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ABSTRACT In this paper, different diffraction theories for estimating the diffraction field patterns
modulated by metasurfaces are firstly revisited. Further reformulation of these theories is performed to
better reveal their inherent mechanisms and differences. To compute the metasurface-modulating paraxial
and/or non-paraxial diffraction field patterns within the near-field region, including the evanescent area,
a universal pattern-propagation Eigenfactor is introduced to generalize Rayleigh-Sommerfeld diffraction
theory. To investigate its applicability and accuracy, a representativemonofocalmetasurfacewith an ultrahigh
numerical aperture of 0.96, together with two coplanar and non-coplanar multifocal holographic metasur-
faces, are constructed as illustrative examples. Their near-field patterns are calculated by the generalized
Rayleigh-Sommerfeld (GRS) diffraction integral and compared with those extracted by the finite-different
time-domain full wave analysis, generalized Huygens-Fresnel principle, and Huygens’s Principle. It is
demonstrated that within the near-field region including the non-paraxial and evanescent area, the GRS
diffraction integral provides the best and satisfactory agreement with the full wave simulation, and thus
offers a more accurate and efficient tool for quantitative analysis and iterative optimization.

INDEX TERMS Metasurface, paraxial and non-paraxial near-field patterns, evanescent area,
pattern-propagation Eigenfactor, focusing metasurface, passive millimeter-wave imaging.

I. INTRODUCTION
In recent years, versatile metasurfaces consisting of elab-
orately arranged subwavelength unit cells have sprung
up as thin two-dimensional (2D) diffractive optical ele-
ments (DOE) or their electromagnetic (EM) analogs for
flexibly shaping the EM fields by manipulating their phase,
amplitude, and polarization [1]–[5]. Typical metasurface-
based devices include flat lenses [6], [7], polarimeters [8],
waveplates [9]–[11], absorbers [12], [13], and holo-
grams [14], [15], where different methods have been applied
to facilitate their synthetization, such as generalized sheet
transition conditions [16]–[18], impedance surface the-
ory [19], [20], and generalized laws of reflection and refrac-
tion [21]–[25]. As for the spatial field distribution within
vicinity and far from the metasurface, the time-consuming
full wave numerical simulation tends to be the most
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reliable choice, which requires heavy computational
resources, greatly in turn affecting the design efficiency and
making impossible the iterative optimization in e.g., holo-
graphic metasurface inversion. Therefore, how to accurately
yet efficiently calculate the field distribution modulated by a
given metasurface becomes an issue of practical significance.

To tackle this issue, diffraction theory and its variants
are often adopted, which interpret the interference fields
arising from fictitious sufficiently small secondary wave
sources located within the diffraction aperture. Their appli-
cability and accuracy of estimating the diffracted far-field
by metasurface-based devices have been extensively stud-
ied and verified both theoretically and experimentally. The
Huygens-Fresnel principle has been demonstrated as a design
methodology to define the ideal surface impedance pro-
file of a visible-band, wide-angle gradient metasurface for
highly efficient back reflection [26]. Rayleigh-Sommerfeld
diffraction integrals for the far-field region beyond the near
zone behind metalens is adopted to calculate an abruptly
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on-axis autofocusing cylindrically polarized laser beam [27].
In acoustics within far-field region (more than 10λ) the
on-axis focusing field patterns of two metasurfaces are
estimated by the acoustic Rayleigh-Sommerfeld diffraction
integral [28]. The field distributions of two Fresnel reflec-
tive acoustic metasurfaces with numerical apertures (NA)
of 0.71 and 0.45, and focal distances (fd) of 2λ and 4λ are
numerically predicted by Huygens’ Principle [29]. Modified
Huygens-Fresnel principle is presented to rapidly compute
the far-field transformations operated by a dielectric meta-
surface at the Q-band with fairly high accuracy compared
to the full wave simulation [30]. The simplified Huygens-
Fresnel principle is used to numerically compute the on-axis
field profiles and evaluate the focal spot qualities within the
paraxial area more than 20 mm away from the zoned fishnet
metamaterial lens at 55 GHz [31].

Unfortunately, in these available reports only the parax-
ial far-field distributions are analyzed by the diffraction
theory. As for the non-paraxial patterned fields especially
within the subwavelength evanescent region, where many
important metasurface-based applications are established,
e.g., subwavelength near-field imaging [32], planar and
stereo holography [33], [34], single-photon detection [35],
immersion interference photolithography [36], [37], and
near-field ptychography [38], it is not well studied yet
whether the abovementioned diffraction theory can compute
the near-field patterns with acceptable accuracy. If other-
wise, it becomes thus an open question how to improve the
degree of accuracy of the abovementioned methodologies
when dealing with the metasurface-modulating non-paraxial
near-field patterns. In this paper, we first revisit various
forms of diffraction theories for estimating the field pat-
terns emanating from the metasurfaces. We then provide
a generalized version of Rayleigh-Sommerfeld diffraction
theory (GRS) by introducing a universal pattern-propagation
Eigenfactor, and meanwhile analyze the defects of avail-
able diffraction theories when dealing with the metasurface-
modulating non-paraxial near-field patterns. To demonstrate
its superiority, the near-field patterns of several monofocal
andmultifocal holographic metasurfaces as illustrative exam-
ples are computed, and compared with those extracted by the
full wave analysis, Huygens-Fresnel principle without any
approximations (referred to as generalized Huygens-Fresnel
principle (GHF)), and Huygens’s principle (HP).

It is noted that in practical implementations the
metasurface-modulating non-paraxial near-fields are more
likely of interest at low frequencies. Take near-field passive
millimeter-wave focal plane array (PMMW-FPA) imaging
as an example. PMMW-FPA imaging usually requires a
focusing lens of high spatial resolution and wide field of
view (FOV). To guarantee the resolution, the metasurface-
lens with large NA are often required since the relatively
large wavelength hinders the physical implementation of a
sufficiently large aperture. Large NA and FOV thus indi-
cates that an accurate yet efficient method to compute the
non-paraxial near-fields of the metasurface-lens is of great

interest in this case. Therefore, in this paper, we set up the
specific numerical experiments at millimeter-wave (MMW)
band.

The following text of the paper is arranged as follows.
Firstly, the GRS, together with the GHF and HP are for-
mulated, whose physical interpretations are also given.
Then, as illustrative examples, a typical focusing meta-
surface with ultrahigh NA = 0.96 and fd = 0.58λ0
for the near-field PMMW-FPA imaging at 35 GHz is
assembled. Its corresponding field patterns under normal
and oblique illumination of a linearly polarized Gaussian
plane-wave is investigated by the GRS, and compared with
that extracted by the FDTD solver, the GHF, and the HP.
Furthermore, another two multifocal holographic metasur-
faces whose patterned fields are made up of four coplanar
focal spots and three non-coplanar ones, respectively, are gen-
erated. Similar computation and comparison are conducted
as well. Finally, discussion and concluding remarks are
given.

II. FORMULATION OF THE GENERALIZED
DIFFRACTION THEORY
The integral theorem of Helmholtz and Kirchhoff derived
from Helmholtz equation and Green’s theorem plays a signif-
icant role in the development of the scalar diffraction theory
and its vector variants [39]–[42], since it allows E(r), the field
at observation point (x, y, z) is expressed in terms of E(r′) and
its derivative∇ ′E(r′), the boundary values of the wave on any
closed surface surrounding that point, which reads,

E(r) =
1
4π

∮
S
[G(r, r′)n · ∇ ′E(r′)− E(r′)n · ∇ ′G(r, r′)]ds

(1)

where E(r′) represents the field at source point (x′, y′, z′),
G(r, r′) is the Green’s function which may be regarded as
an auxiliary function chosen to solve the aforementioned
problem, n denotes the inner normal vector on the closed
surface S surrounding the observation point, and r and r′ are
the distance vectors from the origin point to the observation
point (x, y, z) and the source point (x′, y′, z′), respectively,
as shown in Fig. 1.

To distinguish different forms of diffraction theory and
meanwhile reveal their respective inherent mechanisms,
we define the rest terms excluding the disturbance source
E(r′) in the integral of (1) as the pattern-propagation Eigen-
factor. It can be physically understood as an anisotropic
‘‘directivity pattern’’ associated with each disturbance source
E(r′) on the diffraction aperture, implying their spatial com-
plex field distribution characteristics. The difference among
the aforementioned diffraction integrals just lies in this
Eigenfactor.

A. GRS AND ITS PATTERN-PROPAGATION EIGENFACTOR
According to the Sommerfeld radiation condition and poten-
tial theory [39]–[42], the adopted Green’s functionG(r, r′) =
ejkR/R− ejkR′/R′, is composed of two identical point sources
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FIGURE 1. The 2D diffraction screen schematic diagram for the GRS and GHF in the Cartesian coordinate
system. An illustrative focusing metasurface of NA = 0.9 and fd = 25 mm under normal illumination of a
linearly polarized Gaussian plane-wave at 35 GHz and its electric-field-intensity pattern on the y = 0
plane estimated by the GRS. The unit cell (coaxial annular apertures (CAAs)) in the green dashed box is
also inserted in the figure.

with the reversal phase as mirror image of each other at
two sides of the metasurface, as shown in Fig. 1. According
to (1), under the assumption of kR � 1, the conventional
Rayleigh-Sommerfeld diffraction integral (CRS), which is
often adopted to describe the diffracted fields after an obstacle
or aperture, reads,

E(r) =
∫∫

∑
E(r′)[

1
jλ

cos(n,R)
ejkR

R
]ds (2)

where k is the wave number corresponding to the wave-
length λ, r = r − r′ with its module value of R = |r − r′| is
the distance vector from the source point r′ to the observation
point r, r′ and R′ are the mirror distance vector of r and
its corresponding modulus, respectively, and the boundary
surface

∑
is the aperture or obstacle, i.e., the zero-thickness

metasurface here.
From (2), the pattern-propagation Eigenfactor of the CRS,

i.e., the complex polynomial in square brackets, is formally
identical to the far-field radiation expression of an oscillating
dipole, so that this Eigenfactor can be regarded as its far-field
radiation pattern. Obviously, the CRS inherently ignores the
near-field effect of dipole, implying that it cannot capture
the near-field information emerging from the metasurfaces.
Based on this point, in this contribution we introduce an
expanding pattern-propagation Eigenfactor covering not just
far-field but the near-field of oscillating dipole to constructing
a generalized diffraction integral, i.e., GRS, whose specific

form reads as follows,

E(r) =
∫∫

∑
E(r ′)[

1
2π

(−jk +
1
R
) cos(n,R)

ejkR

R
]ds (3)

Obviously, the complex pattern-propagation Eigenfactor is
perfectly consistent with the magnetic/electric field forms
of the electric/magnetic dipole with only lagging or lead-
ing phase by π /2. This generalized Eigenfactor inherently
accounts for the near-field effect of dipole, potentially show-
ing that it remains valid in the computation of short-distance
diffraction pattern from the metasurface. Thus, E(r) may be
described as the interference field at (x, y, z) arising from an
infinity of fictitious dipole sourcesE(r′) within the diffraction
aperture, as denoted by (3). Here, it is noted that E(r′) may
be regarded as the complex amplitude of themodulated wave-
front on the metasurface, containing the reference wavefront
information from the field source and the disturbed complex
amplitude information caused by itself.

B. GHF, HP AND THEIR PATTERN-PROPAGATION
EIGENFACTOR
Similarly, the GHF (also known as modified Huygens-
Fresnel principle) is derived from (1), and reads,

E(r) =
∫∫

∑
E(r′){

1
4π

[(−jk +
1
R
) cos(n,R)− jk]

ejkR

R
}ds

(4)
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Here, the auxiliary Green’s function G(r, r′) = ejkR/R is
selected to derive theGHF. Compared to theGRS, the pattern-
propagation Eigenfactor in (4) contains an additive term
−jkejkR/(2πR), inherently implying that the GHF takes into
account the point source oscillation effect. Therefore, the
computational field E(r) may be construed as the result of
oscillating dipoles together with point sources mutual inter-
ference under the field source E(r′) excitation.
In addition, according to Huygens’ Principle, if the field

source, E(r′) is incident on the aperture or obstacle, the field
produced by this aperture or obstacle can be given by the
surface integral reading as follows,

E(r) =
∫∫

∑
E(r′)

−j
λ

ejkR

R
ds (5)

The pattern-propagation Eigenfactor in (5) is just point source
irradiating the uniform spherical waves. Compared to the
GRS and the GHF, it is obvious that the HP can be viewed
as their simplified versions under the paraxial (it means
cos(n, r) = 1)) and far-field (it assumes 1/R = 0) approxima-
tion, inherently implying that its applicability for computing
the diffraction field patterns is limited to the paraxial far-field
region.

III. NUMERICAL EXPERIMENTS ON
ILLUSTRATIVE EXAMPLES
Firstly, the illustrative metasurfaces are synthesized and
assembled by geometrically different CAAs shown in Fig. 1.
The specific process is as follows. For the monofocal and
multifocal metasurfaces, under normal illumination of a
Gaussian plane-wave, their phase distributions on the meta-
surfaces can be obtained from the superimposed propagating
fields originating from the in-phase point sources supposed
at the preset focal points. To approximate the desired phase
distributions, the CAAs with high transmission and appro-
priate phase are picked out and then arranged at the corre-
sponding spatial locations for synthetization of the desired
metasurfaces. It is noted that the CAAs (as shown in Fig. 1)
show excellent EM properties, such as high transmission
coefficients (more than 0.85), full 2π phase coverage, wide-
angle stability (more than 30 degrees), and polarization-
independence [7]. Then, field patterns of the synthesized
metasurfaces are numerically analyzed by the FDTD full
wave solver, the GRS, the GHF, and the HP. Here, it should
be pointed out that the diffraction fields are calculated by the
discrete summation formulas instead of the surface integral
formulas in Section II, where E(r′) is the product of the
complex field from the field source and the transmission
coefficient of unit cell, i.e., CAAs at its center (x′, y′, z′), and
the infinitesimal ds = P2 is the area occupied by CAAs.
In addition, for all the FDTD full wave simulations, the EM
fields are obtained numerically by the high-performance
three-dimensional (3D) EM analysis software, namely, CST
Microwave Studio. In order to ensure the accuracy of the
three-dimensional (3D) full wave simulations, the maximum

mesh cell size of λ/15 and the minimum one of (λ/15)/20 at
40GHz are set to capture the minimum relevant geometri-
cal features in the model and strong field gradients within
the whole computational domain. Perfectly matching lay-
ers (PMLs) as the boundary conditions are applied in all
directions. When extracting the simulation results, to elim-
inate the potential influence of the probe array, the complex
fields are directly extracted from 3D field monitors.

In order to investigate the applicability and accuracy of
the GRS, a transmission-type focusing metasurface con-
sisting of geometrically different CAAs with ultrahigh
NA = 0.96 and subwavelength fd = 0.58λ0 for the
near-field PMMW-FPA imaging at 35 GHz is first consid-
ered. When normally and obliquely (30 degrees) illumi-
nated by a linearly polarized Gaussian plane-wave (e.g., y-
polarization), its paraxial and non-paraxial converging field
patterns and their key parameters defining the focal beam
quality are calculated by the GRS, and compared with those
extracted by the FDTD full wave solver, the GHF, and the HP.
In addition, two holographic metasurfaces, involving both
paraxial/non-paraxial and near-/far-field multifocal patterned
fields, are constructed. Similar computation and comparison
are performed.

A. THE MONOFOCAL METASURFACE
OF ULTRAHIGH NA = 0.96
Assume that the metasurface is located on the z = 0 plane.
As shown in Fig. 2 (a) the axial 2D intensity patterns and
(c) the radial ones calculated by the FDTD full wave solver,
GRS, GHF, and HP from left to right for the normal incidence
case, within the subwavelength near-field region the axial
and radial paraxial focusing field profiles on the y = 0
plane and z = 6 mm plane computed by the GRS, keep
perfect agreement with the FDTD simulation ones. Here,
z = 6 mm plane is the focal plane calculated by the FDTD
full wave solver. Besides, the one-dimensional (1D) on-axis
field intensities and their differences versus the FDTD sim-
ulation ones as shown in blue curves of Fig. 2 (b) in the
axial direction and (d) in the radial direction, also confirm
this point. Furthermore, the key parameters, such as the focal
position (FP), the axial depth of focus (DOF), radial full
width at half maximum in the x-direction (FWHMx) and in
the y-direction (FWHMy), maximum normalized intensity on
the specified plane relative to the maximum within the whole
region of interest (MNI), are marked in the Fig. 2 and listed
in Table 1. It clearly indicates that the GRS enables superior
accuracy to evaluate the focal beam quality. However, as seen
in Fig. 2 (a)–(d) and Table 1 for the normal incidence case,
remarkable differences exist in axial and radial 2D field
patterns, 1D on-axis field intensities and their differences,
and the key focusing parameters between the HP/GHF and
the FDTD full wave solver, especially within the evanescent
area. Similar phenomenon can be observed in Fig. 2 (e)–(h)
the axial and radial 2D/1D intensity patterns and in Table 1 the
key focusing parameters for the oblique incidence case,
i.e., non-paraxial case. The visualized 2D off-axis focusing
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FIGURE 2. The simulated and numerical 2D/1D normalized intensities of the focusing metasurface with ultrahigh NA = 0.96 and fd = 6 mm illuminated
by the y-polarization Gaussian plane-wave at incident angles of 0 and 30◦. (a) and (e) The 2D axial intensity patterns, (b) and (f) the 1D axial intensities
through the maximum points together with their differences versus the FDTD simulation ones on the y = 0 plane, (c) and (g) the 2D radial intensity
patterns, and (d) and (h) the 1D radial intensities through the maximum points as well as their differences versus the FDTD simulation ones on the
z = 6 mm and z = 5.5 mm plane, extracted by the FDTD full wave solver, GRS, GHF, and HP in the case of normal and oblique incidence, respectively.
All white numbers inserted in Fig. 2 are in millimeters.

TABLE 1. The key focusing parameters characterizing the focal beam shape and quality (unit: mm).

field patterns, 1D field intensities through the focuses and
their differences versus the FDTD simulation ones, the radial
focal shift (FS), and the key parameters further confirm
that compared to the HP and the GHF, the GRS can more
accurately map the non-paraxial near-field patterns to those

simulated by the FDTD full wave solver. Therefore, the above
comparison results demonstrate that within the paraxial/non-
paraxial subwavelength near-field region, the focusing meta-
surface of ultrahigh NA exemplifies that the GRS is capable
of estimating the metasurface-modulating near-field patterns
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FIGURE 3. The axial and radial normalized intensity patterns on the y/x = 0 mm and z = 6 mm plane extracted by
(a) the FDTD full wave solver, (b) the GRS, (c) the GHF, and (d) the HP for the coplanar multifocal holographic
metasurface under normal illumination of a Gaussian plane-wave at 35 GHz. The yellow numbers inserted in
Fig. 3 indicate the MNI at the denoted positions (the white numbers) on the z = 6 mm plane, respectively. All white
numbers inserted in Fig. 3 are in millimeters.

TABLE 2. The key focusing parameters of the coplanar multifocal holographic metasurface (unit: mm).

with higher accuracy than the GHF and the HP, and provides
excellent agreement with the full wave simulation results.

B. THE COPLANAR MULTIFOCAL HOLOGRAPHIC
METASURFACE
Let us consider more complex multi-focus case to assess
the capabilities of these methods. A holographic metasurface
with its diameter of 54 mm covering four non-paraxial copla-
nar focal spots at (13 mm, 0 mm, 5 mm), (−13 mm, 0 mm,
5 mm), (0 mm, 13 mm, 5 mm), and (0 mm, −13 mm, 5 mm)
within the evanescent region is assembled. Symmetrical mul-
tifocal field patterns in the axial and radial direction are
calculated by the GRS and exhibited in the Fig. 3 (b), showing
highly consistent with those from the FDTD full wave solver
as shown in Fig. 3 (a). Especially in terms of the focal
positions and relative intensities (the yellow numbers) on the
z = 6 mm plane, the GRS provides better consistency with
the full wave simulation ones than the GHF (Fig. 3 (c)) and
the HP (Fig. 3 (d)), significant for holographic metasurface
iterative inversion. To make it clearer, the above focusing

parameters, such as FP, fd, and MNI are extracted and listed
in Table 2, also showing the superiority in precision of
the GRS.

C. THE NON-COPLANAR MULTIFOCAL
HOLOGRAPHIC METASURFACE
Finally, a non-coplanar multifocal holographic metasurface
with its diameter of 54 mm and three focal spots at (0 mm,
0 mm, 5 mm), (12 mm, 0 mm, 8 mm), and (-20 mm, 0 mm,
20 mm), which covers both paraxial/non-paraxial and near-
field/far-field scenarios, is adopted as a comprehensive exam-
ple. The axial and radial intensity patterns are estimated by
the above several methods and shown in Fig. 4. It is distinctly
indicated that the diffraction intensity patterns on the y = 0
plane and on the cross sections of interest at z = 5 mm,
z = 8 mm, and z = 20 mm estimated by the GRS are closer
to the FDTD full wave simulation ones than the other two
methods. Similarly, several local maximum points of the field
intensity and their EM characteristics aremarked in Fig. 4 and
listed in Table 3. It is noted that in Table 3, FP andMNI of the
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FIGURE 4. The axial and radial normalized intensity patterns on y = 0 plane and on the cross sections of
interest at z = 5 mm, z = 8 mm, and z = 20 mm extracted by (a) the FDTD solver, (b) the GRS, (c) the GHF,
and (d) the HP for the non-coplanar multifocal holographic metasurface under normal illumination of a
Gaussian plane-wave at 35 GHz. The yellow numbers inserted in Fig. 4 indicate the MNI at the denoted
positions (the white numbers) on the z = 5 mm, z = 8 mm, and z = 20 mm plane, respectively. All white
numbers inserted in Fig. 4 are in millimeter.

TABLE 3. The positions of the local maximum points and their relative
intensities (unit: mm).

local maximum point 1, 2, and 3 on different planes are listed
in each cell from top to bottom. And ‘‘nothing’’ and ‘‘little’’

in Table 3 mean that there are nothing and greatly weak field
at the denoted locations, respectively.

Furthermore, statistical data inserted in Fig. 4 and listed in
Table 3, firmly confirm this point. Nevertheless, although the
GRS shows fairly good agreement with the FDTD full wave
solver, the differences between them in terms of the focus
positions and their energy distribution ratios cannot be over-
looked. It intuitively indicates that the amplitude and phase
profiles modeled by the GRS are different from those pre-
sented by the metasurface in the FDTD full wave solver. This
is mainly due to the fact that large gradient and irregular phase
distributions required by the complex metasurface need to be
implemented by the unit cells of increasing geometric differ-
ences, hence the mutational EM boundary among unit cells
that are adjacent or close to each other on the metasurface
finally results in uncertain phase jump and amplitude change.
Unfortunately, it is not taken into account in the GRS like
the full wave solver. Especially in this case, small aperture
of 54 mm exactly aggravates these effects when generating
three quite different non-coplanar focal spots. Therefore, it is
demonstrated by the above examples that for a given meta-
surface as long as realistic EM response of each unit cell is
exactly extracted, the GRS may provide accurate estimation
of its diffraction fields either within the near-field region or
within the far-field region.
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In general, due to mutational boundary conditions among
the geometrically different unit cells in the metasurface,
unknown phase jump and amplitude change will reduce the
accuracy of the proposed GRS. Nevertheless, the above cases
show that the GRS canmore accuratelymodel the EM charac-
teristics of the unit cells and trace themetasurface-modulating
wavefront than the GHF and the HP, within the near-field
region especially including the non-paraxial and evanescent
area.

IV. CONCLUSION
In this paper, Huygens-Fresnel principle, Rayleigh-
Sommerfeld diffraction theory, and Huygens’ Principle for
computing the metasurface-modulating field patterns are
revisited and further reformulated. Then, we provide the
generalized Rayleigh-Sommerfeld diffraction theory (GRS)
by introducing a universal pattern-propagation Eigenfactor.
Physical interpretation of GRS is supplemented. Typical and
versatile numerical experiments are performed to demon-
strate its capability to compute the metasurface-modulating
non-paraxial near-fields accurately and efficiently. Compared
to other advanced diffraction theory, GRS exhibits evident
superiority in its wide applicability and greater accuracy of
estimating the fields including evanescent and non-paraxial
regions.

In general, the GRS improves the computational efficiency
significantly and gives sufficiently accurate results com-
pared to the time-consuming full wave analysis. It has
potentially long-lasting impacts on the design and optimiza-
tion of future metasurface-based devices, evolving towards
multi-functionality and superior characteristics, including
many important applications, e.g., subwavelength near-field
imaging, holography, and single-photon detection, requiring
accurate and efficient estimations of non-paraxial near-fields.
Together with global optimization methods, the GRS may
offer a universal design tool to fulfill this goal. Finally, it is
emphasized that the GRS maintains its accuracy and effi-
ciency across the entire spectrum from acoustics, microwave,
terahertz, to optics.
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