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ABSTRACT Cognitive ambient backscatter is a wireless communication paradigm that allows a secondary
backscatter device to superimpose its information-bearing data on a primary signal, without requiring
any type of power-consuming active components or other signal conditioning units. In such a network,
the performance of the backscatter system can be severely degraded by channel estimation errors and
co-channel direct-link interference (DLI) from the primary system. To overcome these shortcomings,
we consider a cloud radio access network (C-RAN) architecture, where both the primary and secondary edge
nodes are connected to a cloud processor via high-speed links. In this centralized architecture, secondary edge
nodes provide network access to ambient backscatter passive and semi-passive sensors with communication
capabilities, and the problem of acquiring channel state information and suppressing the DLI is managed by
the cloud processor. In particular, we assess the performance of the secondary backscatter sensor transmission
in a realistic system setup, which takes into account training-based channel estimation, practical modulation
constraints, and imperfect DLI suppression. In addition, we formulate and solve an optimization problem
aimed at maximizing the transmission rate of the secondary transmission, subject to limits on channel
estimation error, average symbol error rate, power consumption, and energy storage capabilities of the
backscatter sensor. The validity of our analysis and the performance of the secondary system based on the
proposed designs are corroborated through the Monte Carlo simulations.

INDEX TERMS Ambient backscatter, cloud radio access network, cognitive radio, data rate maximization,
energy harvesting, interference suppression, passive and semi-passive sensors, performance analysis.

I. INTRODUCTION
Driven by the Internet of Things (IoT) vision [1], the forth-
coming years will be characterized by an explosive growth in
the number of sensing devices that need to be connected to the
Internet by wireless links. Such massive connectivity require-
ments must cope with two main limitations: the scarcity of
dedicated spectrum portions to allocate sensor transmissions,
and the need to reduce, if not eliminate, the communication
dependence on batteries.

Since it is commonly recognized that most of the licensed
spectrum is underutilized [2], the efficiency of sensor trans-
missions would greatly benefit from the adoption of cog-
nitive radio (CR) approaches. A CR-enabled sensor, being
aware of its operational environment, is able to dynamically
and autonomously adjust its radio transmission parameters
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in order to opportunistically perform reliable communica-
tions [3], [4]. Furthermore, harvesting energy from external
sourcesmight be a solution to improve the lifetime of wireless
sensor devices, freeing them from strict battery constraints.

Electrical energy can be harvested [5] by several means,
such as: (a) thermal, solar, wind, and vibrational sources;
(b) dedicated radio-frequency (RF) transmitters (e.g., read-
ers), which are deployed to enable wireless power transfer
(WPT) [6]–[14]; (c) legacy sources that are not intended
for WPT, whose aim is only to ensure wireless information
transfer (WIT). The objectives for WPT (i.e., maximization
of the energy transmission efficiency) and WIT (i.e., max-
imization of the information transmission capacity) can be
jointly pursued to design sensors with simultaneous wireless
information and power transfer (SWIPT) [15], [16].

In recent years, to combine the benefits of CR and
SWIPT, new wireless network architectures have been intro-
duced [17], [18], wherein secondary users (SUs) are able
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to harvest energy from primary (i.e., licensed) signals, and
use the harvested energy to transmit data to their secondary
receivers (SRs). The SUs perform data transmission by tem-
porarily sharing a portion of licensed spectrum, provided that
they generate aminimal amount of interference to the primary
users (PUs). However, in these CR systems with SWIPT,
the SUs employs active radios, which are power consuming
and, thus, quickly waste the harvested RF energy.

Contrary to active radios, backscatter devices [19]–[32]
do not need power-consuming and expensive radio analog
components (includingRF oscillators, amplifiers, and filters),
since they modulate information by reflecting RF signals.
Recently, a novel backscatter technique, referred to as ambi-
ent backscatter communication (AmBC), has been attracting
much attention [19]–[22]. AmBC works by exploiting exist-
ing or legacy RF signals (such as TV, radio, cellular, or Wi-Fi
systems) for WPT and WIT purposes.

The integration of AmBC into CR networks has been
recently considered in [33], [34], by enabling secondary
transmitters (STs) to jointly harvest energy from PU signals
for basic circuit operations, and perform data transmission
by backscattering the PU signals to their SRs. Since signal
reflection consumes only a very small power [35], AmBC
has the potential to enable moderate-to-high-speed ultra-low-
power STs. One of themajor problem of integrating AmBC in
CR networks stems from the inherent spectrum sharing nature
of AmBC: indeed, the performance of the secondary system is
adversely affected by direct-link interference (DLI) from the
primary transmitter (PT). Moreover, acquisition of channel
state information (CSI) in CR networks is a difficult task, due
to the lack of cooperation between the primary and secondary
systems.

In this paper, to solve these problems, we propose to resort
to a cloud radio access network (C-RAN) architecture [36],
wherein distributed access points, referred to as edge nodes,
forward user signals to/from a centralized cloud processor
(CP) via high-speed wired fronthaul links [37], [38]. The
adoption of C-RAN solutions for narrowband IoT (NB-IoT)
technology, which support low-power and low-cost devices,
has been proven to be feasible in [36], since the relaxed
latency requirements and reduced baseband processing com-
plexity allows one to overcome one of the main challenge of
C-RAN implementations, namely the capacity requirements
of the fronthaul links.

Among other performance gains, the C-RAN solution
enables easy CSI acquisition schemes and enhanced inter-
ference management capabilities, due to joint baseband pro-
cessing in the cloud, which, in our scenario, is the key to
perform channel estimation and DLI suppression in a simple
and effective manner.

A. RELATED WORK
The SU is allowed to operate in dual mode in [33]: in the
harvest-then-transmit one, the ST directly sends data towards
its SR when the PU is silent, by using the energy harvested
during the periods in which the PT is transmitting; in the

backscatter one, the ST reflects the PU signal for data trans-
mission when the primary channel is busy. The extension
of this scheme to the case of multiple SUs has been devel-
oped in [39]. In [33], [39], the STs need active components
in the harvest-then-transmit mode, which may be unafford-
able for ultra-low-power sensors. Moreover, the optimization
framework in [33], [39] is carried out by using information-
theoretic performance measures that do not explicitly take
into account the DLI from the primary system, as well
as channel estimation and practical modulation constraints.
To overcome the inherent difficulty in acquiring CSI in
AmBC systems, a blind channel estimator has been proposed
in [40] relying on the expectation maximization algorithm,
whereas clustering-based machine learning algorithms have
been employed in [41]. These channel estimation methods
are iterative and require appropriate initializations to achieve
satisfactory performance.

To eliminate the effect of DLI in AmBC, one possi-
ble option consists of shifting the backscattered signal to
a frequency band different from that used by the primary
system [22]–[24] (so called ‘‘harmonic backscattering’’).
Besides adding complexity to the ST, this approach requires
additional spectrum, which might not be available in many
cases. DLI-free transceiver designs have been developed
in [31], [42], which exploit the repeating structure of legacy
multicarrier signals induced by the use of the cyclic prefix,
without increasing the hardware complexity. However, such
transceivers require a sufficiently long cyclic prefix so as
to ensure a suitably high signal-to-noise ratio (SNR) at the
intended recipient of the backscatter data.

Further DLI cancellation methods have been proposed
in [34], which exploit the spatial diversity offered bymultiple
receive antennas at the SR, whereas successive interference
cancellation has been advocated in [43]. In [34], complex sig-
nal processing techniques are introduced at the SR, however
optimization of the harvesting (i.e., power consumption and
energy storage capability) and backscatter parameters (i.e.,
reflection coefficient) of the STs is not considered. On the
other hand, time allocation and reflection coefficient opti-
mization for the backscatter system have been derived in [43],
by considering a duty cycle with two working states: in the
sleep state, the ST does not backscatter any data and stores
the energy from the PU signal in a finite-capacity battery
for further use; in the active state, the ST backscatters a
portion of the PU signal, by simultaneously absorbing the
energy of the remaining part to power its circuits. The optimal
control policy in [43] has been derived via throughput maxi-
mization by tacitly assuming perfect channel estimation and
Gaussian-distributed modulations.

B. PROPOSED NETWORK ARCHITECTURE AND MAIN
CONTRIBUTIONS
To overcome the problems of channel estimation and
DLI suppression in AmBC systems, we propose the net-
work architecture depicted in Fig. 1. The primary edge
node (PEN) provides bidirectional radio functionalities
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(i.e., digital-to-analog conversion, analog-to-digital conver-
sion, power amplification, and filtering) for the signals trans-
mitted/received to/from the PUs within its coverage area.
Each PU has its own licensed uplink/downlink channels to
communicate with the PEN. We assume that the primary sys-
tem employs orthogonal frequency-division multiple access
(OFDMA) to assign communication resources to the PUs.

The SU is a passive or semi-passive1 backscatter sensor
wishing to transmit data to the cloud by concurrently using
the primary channels, which is a scenario of interest for IoT
applications [44], [45]. To this end, the sensor backscatters
the primary OFDMA signal towards the secondary edge node
(SEN), which only provides unidirectional radio functionali-
ties from the sensor to the CP, i.e., apart from control signals,
it does not transmit data from the cloud to the air.2

Baseband signal processing (e.g., coding/decoding, mod-
ulation/demodulation, and interference management) is per-
formed by the CP in a centralizedmanner for both the primary
and secondary systems. The capacity requirement for the
fronthaul link between the SEN and the CP to transport the
baseband signal is low, due to the fact that the backscatter
sensor is usually equipped with a single antenna, and, most
important, it operates on a low data-rate basis. Moreover,
since the backscatter sensor is typically employed in applica-
tions with relaxed timing requirements, AmBC performance
does not particularly suffer from the latency between the SEN
and the CP. On the other hand, since the primary symbols
are known at the CP, and the corresponding channel param-
eters can be estimated through standard techniques, the DLI
contribution can be easily subtracted from the received base-
band signal. This allows one to drastically alleviate the DLI
problem, without resorting to sophisticated multiple-antenna
techniques as in [34], which would significantly increase the
requirement for fronthaul link capacity in our C-RAN archi-
tecture. Additionally, the presence of the ultra-low-power
backscatter transmission does not appreciably affect the per-
formance of the primary system [32].

With reference to the architecture of Fig. 1, we study
practical designs for the AmBC sensor system operating on
frequency-selective block-fading wireless channels. Specifi-
cally, contrary to previous papers [33], [39], [43] that assume
perfect channel estimation and Gaussian-distributed mod-
ulations, we take into account the imperfections due to
training-based channel estimation and practical modulation
constraints for the secondaryAmBC system, as well as imper-
fect DLI suppression at the CP. In particular, the average
(with respect to the probability distribution of channel fad-
ing) performance of the coherent AmBC detector at the CP

1Sensors can be classified into three categories: active, passive, and
semi-passive [16], [35]. Active sensors have internal power sources and
they can directly radiate signals, while passive and semi-passive ones can
communicate only by reflecting signal transmitted by other devices in the
neighborhood.

2 The case of multiple SUs controlled by the SEN can be recasted in
our framework with minor modifications by allowing the SUs to backscatter
the OFDMA primary signal in an orthogonal manner, e.g., by accessing the
channel on a time-division basis [39], [46].

FIGURE 1. The C-RAN architecture integrates CR and AmBC, with NPU
primary users and a secondary backscatter sensor. The transmission links
from the secondary sensor to the primary users is not explicitly depicted
here.

is evaluated by means of closed-form formulas. Moreover,
unlike [34], we formulate and solve a constrained maximiza-
tion of the achievable data rate of the sensor transmissionwith
respect to the reflection coefficient, the duty cycle, the cardi-
nality of symbol constellation, and the lengths of the training
and data phases of the secondary AmBC sensor, subject to
limits on the mean square error of the channel estimate, the
average symbol error rate, the power requirements, and the
energy storage capabilities.

The solution of the constrained maximization is expressed
in a simple closed-form (i.e., without the need to resort
to iterative algorithms) and involves only statistical (rather
than instantaneous) network state information, such as the
path-loss parameters of the channel and the average energy of
the symbol constellation used by the PEN. Finally, numerical
Monte Carlo results are also reported, aimed at supporting our
theoretical findings and validating the proposed designs.

C. PAPER ORGANIZATION
System and signal models are presented in Section II. The
performance analysis of coherent detection of the sym-
bols transmitted by the backscatter system is developed
in Section III. Constrained maximization of the achievable
data rate of AmBC is carried out in Section IV. Numerical
results corroborating our analysis and designs are reported in
Section V. Conclusions are drawn in Section VI.

II. SYSTEM MODEL AND BASIC ASSUMPTIONS
In this paper, we refer to the C-RAN architecture depicted
in Fig. 1. As in [47], [48], we assume that there exist ideal
low-latency fronthaul links with sufficiently large capacity
(e.g., optical fiber) connecting the PEN and SEN to the CP,
which performs the baseband signal processing and interfer-
ence management for both the PEN and SEN. As reported
in Fig. 1, we focus on the case when the PEN and SEN are
spatially-separated devices. However, the proposed frame-
work can be particularized to the case when the PEN and SEN
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FIGURE 2. A schematic view of a semi-passive sensor. In the case of a
passive sensor, there is no energy storage on board.

are co-located nodes: in this case, some simplifications occur,
e.g., DLI suppression can be directly performed at the edge,
thus avoiding to overburden the cloud.

We consider the downlink of an OFDMA primary sys-
tem, where the PEN, which is equipped with a single
antenna, transmits to NPU primary users, each employing
a single-antenna transceiver. The primary system employs
a total of M subcarriers, divided in NPU disjoint sets such
that each subcarrier is assigned to one PU. The primary
data block to be transmitted by the PEN within the nth
(n ∈ Z) symbol of length Ts is denoted as s(n) ,
[s(0)(n), s(1)(n), . . . , s(M−1)(n)]T ∈ CM , whose entries are
modeled as independent and identically distributed (i.i.d.)
zero-mean unit-variance phase-shift keying (PSK) symbols;
moreover, we assume that s(n1) is statistically independent of
s(n2), for n1 6= n2.3

The SU is a single-antenna semi-passive or passive [16]
backscatter sensor, which wishes to transmit information-
bearing symbols to the cloud by way of the SEN. A
semi-passive backscatter sensor is composed of five basic
components (Fig. 2):

• the RF front end (including the antenna and the digital
multilevel backscatter modulator);

• a module with specific sensing capabilities;
• an energy harvester [49] that converts the RF power into
direct current (DC) power;

• a low-power micro-controller;
• an energy storage, e.g., a supercapacitor or a recharge-
able battery.

Part of the incoming RF energy from the OFDMA primary
transmission is harvested and accumulated into the energy
storage of the sensor: such an energy is used to power its
sensing and chip operations, while data communication is
performed by backscattering the remaining part of the inci-
dent radiation. In the case of a passive backscatter sensor, the
only difference stems from the fact that the sensor has very
little energy storage (typically capacitive) capabilities, which
limits the power consumption of the sensor to the average
power received by the OFDMA primary transmission that is
not backscattered for data communication.

Hereinafter, we assume that time is slotted in periods:
the harvesting and backscatter processes are carried out by

3The assumption that the PEN transmits PSK symbols is made only to
streamline the subsequent performance analysis. The proposed framework
can be straightforwardly extended to other linear modulation formats.

FIGURE 3. Operation scheme of the semi-passive backscatter sensor.
In the case of passive backscatter sensor, there is no sleep phase,
i.e., To = 0.

the sensor on a period-by-period basis. With reference to
a semi-passive backscatter sensor, we assume that, at the
beginning of each period, the energy storage is empty and,
therefore, the sensor is in sleep mode until it harvests a
sufficient amount of energy to power its chip reliably; when
the harvested energy is larger than a given threshold, the sen-
sor switches to the wake mode in order to perform sensing
tasks and data communication. More precisely, as illustrated
in Fig. 3, each period is divided into three slots:
• Sleep phase (To s): the sensor only harvests energy while
consuming negligible chip power. Such an energy is
accumulated in the storage: if the average harvested
RF energy is sufficient, the sensor wakes up and the
following two phases occur; otherwise, it remains in
sleep mode.

• Training phase (Tt s): the sensor sends training symbols
to the cloud for channel estimation, by reflecting a part
of the OFDMA primary signal back to the SEN, whereas
the remaining energy is absorbed by the harvester.

• Data phase (Td s): it is similar to the training phase, but
the sensor transmits information-bearing symbols.

The length of the training and data phases is Tf = Tt + Td,
referred to as the frame duration, whereas Tp = To + Tf is
the period duration. The duty cycle of the backscatter sensor
is thus defined as

D ,
Tf
Tp
=

(
1+

To
Tf

)−1
. (1)

When the backscatter sensor is passive, due to the absence
of an energy storage, in each period there are only training
and data phases of duration Tt and Td, respectively. In this
case, the modulator and the sensing module are powered
only by the portion of the OFDMA signal power that is not
backscattered during such phases, i.e., To = 0, which implies
that Tp = Tf and D = 1. In the subsequent signal models,
we refer to the case when the backscatter sensor is semi-
passive; the corresponding equations for a passive sensor can
be obtained as a special case by setting To = 0.

A. SIGNAL MODEL
According to Fig. 1, we will refer to the PEN, the backscatter
secondary sensor, and the SEN as nodes 1, 2, and 3, respec-
tively. The primary symbol vector s(n) is subject to conven-
tional OFDMA precoding, encompassing M -point inverse
discrete Fourier transform (IDFT), followed by cyclic prefix
insertion of length L < M . The data block transmitted by the
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PEN can be expressed [50] as

u(n) , [u(0)(n), u(1)(n), . . . , u(P−1)(n)]T = TcpWIDFT s(n)

(2)

where P , M + L and Tcp , [ITcp, IM ]T ∈ RP×M , with
Icp ∈ RL×M obtained from IM by picking its last L rows, and
WIDFT ∈ CM×M is the unitary symmetric IDFT matrix [50].
The correlation matrix E[u(n)uH(n)] of the vector u(n) is
given by Tcp TT

cp, which is asymptotically equivalent to IP in
weak norm [51], for sufficiently large values of M . We will
rely on such an equivalence by assuming that, in the large
M limit, the entries of u(n) are i.i.d. zero-mean unit-variance
circularly symmetric complex random variables. The data
vector u(n) undergoes parallel-to-serial (P/S) conversion, and
the resulting sequence u(n), which is defined by u(n P+p) =
u(p)(n), for p ∈ P , {0, 1, . . . ,P − 1}, feeds a digital-to-
analog converter (DAC), operating at sampling rate 1/Tc ,
P/Ts, where Tc is the sampling period.

We consider channel models that take into account both
small- and large-scale fading. The generic i → k commu-
nication link in Fig. 1 is modeled as a linear time-varying
random system with complex baseband impulse response
c̃ik (t, τ ) (including also the impulse response of the DAC
and receiving filters). We assume that, for a fixed τ , the
channel impulse response (CIR) c̃ik (t, τ ) is approximately
constant within frame intervals of length Tf. Hence, we can
consider the CIR c̃(h)ik (τ ) , c̃ik (hTf, τ ) in the discrete-time
variable h ∈ Z. A block fading channel model is assumed,
which implies that c̃(h)ik (τ ) for a fixed τ is a sequence of
independent random variables with respect to h. On the other
hand, for a given h, the CIR c̃(h)ik (τ ) is modeled as a zero-mean
circularly symmetric complexGaussian randomprocess [52],
with autocorrelation function

E[̃c(h)ik (τ ) c̃
(h)
ik (τ

′)∗] = σ 2
ik p̃ik (τ ) δ(τ − τ

′) (3)

where σ 2
ik is the reciprocal of the average path-loss of the

i → k link, δ(τ − τ ′) captures the statistical independence
among path delays (so called uncorrelated scattering [52]),
with δ(t) being the Dirac delta function, p̃ik (τ ) is the power
delay profile (PDP), which is normalized so as to have unitary
area; in the following, we assume a uniform 4 PDP for τ ∈
[0,Lik Tc], with Lik ∈ {0, 1, . . . ,L}, where Lik Tc is the
maximum multipath spread of the channel [52].

The i→ k link is also characterized by a time offset (TO)
1ik = θik Tc + ζik � Ts, with θik ∈ N and ζik ∈ [0,Tc). It
is assumed that Lik and θik obey Lik + θik ≤ P − 1, which
ensures that the nth received block over the i → k link is
impaired only by the interblock interference of the previous
one. Finally, all the discrete-time channels are assumed to be
statistically independent of the primary and secondary sym-
bols, and CIRs of different links are statistically independent
among themselves, i.e., c̃(h)i1k1 (τ ) and c̃

(h)
i2k2

(τ ) are statistically
independent, for i1 6= i2 or k1 6= k2.

4 The framework at hand can be easily generalized to the case of a non-
uniform PDP.

1) SIGNAL TRANSMITTED BY THE BACKSCATTER SENSOR
The baseband continuous-time OFDMA primary signal
received by the backscatter sensor is given by

r̃2(t) =
√
2Ps

+∞∑
`=−∞

u(`) c̃(h)12 (t −112 − `Tc) (4)

for t ∈ [h Tf, (h+ 1)Tf), where Ps is the average transmis-
sion RF power (including the gain of the transmit antenna),5

the noise at the sensor has been neglected, since its integrated
circuit only consists of passive components and involves
simple signal processing operations [35], [53].

In both the semi-passive and passive cases, the digital
multilevel backscatter modulator [54], [55] allows one to
vary the chip impedance of the backscatter sensor, thus
causing changes in the reflection coefficient. Let the chip
impedance of the sensor assume Q distinct values Z c

q , for
q ∈ {1, 2, . . . ,Q}, the power wave reflection coefficient 0q
corresponding to the qth chip impedance is given by

0q =
(Z a)∗ − Z c

q

Z a + Z c
q

(5)

where Z a denotes the antenna impedance.6 During the train-
ing and data phases, the signaling interval of the backscatter
sensor is equal to Ts, i.e., it transmits in backscatter mode only
one symbol for each OFDMA symbol of the primary system.

The symbols b(n) are modeled as a sequence of
i.i.d. zero-mean unit-variance circularly symmetric ran-
dom variables, drawn from a Qt-order constellation
{βt,1, βt,2, . . . , βt,Qt} during the training phase or from a
Qd-order constellation {βd,1, βd,2, . . . , βd,Qd} during the data
phase. Training and data symbols modulate the backscattered
signal by changing the chip impedances. Indeed, by virtue
of (5), the qth chip impedance Z c

q corresponds to the point
βq of the symbol constellation by means of the one-to-one
mapping

0q = α βq (6)

where 0 < α ≤ 1 is a constant related to the power wave
reflection coefficient, and βq ≡ βt,q and Q ≡ Qt during the
training phase, whereas βq ≡ βd,q and Q ≡ Qd during the
data phase. In the sequel, we set Tt = Bt Ts and Td = Bd Ts,
with Bt,Bd ∈ N.

The complex envelope of the continuous-time backscat-
tered signal can be modeled [32], [54], [55] as follows

x̃2(t) = r̃2(t)0(t), for t ∈ [To,To + Tf) (7)

with

0(t) = α
∑Bt+Bd−1

q=0
b(q) ψ̃2(t − To − q Ts) (8)

where ψ̃2(t) is a rectangular unit-amplitude symbol-shaping
function, i.e., ψ̃2(t) = 1 for 0 ≤ t ≤ Ts and zero otherwise.

5Ps is the so-called effective isotropic radiated power (EIRP) of the PEN.
6When the backscatter sensor is semi-passive, the chip impedance is

matched to the antenna impedance during the sleep phase. In this circum-
stance, all the input energy is harvested and there is no backscattered field.
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Since the backscatter process is implemented with passive
components [54], the sequence b(n) is subject to the ampli-
tude constraint |b(n)| ≤ 1, ∀n ∈ Z.

2) SIGNAL RECEIVED BY THE SEN
Since the backscatter sensor simply remodulates the carrier
of the PEN in backscatter mode, it is reasonable to assume
that the carrier frequency offset over the 2 → 3 link is
negligible. Moreover, we will refer hereinafter to the frame
[To,To + Tf), without loss of generality. Thus, we will drop
the time index h in the CIR c̃(h)ik (τ ) and model the i → k
link by the random process c̃ik (τ ) in the delay variable τ .
Under the above assumptions, the baseband version of the
continuous-time signal picked up by the SEN reads as

r̃3(t) = x̃2(t) ∗ c̃23(t −123)+ ı̃3(t)+ ṽ3(t) (9)

for t ∈ [To,To + Tf), where ∗ denotes (linear) convolution,
ı̃3(t) =

√
2Ps

∑
+∞

`=−∞ u(`) c̃13(t − 113 − `Tc) is the DLI
contribution, and ṽ3(t) represents thermal noise.7

We assume that the multipath spread of the 1 → 2 and
2 → 3 links is much smaller than the symbol period Ts of
the backscatter transmission, i.e., L12,L23 � P. In this case,
taking into account (4), (7), (8), and (9), one can write

x̃2(t) ∗ c̃23(t−123)= [̃r2(t)0(t)] ∗ c̃23(t−123)

≈0(t−123) [̃r2(t) ∗ c̃23(t−123)]

=

√
2Ps 0(t−123)

×

+∞∑
`=−∞

u(`) c̃123(t−112−123−`Tc)

(10)

for t ∈ [To,To + Tf), where c̃123(τ ) , c̃12(τ ) ∗ c̃23(τ ) ≡ 0
for τ 6∈ [0, (L12 + L23)Tc). The SEN performs sampling of
the received signal (9) and cyclic prefix removal in order not
to increase the requirement for fronthaul link capacity.

The signal (9) is sampled with rate 1/Tc, at time epochs
tn,p , To + n Ts + p Tc, with p ∈ P . Taking into account
(10), it can be shown [32] that, if the SEN discards the
first L samples of (9) and collects the remaining ones in
r̃3(n) , [̃r3(tn,L), r̃3(tn,L+1), . . . , r̃3(tn,P−1)]T ∈ CM , one has
the vector model

r̃3(n) = α h̃(n) b(n)+ ı̃3(n)+ ṽ3(n) (11)

for n ∈ {0, 1, . . . ,Bt + Bd − 1}, provided that

L12+L23+θ12+θ23 ≤ P−1

L ≥ max(L13+θ13+1,L23+θ23+1,

L12+L23+θ12+θ23+1) (12)

with

h̃(n) ,
√
2Ps Rcp C̃

(0)
12 C̃(0)

23 u(n) ∈ CM (13)

7Following a common practice (see, e.g., [57]), it is assumed in the
sequel that the structural-dependent term of the scattered field [58] has been
removed at the SEN before transmitting the baseband data to the CP.

ı̃3(n) ,
√
2Ps Rcp C̃

(0)
13 u(n) ∈ CM (14)

where Rcp , [OM×L , IM ] ∈ RM×P and

C̃(0)
ik ,

Lik∑
`=0

cik (`)F`+θik ∈ CP×P (15)

is the Toeplitz lower-triangular [59] channel matrix corre-
sponding to the samples cik (`) , c̃ik (`Tc + ζik ) of the i→ k
link, with F denoting the Toeplitz forward shift matrix [59],
and ṽ3(n) , [̃v3(tn,L), ṽ3(tn,L+1), . . . , ṽ3(tn,P−1)]T ∈ CM . It
is noteworthy that, according to (3), the order of the causal
finite-impulse response cik (`) is Lik , i.e., cik (`) ≡ 0 for
` 6∈ {0, 1, . . . ,Lik}. Moreover, in the sequel, we assume that
E[̃v3(n1) ṽH3 (n2)] = OP×P, for n1 6= n2 ∈ Z.
The vector r̃3(n) is transmitted from the SEN to the CP over

a low-latency high-capacity fronthaul link. After performing
the DFT at the CP, one gets

r3(n) ,WDFT r̃3(n) = α h(n) b(n)+ ı3(n)+ v3(n) (16)

for n ∈ {0, 1, . . . ,Bt+Bd−1}, whereWDFT ,W−1IDFT defines
the unitary symmetric DFT matrix [50], the vectors

h(n) , WDFT h̃(n) =
√
2PsC12 C23 s(n) ∈ CM (17)

ı3(n) ,
√
2PsC13 s(n) ∈ CM (18)

are the backscatter channel and DLI contribution seen by the
CP, respectively, the nonzero entries of the diagonal matrix
Cik , diag[Cik (0),Cik (1), . . . ,Cik (M − 1)] are defined as

Cik (m) , e−j
2π
M θikm

Lik∑
`=0

cik (`) e−j
2π
M `m (19)

for m ∈M , {0, 1, . . . ,M − 1}, and v3(n) ,WDFT ṽ3(n).

III. PERFORMANCE ANALYSIS OF AMBC
The task of the CP is to coherently estimate the data sym-
bols b(Bt), b(Bt + 1), . . . , b(Bt + Bd − 1), relying on the
observation of the sampled received signal (16) for n ∈
{0, 1, . . . ,Bt + Bd − 1} and on knowledge of the training
symbols b(0), b(1), . . . , b(Bt−1). Compared to conventional
active transmissions, performance analysis of such a coherent
estimation process for AmBC in fading channels is compli-
cated by the non-Gaussian nature of the composite backscat-
ter channel (17) and by the presence of the DLI term (18).
In the forthcoming subsections, we develop a performance
analysis of the channel estimator and the data detector, by
explicitly taking into account the DLI cancellation process at
the CP.

A. DLI CANCELLATION
In the proposed centralized C-RAN architecture, the CP has
perfect knowledge of the RF power Ps and of the symbol
vector s(n). In this case, the parameters related to c̃13(t) and
113 of the 1 → 3 link can be jointly estimated [56] when
the sensor does not backscatter [20], [21] and, hence, the DLI
contribution ı3(n) can be subtracted from (16) in the cloud.
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Let n 6∈ {0, 1, . . . ,Bt+Bd−1} be the index of a given sym-
bol period wherein the backscatter sensor is silent, i.e., α = 0,
eq. (16) ends up to

r3(n) =
√
2Ps C13 s(n)+ v3(n) (20)

and the following identity holds√
2Ps C13 s(n) = S(n)WDFT P γ 13 = ϒ(n) γ 13 (21)

where S(n) ,
√
2PsM diag[s(0)(n), s(1)(n), . . . , s(M−1)(n)]

is a known nonsingular diagonal matrix, the full-column rank
matrix P , [IL ,OT

(M−L)×L]
T
∈ RM×L is also known,

the vector γ 13 , D13 c13 ∈ CL collects all the unknown
parameters, with

D13 , [OT
θ13×(L13+1), IL13+1,O

T
(L−θ13−L13−1)×(L13+1)]

T (22)

c13 , [c13(0), c13(1), . . . , c13(L13)]T ∈ CL13+1. (23)

Moreover, we have set ϒ(n) , S(n)WDFT P ∈ CM×L in
(21).

Under the assumption that v3(n) ∼ CN (0M , σ 2
v3 IM ), for

each n ∈ Z, the maximum likelihood (ML) estimation of γ 13
is given [60] by8

γ̂ 13 = ϒ
†(n) r3(n) = γ 13 +ϒ

†(n) v3(n) (24)

where the superscript † denotes the Moore-Penrose general-
ized inverse and we have used the fact thatϒ†(n)ϒ(n) = IL .
As a matter of fact, the estimator (24) does not require exact
knowledge of the channel order L13.
After estimating γ 13 according to (24), the DLI contribu-

tion in (16) can be subtracted at the CP as follows

z3(n) , r3(n)−ϒ(n) γ̂ 13 = α h(n) b(n)+ d3(n) (25)

for n ∈ {0, 1, . . . ,Bt+Bd−1}, where the disturbance vector

d3(n) , v3(n)−ϒ(n)ϒ†(n) v3(n) (26)

accounts for both noise and imperfect DLI cancellation.
It is seen that d3(n) is a zero-mean random vector with
E[d3(n1)dH3 (n2)] = OM×M , for n1 6= n2 ∈ Z, whereas

Rd3d3 , E[d3(n)dH3 (n)] = σ
2
v3

(
1+

L
M

)
IM . (27)

B. CHANNEL ESTIMATION
Coherent detection of the symbols transmitted by the
backscatter sensor during the data phase requires knowledge
of the composite channel vector h(n) in (25). Since the sym-
bol blocks s(n), for n ∈ {0, 1, . . . ,Bt + Bd − 1}, are known
at the CP, such a problem boils down to estimate the diagonal
entries of C12 C23, which is performed by using the training
symbols transmitted by the backscatter sensor.

Let zt , [z3(0), z3(1), . . . , z3(Bt−1)]T ∈ CBtM collect the
samples received by the CP in the training phase, one has

zt = TWDFT PD123 c123 + dt (28)

8The estimator (24) is unbiased and attains the Cramer-Rao lower bound.
Hence, it represents the minimum variance unbiased estimator [60].

where T ,
√
M [TT(0),TT(1), . . . ,TT(Bt − 1)]T, with T(n)

being the known nonsingular diagonal matrix associated with
the vector α

√
2Ps s(n) b(n), the matrix

D123 , [OT
(θ12+θ23)×(L12+L23+1), IL12+L23+1,

OT
(L−θ12−θ23−L12−L23−1)×(L12+L23+1)]

T (29)

is full-column rank, the vector c123 ∈ CL12+L23+1 collects
the samples of the convolution between {c12(`)}

L12
`=0 and

{c23(`)}
L23
`=0, and dt , [d3(0),d3(1), . . . ,d3(Bt−1)]T ∈ CBtM

collects all the disturbance contributions. Henceforth, chan-
nel acquisition boils down to estimating from (28) the vector
γ 123 , D123 c123 ∈ CL , which collects all the unknowns.
An estimate γ̂ 123 of γ 123 can be obtained from (28) by

resorting to the least squares (LS) estimator [60], which is
given by

γ̂ 123 = (TWDFT P)†zt = γ 123 + (TWDFT P)†dt (30)

where we have observed that (TWDFT P)†(TWDFT P) = IL .
It is noteworthy that, in principle, the LS estimator (30) exists
even if only a single training symbol is sent by the sensor,
i.e., Bt = 1, and it does not require exact knowledge of the
orders of the 1→ 2 and 2→ 3 links.

After estimating γ 123 through (30), the corresponding esti-
mate ĥ(n) of h(n) can be computed as

ĥ(n) =
√
2Ps diag

(√
MWDFT P γ̂ 123

)
s(n). (31)

A performance measure of the LS estimator (30) is the
mean square error (MSE)1mse , E[‖γ̂ 123−γ 123‖

2], which
can be evaluated as reported in the following Theorem.
Theorem 1: The MSE of estimator (30) is given by

1mse = σ
2
d3

[
2α2 PsM

L

Bt−1∑
n=0

|b(n)|2
]−1

(32)

where

σ 2
d3 , σ

2
v3

(
1+

L
M

)
. (33)

Proof: See Appendix A. �
Eq. (32) shows that 1mse is a decreasing function of the

number Bt of training symbols transmitted by the backscatter
sensor. In the particular case when b(n) is drawn from a PSK
constellation, i.e., |b(n)|2 = 1, for any n ∈ {0, 1, . . . ,Bt−1},
it follows from (32) that

1mse =
σ 2
d3
L

2α2 PsM Bt
(34)

which depends on known system parameters and on the
constant α, which is related to the power wave reflection
coefficient of the backscatter sensor.
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C. DATA DETECTION
The coherent detector at the CP must estimate the data
symbols transmitted by the backscatter sensor by using the
channel estimate (31). Obviously, the channel estimation
error contributes to degrade the detection performance. In
principle, one can first evaluate the symbol error probabil-
ity (SEP) at the output of the detector, given h(n) and ĥ(n),
and, then, average the obtained result with respect to the joint
probability distribution of h(n) and ĥ(n). However, such an
approach does not lead to a closed-form expression even for
Gaussian-distributed channels [61].

Since we are interested in obtaining manageable closed-
form performance results, useful for design purposes, we
follow a more pragmatic approach: specifically, we evaluate
the average SEP (ASEP) P(e) by assuming that ĥ(n) = h(n),
by choosing the backscatter parameters α and Bt so as to
ensure a negligible channel estimation error (see Section IV).
The validity of such an approach will be shown in Section V.

Let c̃ik , [Cik (0),Cik (1), . . . ,Cik (M−1)]T ∈ CM , for any
i, k ∈ {1, 2} with i 6= k , and set

st , [sT(Bt), sT(Bt + 1), . . . , sT(Bt + Bd − 1)]T. (35)

For n ∈ {Bt,Bt+1, . . . ,Bt+Bd−1}, according to (25), it can
be verified that d3(n) ∼ CN [0M , σ 2

v3 Kd3d3 (n)], conditioned
on s(n) and st, where

Kd3d3 (n) , IM +
1

2PsM
ϒ(n)ϒH(n) (36)

is a positive definite matrix. On the other hand, given s(n) and
st, the disturbance vectors d3(n1) and d3(n2) are statistically
correlated, i.e.,

E
[
d3(n1)dH3 (n2)

∣∣ s(n), st] = σ 2
v3

2PsM
ϒ(n1)ϒH(n2). (37)

for n1 6= n2. In the sequel, we will neglect such a correlation,
which is a reasonable assumption when 2PsM � σ 2

v3 , and
consider one-shot detection, by using the following statistic
for detecting the symbols transmitted by the sensor:

ρ3(n) , hH(n)K−1d3d3
(n) z3(n)

= α hH(n)K−1d3d3
(n)h(n) b(n)+ hH(n)K−1d3d3

(n)d3(n)

(38)

for n ∈ {Bt,Bt + 1, . . . ,Bt + Bd − 1}. Moreover, we assume
that the symbols transmitted by the backscatter sensor during
the data phase are drawn from a square quadrature amplitude
modulation (QAM) constellation.

Let P(e; n) denote the symbol error probability (SEP)
at the output of the ML detector of the CP in the nth
symbol period, given s(n), s(n), c̃12, and c̃23, and define
A1 , 4

[
1− (1/

√
Qd)

]
and A2 , 6 γd/(Qd − 1), with

log2(Qd) being an even number, where γd , 1/σ 2
v3 is

the average SNR per data symbol. Conditioned on s(n),
s(n), c̃12, and c̃23, it results that hH(n)K−1d3d3

(n)d3(n) ∼
CN [0, σ 2

v3 h
H(n)K−1d3d3

(n)h(n)]. Hence, according to the

nearest neighbor bound [52], which is a tight approximation
to the SEP in the high-SNR regime, one gets

P(e; n) ≈
A1
2

erfc

(√
A2
2
α2 hH(n)K−1d3d3

(n)h(n)

)
(39)

where erfc(x) is the complementary error function. Approxi-
mation (39) can be regarded as an upper bound on the SEP of
the ML detector for a non-square QAM constellation [52].

As a performance measure of the detection process,
we provide in Theorem 2 an upper bound on the ASEP, which
is the expected value P(e) of P(e; n) in (39) over the sample
space of {s(n), c̃12, c̃23}. Under our assumptions, the sam-
ples cik (0), cik (1), . . . , cik (Lik ) are modeled as independent
zero-mean circularly symmetric complex Gaussian random
variables, with E[|cik (`)|2] = σ 2

ik/(Lik + 1).
Theorem 2: It results that P(e) ≤ Pupper(e), with

Pupper(e) , A1

[
f
(
A2
2
α2 Ps σ

2
12 σ

2
23

)]M
(40)

where

f (A) , −
1
A

exp
(
1
A

)
Ei
(
−
1
A

)
(41)

with, for x < 0,

Ei(x) ,
∫ x

−∞

exp(u)
u

du = χ + ln(−x)+
+∞∑
k=1

xk

k! k
(42)

χ , lim
n→∞

(
n−1

n∑
k=1

k−1 − ln n

)
≈ 0.57721 (43)

being the exponential integral function and the Euler-
Mascheroni constant, respectively.
Proof: See Appendix B. �
It is interesting to observe that, since f (A) ≈ ln(A)/A for

A � 1, the ASEP P(e) tends to zero with the same order
of [ln(Ps)/Ps]M as the transmit power of the primary system
grows without bound, i.e., Ps → +∞. This shows that the
performance of the AmBC system exhibits a diversity order
equal to the number M of subcarriers of the primary system.

IV. MAXIMIZATION OF THE AMBC DATA RATE
In this section, we deal with the problem of maximizing
the number of bits transmitted by the backscatter sensor per
frame, i.e., the data rate of the secondary transmission, which
is defined as

Rb ,
Bd log2(Qd)

Tf
(44)

where Tf = Tt + Td is assumed to be fixed and depends on
the coherence time of the fading channels. The data rate is a
function of the following variables:

• the constant α related to the power wave reflection coef-
ficient of the backscatter sensor through (6);
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• the cardinality Qd of the information-bearing backscat-
ter symbol constellation;9

• the length of the training and data phases, i.e., Tt and Td
and, additionally, the duty cycle (i.e., To) only when the
backscatter sensor is semi-passive.10

Since a backscatter sensor is not typically able to per-
form sophisticated channel estimation and/or to process large
amount of feedback information sent by the SEN, we focus
on constrained maximization problems of Rb that involve,
in addition to the noise figure of the SEN/CP, only statistical
knowledge at the backscatter sensors, such as the variances
of the 1→ 2 and 2→ 3 links and the average energy of the
symbol constellation used by the PEN.

In this respect, we capitalize on the performance analysis
results in Section III: specifically, we impose that1mse in (32)
and Pupper(e) in (40) are below given target values1target and
Ptarget(e), respectively, i.e., P(e) ≤ Pupper(e) ≤ Ptarget(e) and
1mse ≤ 1target. Moreover, we assume that the cardinality
of the QAM constellation of the backscatter modulator is
upper bounded by Qmax , 2qmax , with qmax ∈ N. Finally,
we account for the energy storage and circuit energy con-
sumption constraints at the backscatter sensor, as explained
in the following subsection. Then, we formulate and solve the
proposed constrained data rate maximization problem, which
encompasses both passive and semi-passive sensors.

A. ENERGY HARVESTING, CONSUMPTION AND STORAGE
According to the law of energy conservation (see, e.g., [62]),
the average RF energy Eo harvested by a semi-passive
backscatter sensor during the sleep phase is proportional to
that of the received signal (4), i.e.,11

Eo = ηPrx To (45)

which is accumulated in the energy storage, where 0 < η ≤ 1
denotes the harvesting efficiency,

Prx ,
1
2
〈E
[
|̃r2(t)|2

]
〉 = σ 2

12 Grx Ps (46)

is the average RF power of the received signal (4), Grx is
the antenna gain of the sensor, and 〈·〉 denotes infinite-time
temporal averaging. In the sequel, we set To = Bo Ts (see
Fig. 3), which may exceed the coherence time of the channel.

In the training and data phases, a part of energy of the
received OFDMA primary signal is still harvested, while the
remaining received signal is backscattered to the receiver. The
average RF energy Eh harvested by the backscatter sensor

9The cardinalityQt of the training symbols is assumed to be fixed. Indeed,
training symbols are typically chosen from lower-order constellations in
order to simplify their optimal design and achieve robust channel estimation.

10We remember that the duty cycle is equal to one (i.e., To = 0) in the
case of a passive backscatter sensor.

11In general, the output power of the harvester is a nonlinear function of
its input power [63]. Herein, the amount of harvested energy at the sensor
is assumed to be linearly proportional to the received signal power. This
is a widely-used simplification in the literature that can be seen as an
approximation of the nonlinear model when the input power is greater than
the harvester’s sensitivity threshold and smaller than its saturation power.

during the transmission of the generic symbol b(n), for n ∈
{0, 1, . . . ,Bt+ Bd− 1}, reads as Eh = Ph Ts, which does not
depend on the symbol index n, where Ph , η (1− α2)Prx is
the average harvested RF power. Therefore, the total average
harvested energy Etot during the sleep, training, and data
phases amounts to

Etot=Eo+(Bt+Bd)Eh=ηPrx

[
To+(1− vα2)Tf

]
. (47)

In practice, there is a minimum voltage needed to reliably
power the backscatter sensor. Typically, for a semi-passive
sensor, the circuit energy consumption in the sleep phase can
be neglected. Let Ptot be the total DC power consumption of
the backscatter sensor during the training and data phases,
we impose that, in the case of a semi-passive sensor, the total
harvested energy in the sleep, training, and data phases is
not smaller than the circuit energy consumption, i.e., Etot ≥

Ptot Tf, thus leading to the following constraint on α:

α2 ≤ α2max +
To
Tf

(48)

where

α2max , 1−
Ptot

ηPrx
(49)

is a fixed threshold that limits the amount of the incident
RF signal that is backscattered to the SEN. In the sequel,
we assume that the primary transmit power Ps and the vari-
ance of the 1→ 2 link are such that α2max > 0, otherwise the
backscatter sensor cannot work at all. When the backscatter
sensor is passive, there is no energy storage on board and,
in this case, the circuit energy consumption constraint can be
obtained from (48) by setting To = 0.

When the backscatter sensor is a semi-passive sensor, it is
equipped (see Fig. 2) with an energy storage of maximum
capacity Emax. Since the excess energy cannot be conserved
in the energy storage anyway, we impose the energy storage
constraint Etot ≤ Emax for a semi-passive backscatter sensor,
thus yielding the following additional constraint on α:

α2 ≥ α2storage +
To
Tf

(50)

with

α2storage , 1−
Emax

ηPrx Tf
. (51)

We underline that no energy storage constraint has to be
imposed for a passive backscatter sensor, i.e., Emax = 0.

B. DATA RATE OPTIMIZATION
At this point, we are in the position to optimize the relevant
backscatter parameters α,Qd, To, Tt, and Td so as tomaximize
the data rate (44). For a semi-passive backscatter sensor, we
formulate the following constrained optimization problem:

(α?,Q?d,T
?
o ,T

?
t ,T

?
d )

= arg max
α,Qd,To,Tt,Td

Rb Ts s.t.
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D ≥ Dmin, with D defined in (1) ,

α2 ≤ α2max +
To
Tf
, with αmax defined in (49) ,

α2 ≥ α2storage +
To
Tf
, with α2storage defined in (51) ,

1mse ≤ 1target, with 1mse given in (32) ,

Pupper(e) ≤ Ptarget(e), with Pupper(e) given in (40) ,

Tt + Td = Tf, 0 < α ≤ 1, Qd ≤ Qmax,

To > 0, Tt > 0, and Td > 0 (52)

where the normalization of Rb by 1/Ts has been introduced
for mathematical convenience. It should be noted that the
constraint D ≥ Dmin, with 0 < Dmin ≤ 1, is imposed to
prevent To from increasing without bound, thus avoiding that
the backscatter sensor remains in sleep mode for a long time
and transmits few data with high transmit power.

Assuming that the training symbols sent by the backscatter
sensor are PSK one, the optimization problem (52) admits the
closed-form solution reported in Theorem 3.
Theorem 3: For PSK training symbols, the solution of (52)

is given by

α? = min
[√
α2max + Imax,

√
0d (Qmax − 1), 1

]
(53)

Q?d = min
[
1+

(α?)2

0d
,Qmax

]
(54)

T ?o = [(α∗)2 − α2max]Tf (55)

T ?t =
0t

(α?)2
, T ?d = Tf − T ?t (56)

where 0d ,
{
σ 2
v3 f
−1
(
[Ptarget(e)/4]1/M

)}
/(3Ps σ

2
12 σ

2
23),

0t , (σ 2
d3
L Ts)/(M Ps1target), Imax , (1−Dmin)/Dmin, with

α2max ≥ α
2
storage and 0t/Tf ≤ α

2
max + Imax.12

Proof: See Appendix C. �
IfQ?d given by (54) turns out to be smaller than 2, there is no

solution for the given requirements. For a passive backscatter
sensor, the optimal values of the parameters α?, Q?d, T

?
t , and

T ?d can be obtained by Theorem 3 by setting T ?o = 0, Dmin =

1, and discarding the condition α2max ≥ α
2
storage.

It is noteworthy that the optimal parameters (53)-(56) can
be calculated off-line – since their evaluation does not require
instantaneous network state information – and they remain
fixed as long as the relevant system specifications do not
change significantly. In particular, it is interesting to observe
that the optimal value of α in (53), which greatly influences
the values of all the remaining parameters, can assume three
possible values: (i) according to (1) and (48), when (α?)2 =
α2max + Imax, the sensor harvests the minimum amount of
energy to feed its circuit, i.e., Etot = Ptot Tf; (ii) when
(α?)2 = 0d (Qmax−1), the sensor sends back just that part of
the impinging primary signal that allows to transmit data by
using the largest cardinality of the QAM constellation, while
ensuring Pupper(e) = Ptarget(e); (iii) according to (6), when

12According to (49) and (51), inequality α2max ≥ α
2
storage is equivalent to

Emax ≥ Ptot Tf, which is a very mild condition in many cases.

α? = 1, the sensor reflects the entire incident field back
to the SEN, resulting thus in maximum backscatter signal
strength. Once α? has been calculated, for each point βq of
the backscatter symbol constellation, the corresponding value
of 0q can be obtained from (6), with q ∈ {1, 2, . . . ,Q},
and, consequently, the chip impedance of the sensor can be
designed by solving (5) with respect to Z cq .

V. MONTE CARLO PERFORMANCE ANALYSIS
In all the Monte Carlo simulations, the following common
setting is considered. The primary system is an OFDMA
system with M = 128 subcarriers and cyclic prefix length
L = 16, thus implying P = M + L = 144, which employs
quaternary PSK (QPSK) modulation and operates at fcarrier =
2.4 GHz, with sampling period Tc = 25 ns and symbol period
Ts = 3.6µs. Unless otherwise specified, the primary EIRP is
Ps = 33 dBm. According to III-C, we simulated a Rayleigh
fading scenario andwe adopted the following path-lossmodel
(see e.g. [64])):

σ 2
ik = σ

2
ref

(
1
dik

)κ
(57)

where σ 2
ref = λ

2
carrier/(4π )

2, with λcarrier denoting the carrier
wavelength, κ = 1.6 is the path-loss exponent (typical of
an indoor scenario) and dik is the distance between nodes i
and k , with i 6= k . The order of the discrete-time channels is
set equal to L12 = L23 = 4, whereas the corresponding time
offsets are fixed to θ12 = θ23 = 0, respectively. The noise
variance σ 2

v3 is −100 dBm.
The backscatter sensor employs a QPSK modulation for

training (i.e., Qt = 4) and a Qd-QAM modulation for data,
wherein all symbols are equiprobably chosen. The transmis-
sion parameters α, Qd, To, Tt, and Td of the sensor are the
result of the optimization procedure discussed in Section IV.
The frame length Tf is equal to Bf = 100 symbol periods. In
the semi-passive case, the backscatter sensor is assumed to
be equipped with a tiny battery of 100 mAh for 1.25 V [65],
to which it corresponds a maximum capacity of Emax =

450 J. Unless otherwise specified, the total DC power con-
sumption of the sensor in wakemode isPtot = −36 dBm [66]
and, with reference to the semi-passive case, the duty-cycle
threshold is Dmin = 0.8. The energy conversion efficiency is
assumed to be η = 0.6. The ASEP and channel MSE targets
are assumed to be equal to P1,target(e) = 1target = 10−4, and
we set Qmax = 256.

As performance measures for the backscatter system,
we evaluated both the data rate Rb defined in eq. (44) and
the error probability (ASEP). Data detection is based on the
ML rule described in Subsection III-C, which employs the
estimate (31) of the channel vector h(n) obtained by training.
The ASEP has been obtained by carrying out 105 independent
trials, with each run using a different set of symbols, channel
parameters, and noise samples.

In Figs. 4–9, we report the coverage map of the proposed
AmBC system, i.e., the values of the data rate Rb that can
be achieved by a passive sensor located at coordinates (x, y),
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FIGURE 4. AmBC coverage map (passive case; PEN-SEN distance = 10 m)
for EIRP = 26 dBm (left-side plot) and EIRP = 33 dBm (right-side plot).

FIGURE 5. AmBC coverage map (passive case; PEN-SEN distance = 50 m)
for EIRP = 26 dBm (left-side plot) and EIRP = 33 dBm (right-side plot).

FIGURE 6. AmBC coverage map (passive case; PEN-SEN distance = 100 m)
for EIRP = 26 dBm (left-side plot) and EIRP = 33 dBm (right-side plot).

with 0 ≤ x ≤ 60 and −60 ≤ y ≤ 60 (in meters). We
considered three values of the distance d13 between the PEN
and SEN, i.e., d13 = 10 m (short-distance), d13 = 50 m
(medium-distance) and d13 = 100 m (long-distance), and
evaluated the coverage for different values of the primary
EIRP Ps and the power Ptot consumed by the backscatter
sensor. Different colors of the plots correspond to different
values of data rate that can be achieved by the sensor, ranging

FIGURE 7. AmBC coverage map (passive case; PEN-SEN distance = 10 m)
for Ptot = −26 dBm (left-side plot) and Ptot = −46 dBm (right-side plot).

FIGURE 8. AmBC coverage map (passive case; PEN-SEN distance = 50 m)
for Ptot = −26 dBm (left-side plot) and Ptot = −46 dBm (right-side plot).

FIGURE 9. AmBC coverage map (passive case; PEN-SEN distance = 100 m)
for Ptot = −26 dBm (left-side plot) and Ptot = −46 dBm (right-side plot).

from yellow (Max-rate area) where the sensor achieves the
maximum data-rate corresponding to 256-QAM, to deep
blue, which represents the area where the backscatter sensor
is not able to transmit, due to insufficient energy harvesting.
We also evaluated the average transmission rate (Avg-rate)
over the whole coverage area.

We first assessed the effect of the primary EIRP: in par-
ticular, comparing left and right plots of Figs. 4–6, we note
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TABLE 1. Maximum-rate area and average rate of a semi-passive AmBC.

TABLE 2. ASEP, channel MSE, and QAM cardinality of a passive AmBC.

TABLE 3. ASEP, channel MSE, and QAM cardinality of a semipassive AmBC.

that, as expected, increasing values of EIRP allow one to
cover a wider area; specifically, from Fig. 5 it is apparent that,
when the EIRP increases from 26 to 33 dBm, the Max-rate
area increases from 28 to 243 m2. Moreover, note that the
coverage area tends to be more concentrated in proximity
of the PEN rather than the SEN, which shows that the
prevalent performance limitation of AmBC is, as expected,
insufficient illumination from the primary system. Indeed,
spatial coverage can be improved by increasing the val-
ues of EIRP, as particularly shown by comparing left- and
right-side plots of Fig. 5. However, if the distance between
the PEN and SEN is further increased, results of Fig. 6
show that the considered values of EIRP are not sufficient
to guarantee a uniform coverage to the proposed AmBC
system.

In Figs. 7–9, we investigated the effects on the system per-
formance due to different sensor consumption, which is mea-
sured by the parameter Ptot, which is varied from −26 down
to −46 dBm. It is interesting to note that decreasing Ptot
allows one both to significantly extend the coverage area
and also to guarantee a more uniform coverage: in particular,
in this case, the backscatter sensor can communicate with

high data-rates not only when it is in proximity to the PEN,
but also when is closer to the SEN.

With reference to the semi-passive case, for the sake of sim-
plicity, we reported the main results in Tab. 1, where we also
investigated the effects of the parameter Dmin, which limits
the duration of the sleep phase in the semi-passive case; in
particular, we note that increasing values of Dmin correspond
to decreasing values of the sleep phase. A careful comparison
between Figs. 4–9 and the results reported in Tab. 1 shows
that, for given values of EIRP and Ptot, the availability of an
energy storage on board allows one to slightly extend the cov-
erage area with respect to the passive case. Basically, there is
no significant advantage of using a semi-passive backscatter
sensor when the total DC power consumption of the sensor is
very low. As regards the sensitivity to Dmin, it is confirmed
that allowing the backscatter sensor to harvests energy for
a longer time permits to slightly improve its transmission
performance.

In order to corroborate the performance analysis developed
in Section III, we reported in Tab. 2 and Tab. 3 the ASEP,
the channel estimation MSE1mse, and the QAM cardinality,
for a passive or semi-passive backscatter sensor, for different
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values of EIRP. We considered again three values of the
distance between the PEN and SEN, i.e., d13 ∈ {10, 50, 100}
m, whereas the backscatter sensor is located at coordinates
(x, y), with x = 10 m and y ∈ {10, 0,−10} m, to take into
account the following cases: i) the backscatter sensor is closer
to the PEN; ii) the backscatter sensor is equally distant from
the PEN and SEN; iii) the backscatter sensor is closer to the
SEN. It is apparent that the performance of the ML channel
estimator (31) is well below the target value 1target = 10−4,
for both passive and semipassive backscatter sensor, whereas
the ASEP is only slightly greater than P1,target(e) = 10−4 in
some cases. This result confirms that the suboptimal approach
of separating the effects of channel estimation and detec-
tion errors allows one to obtain satisfactory results with a
reasonable computational effort. As expected, performances
are consistently better for the semi-passive case compared
to the passive one, especially in terms of ASEP and QAM
modulation cardinality.

VI. CONCLUSIONS
This paper dealt with performance analysis and practical
designs of both passive and semi-passive secondary backscat-
ter sensors in a C-RAN architecture, which allows one to
effectively perform channel estimation and mitigate the DLI
generated by the primary system. Capitalizing on detailed
signal models of both the harvesting and backscatter pro-
cesses, we studied the performance of the backscatter system,
by taking into account imperfect DLI cancellation, chan-
nel estimation, and practical modulation effects. In both the
passive and semi-passive cases, the achievable rate of the
backscatter transmission was maximized, subject to channel
estimation MSE and symbol error rate constraints, by also
considering power and energy storage requirements of the
sensor. Numerical results showed that a suitable placement
of the PEN and SEN is a crucial deployment issue to achieve
a large network coverage, while ensuring high data rates
through backscattering.

APPENDIX A
PROOF OF THEOREM 1
According to (27), it results that

1mse = σ
2
d3 tr

[
(TWDFT P)†(PTWIDFT TH)†

]
= σ 2

d3 tr[(P
TWIDFT TH TWDFT P)−1]

= σ 2
d3

L∑
j=1

λ−1j (PTWIDFT TH TWDFT P) (58)

where σ 2
d3

has been defined in the theorem statement and we
have observed that

(TWDFT P)† = (PTWIDFT TH TWDFT P)−1PTWIDFT TH

(59)

and, throughout this paper, λj(A) denotes the jth eigenvalue of
an HermitianmatrixA ∈ CJ×J , with λ1(A) ≤ λ2(A) ≤ · · · ≤
λJ (A). By using the generalization of the Ostrowski theorem

to rectangular matrices [67] and, additionally, observing that
PTWIDFTWDFT P = IL , one has

λj(PTWIDFT TH TWDFT P) = µj,

with λj(TH T) ≤ µj ≤ λj+M−L(TH T) (60)

for j ∈ {1, 2, . . . ,L}. At this point, we also note that TH T is
a scaled identity matrix given by

TH T = M
Bt−1∑
n=0

T∗(n)T(n) (61)

where T∗(n)T(n) = 2α2 Ps |b(n)|2 IM . Eq. (32) readily
comes from (58) and (60), by additionally remembering that
all the eigenvalues of the identity matrix are equal to one.

APPENDIX B
PROOF OF THEOREM 2
By virtue of the well-known conditional expectation rule, one
obtains

P(e) = Ẽc21,s(n)
{
Ẽc12 [P(e; n) | c̃21, s(n)]

}
(62)

where we remember that h(n) andKd3d3 (n) have been defined
in (17) and (36), respectively. We note that, since cik (`) is
a circularly symmetric complex Gaussian random variable
by assumption, then cik (`) and cik (`) e−j

2π
M (`+θik )m have the

same probability distribution [68], i.e., cik (`) e−j
2π
M (`+θik )m ∼

CN [0, σ 2
ik/(Lik+1)], for any ` andm. Thus, one hasCik (m) ∼

CN (0, σ 2
ik ). It is seen from (19) that, even if the time-domain

channel taps {cik (`)}
Lik
`=0 are assumed to be independent,

the corresponding DFT samplesCik (m1) andCik (m2) turn out
to be correlated, for m1 6= m2 ∈M, i.e.,

E[Cik (m1)C∗ik (m2)] =
σ 2
ik

Lik + 1
e−j

2π
M θik (m1−m2)

·DLik+1

(
m1 − m2

M

)
(63)

where, for x ∈ R, we have defined the Dirichlet function

DLik+1(x) ,
sin[π (Lik + 1)x]

sin(πx)
e−jπLikx . (64)

However, it can be verified that
∣∣E[Cik (m1)C∗ik (m2)]

∣∣ � σ 2
ik

for m1 6= m2. Therefore, for the sake of analysis, we will
neglect the correlation among the entries of c̃ik , by assuming
that c̃ik ∼ CN (0M , σ 2

ik IM ). Starting from (39) and resorting
to the Chernoff bound [52], one gets (see, also, [69])

Ẽc12 [P(e; n) | c̃23, s(n)]

≤ A1 Ẽc12

{
exp

[
−
A2
2
α2 hH(n)K−1d3d3

(n)h(n)
]}

= A1 Ẽc12

{
exp

[̃
cH12 R(n) c̃12

]}
=

A1
det

[
IM + σ 2

12 R(n)
] (65)
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where

R(n) ,
A2 α2

2M
C∗23 S

∗(n)K−1d3d3
(n)S(n)C23 ∈ CM×M . (66)

and we have used the fact that |C12(m)|2 is exponentially
distributed with mean σ 2

12. By applying the matrix inver-
sion lemma (see, e.g., [60]) on (36) and exploiting the
constant-modulus property of the symbols transmitted by the
PEN, one has

S∗(n)K−1d3d3
(n)S(n) = (2PsM )IM

−(PsM )WDFTPPTWIDFT

= (2PsM )U3UH (67)

whereU ∈ CM×M is unitary and3 is a block diagonal matrix
given by 3 , diag(IL/2, IM−L). Consequently, inequality
(65) boils down to

Ẽc12 [P(e; n) | c̃23, s(n)]

≤ A1
M−1∏
m=0

1

1+A2 α2 Ps σ
2
12 λm(3

1/2 UH C23 C∗23U3
1/2)

(68)

where we have also used the facts that

det
(
IM + A2α2Psσ

2
12C
∗

23U3U
HC23

)
= det

(
IM + A2α2Psσ

2
123

1/2UHC23C∗23U3
1/2
)
.

(69)

and the determinant of a matrix is equal to the product of
its eigenvalues. By applying the Ostrowski theorem [59],
it results that

|C23(m)|2/2 ≤ λm(31/2 UH C23 C∗23U3
1/2) ≤ |C23(m)|2

(70)

and, therefore, we get the upper bound

Ẽc12 [P(e; n) | c̃23, s(n)]

≤ A1
M−1∏
m=0

1

1+ A2
2 α

2 Ps σ
2
12 |C23(m)|2

. (71)

From (62) and (71), one obtains the inequality

P(e) ≤ A1
M−1∏
m=0

EC23(m)

[
1

1+ A2
2 α

2 Ps σ
2
12 |C23(m)|2

]
.

(72)

Since the random variable |C23(m)|2 is exponentially dis-
tributed with mean σ 2

23, one has

EC23(m)

[
1

1+ A2
2 α

2Psσ
2
12|C23(m)|2

]

= −

exp
(

1
A2
2 α

2Psσ
2
12σ

2
23

)
A2
2 α

2Psσ
2
12σ

2
23

·Ei

(
−

1
A2
2 α

2Psσ
2
12σ

2
23

)
(73)

where Ei(x) is defined in (42). The upper bound (40) follows
after simple manipulations by substituting (73) in (72).

APPENDIX C
PROOF OF THEOREM 3
The optimization problem (52) can be solved in three stages.
In the first one, the objective function in (52) is maximized
with respect to (w.r.t.) Qd, for fixed values of α, To, Tt, and
Td, thus boiling down to

argmax
Qd

Td log2(Qd)
Tf

s.t.

Pupper(e) ≤ Ptarget(e) and Qd ≤ Qmax. (74)

For the sake of simplicity, we neglect the dependence of A1
on Qd in (40), i.e., we assume that A1 ≈ 4. So doing, the soft
solution of (74) is given by

Q?d(α) = min
(
1+

α2

0d
,Qmax

)
(75)

with 0d ,
{
σ 2
v3 f
−1
(
[Ptarget(e)/4]1/M

)}
/(3Ps σ

2
12 σ

4
23).

If the training symbols transmitted by the backscatter
sensor are PSK, the channel MSE is given by (34) and
1mse ≤ 1target is tantamount to Tt ≥ 0t/α

2, with 0t ,
(σ 2
d3
L Ts)/(M Ps1target). Hence, for a given value of α, the

optimal value of Tt turns out to be

T ?t (α) =
0t

α2
(76)

provided that 0t/α2 ≤ Tf, and T ?d (α) = Tf − T ?t (α) is the
corresponding optimal value of Td.

In the second stage, we plug (75) and (76) into prob-
lem (52) and consider the maximization of the corresponding
cost function w.r.t. α and To, hence obtaining, after simple
algebraic manipulations, the simplified problem

argmax
α,To

(
1−

0t

α2 Tf

)
log2

[
Q?d(α)

]
s.t.

To
Tf
≤ Imax, α2 ≤ α2max +

To
Tf
, α2 ≥ α2storage +

To
Tf

0t

α2
≤ Tf, 0 < α ≤ 1, and To > 0 (77)

with Imax , (1 − Dmin)/Dmin. For a given value of α,
the constraints of problem (77) form a non-empty feasible set
(i.e., all the constraints involving To are fulfilled) if α2max ≥

α2storage andα
2
max < α2 ≤ α2max+Imax: in this case, the optimal

value of To is given by

T ?o (α) = (α2 − α2max)Tf. (78)
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In the last stage, we substitute (78) in (77), thus obtaining
the optimal value of α as the solution of the problem

argmax
α

(
1−

0t

α2Tf

)
log2

[
Q?d(α)

]
s.t.
0t

α2
≤ Tf, α2max < α2 ≤ α2max + Imax, and 0 < α ≤ 1.

(79)

It can be verified that problem (79) admits the solution

α? = min
[√
α2max + Imax,

√
0d(Qmax − 1), 1

]
(80)

provided that 0t/Tf ≤ α2max + Imax, It results that Q?d =
Q?d(α

?), T ?o = T ?o (α
?), T ?t = T ?t (α

?), and T ?d = T ?d (α
?).
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