown in Fig. 3, some labels (e.g.,
‘il*’, ‘pl*’, ‘pm*’, and ‘ph*’) are representatives of the same
family. For example, they denote the different height restric-
tions by replacing ‘*’ in ‘ph*’ with a specific value. The size
ratio between the training and testing dataset is 1:2. To ensure
that each category has at least 1,000 instances for sample
balancing, we use the re-sampling method for the categories
with less than 1,000 images in each epoch. The experiments
were run on a Linux PC with an Intel Core i7-7700K, 32 GB
of memory, and two GeForce GTX 1080 GPUs.

B. DETECTION PERFORMANCE
The traffic sign detection performance of the proposed
method is evaluated by the standard detection metrics of
recall and precision, which are the same as those used in
the previous work [16]. To enable a more intuitive compar-
ison, we also used the F1-measure as an additional metric.

FIGURE 3. The selected 45 categories and each category has more than
100 images.

TABLE 1. Comparison of recognition performance for different size
groups. (in %).

In addition, to evaluate our method for both small and large
traffic sign detection, we divided the traffic signs into three
size groups: small (sizes∈ (0, 32] pixels), medium (sizes∈
(32, 96] pixels) and large (sizes∈ (96, 200] pixels). In addi-
tion, it is worth noting that all the traffic signs used occupy
less than 1% of the original image.

To validate the effectiveness of the proposed method,
we compare MR-CNN with the original Faster R-CNN [23],
SSD [25], the method proposed by Zhu et al. [16], and the
feature pyramid network (FPN) [34]. In this comparison,
Faster R-CNN and SSD are the representative of two-stage
object detection and one-stage object detection, respectively.
Zhu et al. achieved state-of-the-art recognition results on the
Tsinghua-Tencent 100K dataset. In addition, FPN is well-
known multi-scale object detection method that has achieved
state-of-the-art performances on theMSCOCOand PASCAL
VOC datasets. Here, FPN uses the ResNet-50 as its back-
bone architecture and employs Faster R-CNN as backbone
detector.

Table 1 provides a comparison of the detection perfor-
mance of these five methods on the different traffic sign size
groups. The F1-measure obtained by our proposed MR-CNN
was 86.0% for small (sizes∈ (0, 32] pixels), 93.5% for
medium (sizes∈ (32, 96] pixels) and 90.1% for large (sizes∈
(96, 200] pixels) size group. It outperformsGudigar et al. [17]
by 1.5 points, 1.3 points and 1.0 points, respectively, the
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TABLE 2. Comparison of the recognition performance of five methods on 45 categories. (in %).

original Faster R-CNN by 53.5 points, 19.9 points and
4.4 points, respectively. It also outperforms other object
detection frameworks (e.g., SSD and FPN). It demonstrates
that theMR-CNN can accurately recognize small traffic signs
as well as medium or large ones.

Table 2 provides the detailed detection metrics for each
traffic sign category for five methods which show that
MR-CNN achieves the best performance in most categories.
The experimental results demonstrate that our proposed fused
feature map andmulti-scale contextual information can effec-
tively enhance feature representation power and boost the
performance of small traffic sign detection.

Fig.4 shows the comparisons of detection performance
about different methods for small, medium and large signs

by using the precision-recall curves. In the object detection,
the precision-recall curve is widely used to evaluate the
detection performance of the method. According to the area
enclosed by the curve, X axis and Y axis, the larger the area,
the better the detection performance. Thus, Fig.4 demon-
strates that our proposed method consistently outperforms to
other methods on different traffic sign sizes, especially when
the sign size is small.

Fig.5 shows the partially visualized detection results on
the testing dataset. As can be observed, each traffic sign
instance is quite small and occupies less than 1% of the whole
scene; nonetheless, our approach recognized them accurately.
To facilitate observe, the recognition results are enlarged and
placed at the bottom left or bottom right of the traffic scene.
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FIGURE 4. Comparisons of the detection performance about five methods for three size groups.

FIGURE 5. The detection results of the proposed methods. ‘pl40’, ‘pne’, and the other strings are the traffic sign labels.

In addition, the traffic sign in the scene shown at the third
row of the third column in Fig.5 is seriously deformed due to
the viewpoint; nonetheless, our model can still recognize it
correctly.

C. ABLATION ANALYSIS
Small traffic sign detection is a challenging problem in
computer vision because it is more difficult to localize due to

their low resolution. For an object detection framework, when
the targets do not appear in the region proposal set, the sub-
sequent classification will be invalid. To highlight the impact
of the proposed fused feature map and the advantage gained
by the architecture, we compare the detection performance of
region proposals for different feature maps in Table 3.

We can observe that D4 and D5 outperform C4 and C5,
respectively. This demonstrates that the feature maps
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TABLE 3. Detection performance regarding different feature maps for
500 region proposals (IoU=0.5).

FIGURE 6. Region proposal performance of feature maps from different
convolution layers.

constructed by up-sampling the deeper convolution layer with
a deconvolution operation are more suitable for small traffic
sign detection than are the original maps. However, their
performances are still worse than that of C3. We consider that
D4 andD5 lose some detail information due to the continuous
down-sampling and up-sampling operations.

Furthermore, combining the deeper layers with the shal-
lower layer, e.g., F{i=3,4}, F{i=3,4,5}, F{i=2,3,4}, and F{i=1,2,3},
outperforms a single convolution layer because there more
semantic information exists in the deeper layers. In all com-
bining strategies, our proposed fused feature map, F{i=3,4,5},
achieves the best performance. The recall and detection accu-
racy values improved from 64.8% to 89.4% and from 53.2%
to 71.3%, respectively, compared with the original feature
map, C5, in the Faster R-CNN.
Fig.6 shows a comparison of the performance regarding the

region proposals between the original feature map C5 in the
Faster R-CNN and the different combining strategies. These
results demonstrate that our proposed fused feature map
not only generates fewer region proposals but also achieves
higher recall values.

V. CONCLUSION AND FUTURE WORK
This paper proposes a small traffic sign detection frame-
work named MR-CNN that employs the two-stage fusion
strategy. The MR-CNN framework integrates multiple

levels of convolution feature and multiple levels of contextual
information. At the detection stage, the region proposals are
generated from the fused feature mapwith sufficient informa-
tion. We design the fusion strategy of different convolution
layers by using deconvolution, normalization, and compres-
sion. At the classification stage, we construct a fused feature
for the fully connected layer and leverage the multi-scale
contextual regions to exploit the surrounding information for
a given object proposal. The fused feature map is focused
on improving the resolution and semantic information of
small traffic signs, while the fused feature provides more
discriminative representations of the contextual regions. The
final experimental results show our method’s superiority for
detecting small signs, and it achieved state-of-the-art perfor-
mance compared with other methods. In addition, note that
the hard negative samples are important for efficient training
and detection accuracy. In future work, we plan to focus on
designing an efficient training algorithm to differentiate hard
negative samples from easy positive samples.
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