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ABSTRACT Non-intrusive load monitoring is an attractive approach to obtain the energy consumption
information without monitoring every device in a building. The main difficulty in the problem is to
disaggregate the total power into the power used by specific devices. To solve the problem, this paper
proposes an event-based scheme, inwhich the events corresponding to the appliance on or off are detected and
then the events corresponding to the operation of a single device are matched. Finally, the events belonging to
a single device are clustered so that the total power is disaggregated into the single device. The experiments
are tested on the REDD dataset and the results are compared with the available algorithm, which verifies the
validity of the algorithm.

INDEX TERMS Event clustering, event detector, event matching, non-intrusive load monitoring.

I. INTRODUCTION
In today’s society, people advocate to save energy. How-
ever, for the residents, they only know the total power of
the loads rather than the electricity consumption of indi-
vidual appliances in the home. Knowing specific electricity
consumptions is necessary for residents to make better use
of electric energy. Non-intrusive load monitoring (NILM)
is designed to monitor the electrical circuit that contains a
number of devices which switch on and off independently [1].
No access to the individual components is necessary for
installing sensors or making measurements. The powers con-
sumed by individual devices in a building are estimated from
the measurements of the total power. Utilizing NILM tech-
nology, the individual electricity consumption information is
obtained only by analyzing the power of the main meter. This
can largely save the cost of energy monitoring and facilitate
energy conservation.

A good review of NILM is made in [2], where all kinds
of NILM approaches are introduced. The NILM approaches
could be gathered in two main categories: supervised and
unsupervised techniques [2]. The supervised methods require
labeled data sets to train the classifier so it would be able
to recognize appliance operations from the aggregated load
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measurement. The supervised methods have shown to per-
form well for the task of load disaggregation. However,
system training requires setting up initial instrumentation,
which incurs extra cost and human effort. Compared with the
supervised scheme, the unsupervised scheme has lower cost.
Therefore, more and more researchers are actively looking to
devise unsupervised methods.

According to the sampling rate for the power rate, the unsu-
pervised NILM techniques are different [3]. In this paper,
the case of the low-frequency sampling rate is investigated,
where the sampling rate is usually as low as 1 to 3 samples
per second. Though the information of the low-frequency
sampling data is less than that of the high-frequency sampling
data, the low sampling scheme requires low-cost hardware.
Therefore, it is a more feasible approach, bearing in mind the
cost of the solution. In this case, the main work is to detect the
appliance state transition (e.g., ON or OFF) from the power
measurements. There are two kinds of methods to solve the
problem: probabilistic model and event detection.

A widely used probabilistic model for modeling
appliance consumption behavior is the hidden Markov
model (HMM) [4]: it defines a number of hidden states in
which the model can represent the operating condition of
the appliance (e.g., ON or OFF states). Different variations
of HMM are used such as additive factorial hidden Markov
models (FHMMs), additive factorial approximate maximum
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a-posteriori (AFAMAP) [5], factorial hidden semi-Markov
model (FHSMM) [6], and so on. However, the complexity of
the HMM models exponentially increases as the number of
target appliances increases. Recently, many researchers focus
on reducing the computational complexity of the algorithm.
Johnson and Willsky used the factorial variant of a hidden
semi-Markov model (HSMM) and reduced the number of
time indices that need to be considered by running inex-
pensive change point detection [7]. Zeifman and Roth pro-
posed Viterbi algorithm with Sparse Transitions (VAST) on
multiple transition matrices [8]. They took advantage of the
sparsity of transitions between appliances’ states to simplify
the computation. Makonin et al. took advantage of sparsity in
matrix storage and processing, and presented sparse Viterbi
algorithm based on matrix sparsity [9]. They pointed that
some states transitions would not make much sense. And
we also proposed an event-based nonintrusive load moni-
toring approach using the simplified Viterbi algorithm [10].
We fully utilize the information contained in the measured
aggregated power and simplify the state space by setting
thresholds according to the information. Even though all
these works are effective in decreasing the complexity of the
probabilistic model, the calculation is still very complicated
which limits the applicability of this method.

Event detection is another available method. The event
detector is based on the fact: the change of steady-state active
power measurement from a high to low value can identify
whether the appliance is being turned on or off. In the liter-
ature, several event detection methods have been proposed,
in order to characterize the detected events. The cumulative
sum (CUSUM) detector in [11], the goodness-of-fit (GOF)
detector in [12] and the generalized likelihood ratio (GLR)
detector in [13] are three commonly used event detectors.
The CUSUM detects the difference power of the detection
window and the average power of the background window.
The GOF and GLR detectors seek to determine whether the
detection window data has the same distribution with the
background window data. The common ground of the three
algorithms is that the window sizes of the reference set and
the current set have to be fixed.

Some event-based NILM approaches have been investi-
gated in [14] and [15]. In [14], a supervised NILM framework
is proposed, which consists of the following steps: training,
event detection, feature extraction, classification, and energy
estimation. After event detection, features (e.g., rising/falling
edge, duration) are extracted to classify the events into pre-
defined categories, each corresponding to a known appliance.
In this way, the features should be labeled in the training
procedure, but the training procedure has high cost in the
practical applications. In [15], an unsupervised motif mining
approach is proposed to identify recurring events referred to
as episodes that are basically the on/off operation for the
devices. That temporal motif mining approach consists of
six stages: baseline removal, steady states extraction, episode
mining and selection, probabilistic sequential mining, time-
based motif mining, and device recovery. This approach tries

to identify repetitive sequences of power level changes within
the range of all events to select episodes that potentially
correspond to the operation of a single device in the episode
mining stage. After this stage, it selects those most possible
episodes by clustering power levels. The core idea in [15]
is to match the ‘‘On’’ and ‘‘Off’’ events by three constrain
conditions. However, thesematching criterions are coarse and
the event matching may be wrong in some special cases.

Motivated by the scheme in [15], we propose some new
matching conditions and utilize the iterative operation to
reduce thematching complexity. Comparedwith the available
schemes in [10], [14], and [15], the proposed scheme has
some new features. In [10], the hiddenMarkovmodel (HMM)
is used to describe the relationship of the events and the
simplified Viterbi algorithm is proposed to solve the param-
eters in the HMM. However, the complexity of the HMM
is high, so that the calculation is still complicated. In the
proposed scheme, the event matching algorithm is proposed
to find the relationship of the ‘‘On’’ and ‘‘Off’’ events,
so the calculation process is reduced. In [14], the events are
classified according to the event features, which should be
labeled by hand. In our method, the events are matched by
the event parameters without manual intervention, which is
easy to implement. The differences between the motif mining
approach [15] and the proposed approach in the paper are
that our event matching method utilizes iterative ideas and
different matching conditions. We match the events by the
fixed matching gap using four matching conditions, and put
those unmatched events into the event set for the next iterative
step with the increased gap. In this way, the computational
complexity of event matching could be reduced.

II. PROPOSED ALGORITHM
Our framework is shown in Fig. 1. The whole algorithm
contains event detection, event matching and event clustering.
The three modules are described in the following subsections.

FIGURE 1. The proposed algorithm framework.

The main contribution is the design of the event matching
algorithm. The aim of the event matching is to match the
‘‘On’’ and ‘‘Off’’ events of the same power appliance exactly.
When the start event and the ending event are matched,
the start/ending events are corresponding to the On/Off oper-
ations of the single device. Therefore, the power consumption
of the device could be calculated from the work time and
the work power, which is the import of the event matching.
However, the complexity of the appliance behavior and the
large variance of the measurement readings may affect the
matching accuracy. In order to adapt to the complexity of
appliance, we examine the pair of three events besides the pair
of two events, and propose the start/ending power matching
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of the event besides the rising/falling power in the matching
algorithm. In order to reduce the interference introduced by
the measurement noise, we consider the relative error of the
power besides the absolute error in the matching criterion.
In order to improve the accuracy of the matching algorithm,
we also propose an iterative process to match the event. In the
description of the algorithm, we will use an example to show
how these methods operate in the matching process.

A. EVENT DETECTION
Usually, the appliance state changes are accompanied by
power changes and often occur near the maximum or min-
imum points of the total power curve. Based on this, the new
event detection algorithm based on the maximum and min-
imum points (MMP) is proposed [10]. The MMP algorithm
consists of three steps. First, search the extreme points of the
aggregated power data. Then, determine the rising interval
and falling interval according to the extreme points. In this
step, we set a power threshold to find possible events of which
the power changes are higher than a fixed value. Lastly, search
the rising and falling edges from the rising interval and the
falling interval. In order to eliminate the noise interference
and slow power changes, we set a noise threshold.

Although some works are done for reducing the noise,
a few mistakes may still exist in the event detector, e.g. some
events occur but are not detected, and some false events
are detected. These mistakes should be dealt rightly by the
following event matching algorithm.

B. EVENT MATCHING
The goal of event matching is to identify repetitive sequences
of power level changes and select those events that potentially
correspond to the operation of a single device. The main
procedure of the event matching algorithm is as follows:

(1) Each unmatched rising event is put into the rising set,
while each unmatched falling event is put into the
falling set. The matching gap n is set to 0, which means
the event number between the rising event and the
falling event.

(2) Each falling event tries to match the rising event before
the falling event with matching gap n using the match
conditions. If the events are matched, the event pair
will be deleted from the event sets. After the deleting
operation, the matching process continues with the gap
n until no event pairs are found.

(3) Set n = n+1 and repeat step 2. When all the events are
paired, the event matching process is completed.

Nowwe explain the algorithm by an example to show the run-
ning process. A typical power time series is shown in Fig. 2.
There are three rising edges e1, e2 and e3 and three falling
edges e4, e5 and e6 in the unmatched event set. In the
first round of the iterative process, the matching algorithm
searches the adjacent rising and falling edge, which satisfy
the matching criterions. Obviously, e3 and e4 are adjacent and
satisfy the matching criterion about the rising/falling power.

FIGURE 2. An example of power time series.

Therefore, the events e3 and e4 are matched and deleted from
the event set. Then, e2 and e5 are adjacent. In the second
round, e2 and e5 are matched since the matching criterion
about the start/end power is satisfied. Finally, e1 and e6 are
matched in the third round. When all the adjacent edges
are matched, the iterative algorithm will try to match the
rising/falling edges among which there is one edge. When all
the edges are matched, the iterative process is finished. Note
that e2 and e6 also satisfy the matching criterion about the ris-
ing/falling power, but e2 just matches e5 in the proposed algo-
rithm, since the adjacent edges are considered firstly in the
iterative matching process. In the proposed algorithm, once
the falling event matches the adjacent rising event, the event
pair will be deleted from the event set and the search range of
the remaining events will be reduced. Therefore, the adjacent
matching can reduce the computational complexity.

FIGURE 3. Two cases for the event matching. (a) The pair of two events.
(b) The pair of three events.

Specially, the match conditions can be divided into two
cases: two-event matching and three-event matching. These
two cases are shown in Fig. 3. The pair of two events shown in
Fig. 3(a) is the common case for the application, e.g., ovens,
lights, etc. The pair of three events shown in Fig. 3(b) repre-
sents the impulse case for the application, e.g., refrigerator.
In this case, the appliance has an impulse when the appliance
starts and then the power of the appliance falls into the normal
level. Therefore, the rising event is always adjacent to the first
falling event in the three-event matching.

Now the match condition for the pair of two events is
discussed. Supposing that the start power of the rising event
is P+, the power change of the rising event is 1P+, the end
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power of the falling event is P−, and the power change of the
falling event is1P−, the events are matched if one of the four
conditions are satisfied:

(1)
∣∣P+ − P−∣∣ < ε

(2)

∣∣P+ − P−∣∣
min

(
P+,P−

) < η

(3)
∣∣1P+ −1P−∣∣ < ε

(4)

∣∣1P+ −1P−∣∣
min

(
1P+,1P−

) < η (1)

FIGURE 4. Two cases for the matching conditions. (a) Match for the
start-end power. (b) Match for the power changes.

The first and second conditions are designed for the case
shown in Fig. 4(a), where the power changes of the rising
event and the falling event are different since the slow power
change after the rising event cannot be detected by the event
detector. In this case, the start power and the end power are
the same, so the pair of the events represents the behavior of
the same appliance. The parameter ε represents the absolute
power error and the parameter η represents the relative power
error. The absolute error condition is more effective for the
low power cases, while the relative error condition is more
effective for the high power cases. The third and fourth con-
ditions are designed for the case shown in Fig. 4(b), where a
rising event exists between the right pair of rising and falling
events. In this case, the start and the end powers are different
since another appliance turns on, but the power changes of the
appliance in the two events are the same. Therefore, the two
events could be matched by the power changes.

The case for the pair of three events is similar. The start
power P+ and the power change 1P+ of the rising event are
defined in the same way, but the end power P− is defined
as the end power of the second falling event and the power
change 1P− is defined as the sum of the power changes
of the two falling events. In this way, the match condition
for the three events is the same as that for the two events.
Then, the case shown in Fig.3 (b) could be dealt with by the
matching condition in (3).

Actually, there exist some similarities and differences
between the event matching algorithm and the event-based
algorithm using the simplified Viterbi which exploits the
ADFHMM as the load model [10]. Here, we use an abbrevia-
tion, ES-ADFHMM, to represent that algorithm. First, both of

the two approaches exploit the differential and the aggregated
powers. The latter uses both two power data to estimate possi-
ble states each time the event happens. Differently, the former
uses only one kind of power data each time event happens.
For instance, when the case shown in Fig. 4(a) happens,
the event matching algorithm only exploits the aggregated
power, P+ and P−. Detect if they satisfy the condition (1)
and (2) listed in formula (1). If satisfy, then the pair of the
falling event and the rising event belongs to one appliance.
If not, then the match fails. When the case shown in Fig. 4(b)
happens, the event matching algorithm just use the differ-
ential power, 1P+ and 1P−. If the two values satisfy the
condition (3) and (4) listed in formula (1), the match suc-
ceeds. That means the two events belong to one appliance.
If not, the match fails. Second, the ES-ADFHMM algorithm
uses the Viterbi. It selects several possible states from all
combined states instead of giving a certain one each time
in the aim to considering the whole time chains. However,
once the event matching algorithm finds the falling event,
it goes to the matching step and gives a certain result, success
matching or failed matching. To a certain extent, the event
matching algorithm further simplified the disaggregatedwork
of the ES-ADFHMM.

To illustrate the computational complexity more conve-
niently, we assume that all the appliances in the house have
only two states (ON and OFF). Assuming N is the number of
the power sampling points, the computational complexity of
the event detector isO (N ). AssumingM is the number of the
events. and P is the number of the appliances.

For the matching algorithm, the matching complexity of
event pair of two should be O

(
M2
)
in the basically exhaus-

tive search. However, we utilize the adjacent matching and
iterative search to reduce the search process. We define the
event gap as n, which means the event number between the
rising event and the falling event. For three-event matching,
the event gap n means the event number between the first
falling event and the second falling event, since the rising
event and the first falling event are always adjacent. In each
iterative process, the falling event matches the rising event
with the gap n, and the matching complexity of event pair
is O (M). Suppose the iteration number is K , and the match-
ing complexity of event pair is O (KM). Obviously, K is less
thanM and K is close toM in the worst case. However, K is
much less than M in our data experiment.
Proposed in [10], the computational complexity of

the traditional Viterbi could be O
(
2P (P+ 1)M

)
. The

ES-ADFHMM algorithm decreases this computational com-
plexity by simplifying the state space to a certain extent.
However, according to the experiment results shown in [10],
the calculation of the ES-ADFHMM algorithm is still more
complex than the event matching algorithm.

C. EVENT CLUSTERING
In the above step, the event pairs have been found. Each event
pair represents the action for one appliance, so that the total
power could be disaggregate into the individual power for
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each appliance. The event clustering is used to cluster the
event pairs that are produced by the same appliance, and
then the power consumed by the appliance could be calcu-
lated. Given the true power of the appliances in a house, the
event clustering process is to calculate the power difference
between the power change of the event pair and the true power
of the appliance one by one. Then the event pair belongs to
the appliance that has the minimal power difference. In this
way, each event pair could be dispatched to an appliance.

III. EXPERIMENTS ON REDD DATASET
A. EVENT DETECTION RESULTS
Many metrics for measuring the accuracy of event detection
have been proposed in the past literatures. In this paper,
the metrics described in [13] are used. Some notations are
defined as follows. E is the number of events. TP is the
number of true positives, FP is the number of false positives,
TN is the number of true negatives, and FN is the number of
false negatives or misses.

1) TRUE POSITIVE RATE ψ̂Rate
TPR represents true positive rate as follows

TPR =
TP

TP+ FN
∈ [0, 1] (2)

TPR represents false positive rate as follows

FPR =
FP

FP+ TN
∈ [0, 1]. (3)

For any event detector, the indexes TPR and FPR are con-
tradictory. When we change the parameters of the detectors,
TPR becomes better while FPR becomes worse. We wish to
find the parameter ψ which makes TPR close to 1 and FPR
close to 0, so we define the metric

‖(0, 1)− (FPR,TPR)‖ =
√
FPR2 + (1− TPR)2.

If ψ makes the metric least, we choose the parameters in the
event detector and obtain the least ψ̂Rate:

ψ̂Rate = min
ψ∈9
‖(0, 1)− (FPR,TPR)‖2 . (4)

2) TRUE POSITIVE PERCENTAGE ψ̂pere

In this metric, the percentage of events correctly detected and
the ratio of false positives to total number of actual events E
are compared. The smaller ψ̂pere is

ψ̂Pere = min
ψ∈9

‖(0,E)− (FP,TP)‖2

= min
ψ∈9

‖(0, 0)− (FP,FN )‖2 (5)

3) TOTAL POWER CHANGE ψ̂1P
The first two metrics mentioned above considered only the
relative number of true and false positives without taking into
account the power. This metric incorporate information about
the sum power changes of all the misses and all the false

positives. Given an edge e, define its power change 1Pe as
follows:

1Pe =
1
w3

e+w2+w3∑
i=e+w2+1

P(i)−
1
w1

e−1∑
i=e−w1

P(i) (6)

where w1,w2 and w3 are window length. w1 and w3 are used
for calculating the pre-and post-event means andw2 is used to
allow a delay for the transient to end and reach a more steady
state. It is the difference of the mean of the signal a short time
after the event and just before. M is defined as the set of all
misses and F is defined as set of all false positives. The total
power changes for themisses and false positives are1PM and
1PF respectively

1PM =
∑
m∈M

|1Pm|, (7)

1PFP =
∑
f ∈F

∣∣1Pf ∣∣. (8)

Therefore,

ψ̂1P = min
ψ∈9

‖(1PFP,1PM )‖2 . (9)

4) AVERAGE POWER CHANGE ψ̂
1P

This metric aims at minimizing the average power of misses
and positives. The average power for the misses 1PM and
the average power for false positives 1PM are described in
equations (10) and (11)

1P̄M =
1
|M |

∑
m∈M

|1Pm|, (10)

1P̄FP =
1
|F |

∑
f ∈F

∣∣1Pf ∣∣. (11)

Therefore,

ψ̂1P̄ = min
ψ∈9

∥∥(1P̄FP,1P̄M )
∥∥2 . (12)

Details about these metrics can be found in [13].
In (4) the collection 9 is the parameter set and ψ̂Rate

is the value of ‖(0, 1)− (FPR,TPR)‖2, which measures the
proximity of FPR to 0 and TPR to 1. The other metrics ψ̂Pere,
ψ̂1P and ψ̂1P̄ are defined in the similar way. Obviously,
for the same detector the parameter ψ may be different in
(4), (5), (9) and (12), so we just choose some proper ψ for
tradeoff in the four metrics. In this paper, four event detection
algorithms are tested on one week data of house1 in REDD
dataset [16]. The selected parameters ψ for each detector are
shown in Table 1.

Using metrics mentioned above to evaluate and compare
the results of four detectors. Test four algorithms on main
meter and use the real events obtained from sub meters as a
reference. The number of miss and false detections are given
in Table 2. Table 3-6 depict the results of these detectors.
As can be seen from these tables, the proposed detector,
labeled as MMP detector, shows the best performance.
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TABLE 1. Parameter settings.

TABLE 2. Statistical test results.

TABLE 3. True positive rate.

TABLE 4. True positive percentage.

TABLE 5. Total power change.

B. ENERGY DISAGGREGATION RESULTS
The experiments are conducted on the low frequency data
from the REDD dataset [16]. We focus on House 1 since it

TABLE 6. Average power change.

is also used in [15]. In all, there are 18 devices but 4 of them
are seldom used; and, thus the remaining 14 devices can be
disaggregated by the proposed methods. The parameters of
the proposed algorithm is Gp = 50, Gn = 20, ε = 30
and η = 0.1 . The proposed event matching algorithm is
compared with the motif mining algorithm in [15], and the
metrics for measuring the accuracy of the power disaggregat-
ing are Precision, Recall and F-Measure, which are defined
as follows

Precision =
TP

TP+ FP
(13)

Recall =
TP

TP+ FN
(14)

F −Measure =
2Precison× Recall
Precision+ Recall

(15)

Table 7 lists the results of the comparison between the
proposed event matching algorithm and the motif mining
algorithm of which the result we quote is in [15]. For high
power consumption devices, such as oven1&2, microwave,
bathroomgfi, kitchen outlet1 and washdryer2, the F-Measure
index of the proposed algorithm is larger than 0.7. In nearly
all the F-Measure of the appliance, the proposed algorithm
performs better than the motif mining algorithm. Only for
high frequency devices, such as the refrigerator, motif mining
performs better than the proposed algorithm, but the differ-
ence is small. Compared with the constraint of the motif min-
ing approach, power state changes in a device are assumed
to be greater than a support threshold, the event matching
method is more comprehensive. For example, when using the
motif mining approach, if a support threshold of 0:1 is used,
the episode (1000,-850,-90) will get disqualified, and then
the events in this episode may be neglected in later work.
This may cause many events to be ignored. While in the
propose event matching approach, we consider all unmatched
events in the unmatched event set for each matching process
to consider as many detected events as possible. This makes
our approach more accurate.

We also compare this event matching algorithm with the
ES-ADFHMM algorithm [10]. In our experiments, both of
the algorithms are applied to all house in the REDD dataset.
We use the same power data of each house and the same rule
to select loads as the ES-ADFHMM algorithm. For the loads
with low power levels or the loads infrequently used, we do
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TABLE 7. Comparing the proposed algorithm against motif mining on the REDD dataset.

TABLE 8. Comparing the proposed algorithm against ES-ADFHMM on the REDD dataset.

not consider. For example, in house1, 4 devices (channel
number: 13, 14, 16, 19) are seldom used, so we do not include
them in the decomposition work. In house 2, the power of the
washer dryer (channel 7) is almost lower than 10W, so we
only consider the other 8 devices. Similarly, we also select
part of loads in the other houses for experiments according to
the above rules.

The results for each house are given in Table 8. Besides
the mean value of F-Measure, Precision and Recall, we also
give the run time of the two algorithms. As seen from
Table 8, in house 1, 3, 5, 6, the event matching algorithm
performs worse than the ES-ADFHMM. This is because the
ES-ADFHMM considers the whole time period instead of
only the current state transition, so it shows better perfor-
mance than the event matching algorithm. In house 2 and
house 4, the results of both approaches are close. This is
because the combinations of loads are different in those
houses, and the events produced by loads are different as well.
So for the event matching algorithm, its performance varies
in different load environments. But mean value of F-Measure
is higher than 0.65 in all houses.

Particularly, we also record the run time of the two algo-
rithms. Due to the configuration problem of the computer
itself, there is a certain error between the time we record
and the actual running time. But we use the same computer

with the same configuration and exploit the same data to
run the two algorithms, so it is still proper to use the run
time of them to compare their computational complexity.
For the ES-ADFHMM, the time it costs is related to the
number of loads and the events occurred. And if the power
levels of several loads are close, the ES-ADFHMM need to
consider more states within the same threshold when event
happens, and then it costs more time. There are more loads
in house 1 and house 3, so the run time is longer than the
other houses. As for the event matching method, it only
gives one matching result when any event occurs. So it costs
much less time than the ES-ADFHMM. And because the
event matching costs very little time in the decomposition
work, it is more easily influenced by the configuration of the
computer. Shown in Table 8, the proposed event matching
algorithm achieves the load disaggregation goal much faster
than the ES-ADFHMM. That proves this approach actually
has relatively low computational complexity when compared
with the ES-ADFHMM.

IV. CONCLUSION
An intuitive event matching approach to disaggregate the
energy has been investigated. The proposed algorithm per-
forms well relative to the available disaggregation based on
event detection. And it has low computational complexity and
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high disaggregation accuracy, so that this algorithm could be
used in the practical appliance.
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