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ABSTRACT In this paper, a new optimal multi-agent continuous patrol algorithm is proposed to solve the
information gathering problem in dynamic environments. First, the environment is modeled as a layout graph
with information attached to vertices. Each agent patrols within a specified area and only interacts with its
adjacent agents. The problem is then cast as the factored multi-agent partially observable Markov decision
process (MPOMDP). Furthermore, a scalable centralized online planning algorithm, called the factored
belief-based variable eliminated Monte Carlo planning algorithm, is proposed based on the Monte Carlo
tree search (MCTS) method. The proposed algorithm constructs an independent local look-ahead tree for
each agent, where actions are coordinated at specific locations of each tree based on the variable elimination
algorithm. Finally, we mimic typical patrol problems to empirically evaluate the proposed algorithm by
benchmarking it against some state-of-the-art solvers. The results demonstrate that the performance of the
proposed algorithm is remarkable for multi-agent systems with the weakly-coupled structure in partially
observable scenarios.

INDEX TERMS Multi-agent system, weakly-coupled structure, MPOMDP, MCTS, variable elimination.

I. INTRODUCTION
The Unmanned Aerial Vehicle (UAV) equipped with sen-
sors is an important mean of achieving situational aware-
ness, understanding and predicting what happens in highly
dynamic environments [1], [2], such as disaster areas after the
earthquake. In this paper, we study that a team of UAVs with
weakly-coupled structure continuously monitor the environ-
ment in a collaborative manner.

A. INFORMATION GATHERING PROCESS IN
DISASTER RESPONSE
The disaster emergency response system, such as the Human-
Agent Collectives for Emergency Response [3], is able to
respond to the occurrences of disaster, and provides decision
supports [4]. UAVs are part of the system.

First, the disaster response system collects and pre-
processes prior information about the disaster area, such
as weather forecasts, satellite imageries, and crowdsourc-
ing reports. Second, the disaster response system makes
emergency response decisions based on prior information.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xian Sun.

Ahierarchical organization of the Observe-Orientate-Decide-
Act loop [5] is usually used in disaster response systems
to divide decisions into strategic level, tactical level, and
operational level. Different levels are interrelated, including
commands flowing down the hierarchy, and status feedback
and sensory information flowing up. In each level, the deci-
sion maker’s perspective is different. In the strategic level,
decision makers focus on the main objectives of emergency
response effort. According to the main objectives, tactical
decision makers plan the patrol area and route for each UAV
in a high level. In the operational level, operators plan routes
for UAVs in a low level. Third, the team of UAVs is dis-
patched to the target areas to collect reliable and high-quality
data.

Unlike previous work on the control of UAVs in the
operation level [6], [7], in this paper we concentrate on the
research from the perspective of the tactical level. Specifi-
cally, the problem is featured as how to patrol the environment
using a limited number of UAVs with limited detection capa-
bilities. The environment is modeled as a layout graph with
information attached to the vertices. The UAV is modeled
as an agent, and each agent patrols within a specific patrol
area.
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B. RELATED WORK
In this section, researches on the multi-agent continuous
patrolling problem are first introduced. Then, formulations
and solvers to the problem are presented respectively.

A number of coordination algorithms on the multi-agent
continuous patrolling problem have been developed [8]. For
the dynamic environment, previous researches [9], [10] study
the fully observable scenarios, where agents can directly
perceive the underlying states. In this paper, we focus on
the partially observable scenarios where agents cannot make
sense of the underlying states, but only the states of the
current locations currently. In [11], an anytime planning
algorithm is put forward for decentralized multi-agent infor-
mation gathering problem, where each agent periodically
transmits the compressed form of its look-ahead tree to other
agents. However, it converges to the optimal policy under
certain assumptions. In [12], a multi-agent online planning
algorithm is proposed, where each agent builds a look-ahead
tree and coordinates actions by the max-sum algorithm [13].
However, the max-sum algorithm cannot provide optimal
guarantee when the cycle exists. In addition, some algorithms
can achieve near-optimal performance [14] [15], but they
require a submodular [16] objective function, which is not
suitable for all scenarios. Thus, there are further work still
required to improve the performance ofmulti-agent patrolling
in dynamic environments.

The multi-agent continuous patrolling can be modeled as
the sequential decision making problem. MPOMDPs are the
extension of POMDPs [17], [18], which are able to capture
the partially observable feature of multi-agent patrolling due
to sensor capability constraints. In MPOMDPs, the uncer-
tainty of the state is represented by the belief, and it allows
agents to act in a centralized manner. The centralized con-
troller takes joint observation and performs joint actions.
In many real-world scenarios, global states can be fac-
tored into different state features. Our work is motivated
by the transition-decoupled POMDP [19], which provides
a natural interactive representation framework for agents
with weakly-coupled structures. In the transition-decoupled
POMDP, global states are represented in the local states
of each agent, and each agent may share its local states
with other agents. The local state is composed of mutually-
modeled features, including unaffectable features, locally
controllable features, and nonlocally-controlled features. The
factorization of global states contributes to analyzing condi-
tionally independent relationships between existing variables.

Partially observable Monte Carlo planning (POMCP) [20]
is one of the leading methods for solving general MPOMDPs
based on Monte Carlo tree search (MCTS) [21]. POMCP
builds a search tree of the history and uses Monte Carlo
simulation to evaluate the value of each node. However,
the joint action space and the joint observation space increase
exponentially with the number of agents, resulting in a
high branching factor for the search tree [22]. Therefore,
the decomposition of the global look-ahead tree into multiple

local look-ahead trees can effectively avoid the problem of
undersampling. Some decentralized online planning algo-
rithms [11], [12] build a local search tree for each agent,
and construct a decision-making coordination mechanism
in the decentralized setting where the communication may
be disturbed or interrupted. In this paper, we focus on the
centralized setting where the communication is free of noise
and latency. Thus, we can design the algorithm by taking
advantage of the centralized structure.

C. CONTRIBUTION OF THIS PAPER
In the paper, the main challenges we need to address involve
two aspects: First, the number of UAVs is limited and sensors
of UAVs cannot cover the entire target area at any time.
Second, the actions of UAVs should be coordinated to reduce
conflicts and improve effects. To solve these challenges,
the problem is cast as the factorized MPOMDP framework
and a centralized online algorithm is proposed. The objective
of the team of agents is to gather as much information as
possible. In other words, the objective is to compute the
optimal continuous patrol route for each agent to maximize
the global cumulative discounted reward over time. The main
contributions presented in this paper are as follows.
• A factorized MPOMDP framework for the centralized
multi-agent patrolling problem is put forward. In the
factorizedMPOMDP, we relax the condition of the envi-
ronment. In particular, the factored global states, global
observations, global reward functions and beliefs lead to
a natural decomposition of the joint decision model into
local decision models.

• A multi-agent centralized online planning algorithm,
called factored belief based variable eliminated Monte
Carlo planning algorithm is proposed, by extending the
MCTS method and the variable elimination algorithm.
MCTS is a best-first search algorithm that can effec-
tively solve the long-horizon planning problem of single
agent. The variable elimination algorithm [23] is an
optimal algorithm for solving one-shot case of multiple
agents. The innovation of our proposed algorithm is to
construct a local look-ahead tree for each agent, and
to synchronize the actions at specific locations of each
local search tree, so as to obtain the global optimal
policy.

II. PROBLEM STATEMENT
In this section, a general formalization of multi-agent
patrolling problem is introduced, which is inspired by [12].

A. PHYSICAL ENVIRONMENT
Definition 1 (Layout graph): The layout graph is defined as
an undirected graph G = (V ,E), where V represents a set of
spatial vertices embedded in Euclidean space, and E denotes
a set of edges. Let the number of vertices in G be |V |.
The layout graph defines the layout of environment and

the motion form of agents. In disaster response scenarios,
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a vertex represents a target area of interest to rescuers, such as
communities, schools, and factories. The feasible traversable
area between a pair of adjacent target areas is captured as an
edge, that is, the path that agents move.
Definition 2 (Time): Time is encoded as a discrete set of

temporal coordinates, denoted as t ∈ {0, 1, 2, . . .}.
In each time step, the environmental information state

changes once, and each agent completes an Observe-
Orientate-Decide-Act loop. The actual time that a time step
corresponds to is determined by the real scenario. If the UAV
can reach the target area within 10 minutes and complete a
loop, then a time step can be set as 10 minutes.
Definition 3 (Information State): The information state

qualitatively represents the amount of new information at the
vertex.

FIGURE 1. An example of the information state model represented by the
Markov chain.

The environmental information is characterized as the dis-
crete information state, which is shown as Fig. 1. The infor-
mation state set has several information levels, denoted as
I = {I1, I2, . . . , IN }, where In indicates the n-th informa-
tion level and N is the size of the set. As the information
level increases, the vertex has more unknown information.
The information value is a quantitative representation of the
information state, and the information value set is denoted as
F = {F1,F2, . . . ,FN }. The information value is computed
by the information value function.
Definition 4 (Information Value Function): The informa-

tion value function f is defined as a set function f : I → R+,
that assigns the information value to the information state.

In general, as the information level increases, the vertex
has more unknown information. So we assume that the infor-
mation value function is monotonically non-decreasing, i.e.
F1 ≤ F2 ≤ . . . ≤ FN . The information value function
encodes the known priori information about the temporal and
spatial characteristics of the environment, such as the type
of phenomenon being monitored, and the speed at which the
phenomenon changes. This definition ensures the generality
of our model as it can vary notably relying on the character-
istics of the environment [9].

For the environmental dynamics, we relax the condition
that the information state of all vertices is independently
subject to the discrete-time multi-state Markov chain. Specif-
ically, the information state transition matrix is as follows.

P =


p11 p12 · · · p1N
p21 p21 · · · p2N
...

...
. . .

...

pN1 pN2 · · · pNN

 =

P1
P2
...

PN

 (1)

where pij represents the transition probability from Ii to Ij.
Before dispatching UAVs, prior information about the target
area is collected from different sources. Based on the pri-
ori information, a statistical model of the information state
transition matrix is computed through the machine learning
technique [24]. In this paper, we assume that (1) is known
in advance, and our work is based on these prior knowledge.
In fact, our online planning algorithm can re-adjust the sched-
ule for agents based on the new statistical model.

B. INFORMATION GATHERING AGENT
Definition 5 (Information Gathering Agent): The information
gathering agent (agent for short) is a mobile autonomous
entity patrolling in graphG, that directs its activities to gather
information.

At any time step t , each agent is at a certain vertex in G.
Agents can visit the same vertex at the same time.
Definition 6 (Patrol Area): Each agent mi ∈ M patrols in a

subgraph Gi = (Vi,Ei) ⊆ G.
The patrol areas may overlap each other. Agent mi moves

on the vertices and edges in its patrol area Gi, and its move-
ment occurs between two consecutive time steps. The exam-
ple of patrol areas for agents is shown in Fig. 2.

FIGURE 2. An example of the twelve-agent patrolling problem, where red
diamonds represent agents, and green ellipses represent patrol areas of
agents.

Definition 7 (Neighbor): The neighbor of agent mi is a set
of agents whose patrol areas overlap with the patrol area of
agent mi, denoted as Nei ⊆ M .

Due to the overlapping of patrol areas, agent mi may be
affected by its neighbors. In general, each agent has little
impact on the other agents, that is, the team of agents has
weakly-coupled structure. The weakly-coupling is a qualita-
tive concept in this paper which means that the relative cou-
pling degree tends to the weak end of the coupling spectrum.
We regard that agentmi belongs to its neighbors, i.e.mi ∈ Nei.
When an agent moves to a vertex, it can automatically gather
the information of the vertex. At the same time, the informa-
tion state of the vertex is reset to I1, which means that there
is no new information at the position currently. In addition,
the perception of the agent is limited, which can only observe
information of its current vertex at the moment.
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III. FACTORED MPOMDP FORMULATION
The multi-agent patrolling problem is cast as the fac-
tored MPOMDP formulation, which is defined as a tuple
〈M , S,A,O, δ,Z ,R,D, γ,B〉. Without loss of generality,
we take agent mi as an example, where formulations of other
agents are the same as that of agent mi.
• M = {m1,m2, . . . ,mK } is a set of agents, where K is
the number of agents.

• S is a set of states, factored into the information states
of vertices and the position states of agents, denoted as
S = [SV , SI ]. The local state of agent mi is a subset
of the global state, denoted as si = [sVNei , s

I
Gi ], where

sVNei indicates the position states of its neighbors and s
I
Gi

indicates the information states of all the vertices in its
patrol area Gi.

• A = {A1,A2, . . . ,AK } is the set of joint actions. The
action of agent mi is denoted as ai ∈ Ai, and the joint
action of its neighbors is denoted as aNei ∈ ANei . Specif-
ically, the action of agent mi is the movement from its
current position v to one of the adjacent vertices adjGi (v)
in Gi, where v ∈ adjGi (v).

• O = {O1,O2, . . . ,OK } is the set of joint observations.
The observation of agent mi is denoted as oi ∈ Oi. The
position state of agents is completely observable, and
agent mi can only observe the information state of its
current position at the moment, i.e. oi = [sVNei , s

I
i ].

• δ is the set of joint state transition probabilities, denoted
as δ(s(t + 1)|s(t), a(t)) =

∏K
i=1 δ

I
i (s

I
Gi (t + 1)|sIGi (t)) ·

δVi (s
V
i (t + 1)|sVi (t), aNei (t)), where δ

I
i is the local infor-

mation state transition probability of agent mi, which
follows the multi-state Markov chain. The local position
state transition probability of agent mi is as follows.

δVi (s
V
i (t + 1)|sVi (t), aNei (t)) =

{
1, sVi (t + 1) = sVgoal
0, sVi (t + 1) 6= sVgoal

(2)

where sVgoal is the target position of agent mi at t + 1.
• Z is the set of joint observation transition probabili-
ties, denoted as Z (o|s, a) =

∏K
i=1 Zi(oi|si, aNei ). Zi is

the local observation transition probability of agent mi,
defined as follows.

Zi(oi|si, aNei ) =
{
1, oi = [sVNei , s

I
i ]

0, oi 6= [sVNei , s
I
i ]

(3)

• R is a decomposable global immediate reward function,
which is generated by summing local immediate reward
functions of all agents, R(s, a) =

∑K
i=1 Ri(si, aNei ).

The local reward function Ri of agent mi is defined as
follows.

Ri(si, aNei ) =
f (Ii)
ni

(4)

where ni refers to the number of agents visiting the same
vertex at the same time as the agent mi; and Ii is the
information state of the vertex that agent mi visits.

• D is the planning horizon of each agent.
• γ is the discount factor.
• B is a probability distribution over the state, called the
belief. It includes the information belief and position
belief, denoted asB = [BV ,BI ]. The local belief of agent
mi is denoted as Bi. As mentioned above, the observation
of position state is completely observable, and we focus
on the information belief here. The information state of
each vertex changes independently based on (1). There-
fore, BI can be represented as a factored belief [25],
which is as follows.

BI = [bI1, b
I
2, . . . , b

I
|V |] (5)

where bIi = [pI1i , p
I2
i , . . . , p

IN
i ] indicates the information

belief of vertex vi; p
In
i denotes the conditional probability

when the information state at vi is In, and
∑N

n=1 p
In
i = 1.

The factored belief greatly reduces the computational
and storage complexity. In addition, the agent main-
tains its local belief during execution by belief updates,
denoted as B(t + 1) = T (B(t)). Without loss of general-
ity, the information belief of the vertex vi is updated as
follows.

bIi (t + 1) =

{
ll3 · P, vi = vcur
bIi (t) · P, vi 6= vcur

(6)

where 3 = [1, 0, 0, . . .] is the unit vector with N
elements, and vcur denotes the vertex visited by any
agent at the t .

IV. CENTRALIZED ONLINE PLANNING
In this section, the factored belief based variable elimi-
nated Monte Carlo planning (FB-VEMCP) algorithm is first
introduced to solve the factorized MPOMDP formulation.
Then, the variable elimination based decision coordination
(VE-DC) algorithm is proposed. Third, the performance of
the FB-VEMCP algorithm is analyzed.

Our objective is to generate optimal policy π =

[π1, π2, . . . , πK ] to maximize the global value function.
Definition 8 (Global value function): The global value

function V π is the expectation of the discounted summation
of global rewards given that agents adopts the joint policy π :

V π = Eπ [
D−1∑
d=0

γ dR(s(d), a(d))] (7)

Based on (4), the joint value function V π = 6iV
πi
i is the

summation of local value functions of all agents [26]. The
local value function V πii (hi) of agent mi is as follows.

V πii (hi) = Eπi [6
D−1
d=0 γ

dRi] (8)

where hi is the local history of agent mi, which consists
of a sequence of actions and observations, i.e., hi(t) =
{aNei (0), oi(0), . . . , aNei (t), oi(t)}.
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FIGURE 3. The factored look-ahead trees for all agents. Green cycles are
h nodes and blue cycles are ha nodes.

A. FB-EAMCP ALGORITHM
Fig. 3 shows the factored look-ahead trees for all agents.
In FB-EAMCP, the global look-ahead tree is factored into
multiple local look-ahead trees, and each agent constructs a
local look-head tree in parallel, where actions of all agents
are synchronized when selecting the optimal ha node from
its parent h node for each depth in each look-ahead tree,
and ha represents the history of agents, i.e. h(t)a(t + 1) =
{a(0), o(0), . . . , a(t), o(t), a(t + 1)}. For the weakly-coupled
multi-agent system, the decomposition greatly reduces the
number of branches in each look-ahead tree. In the continuous
patrolling problem, there are two relationships between two
h nodes in a trajectory: node A in different depths represents
that information beliefs of the current positions of two nodes
are the same; node A and node B represent that information
beliefs of the current positions of two nodes are different.

Each node in the local look-ahead tree is a tuple with
〈Ni,Vi,Bi, ψi〉, where Ni is the number of visiting, Vi is the
value function, Bi is the belief state, and ψi is the number of
transitions of the information belief which helps to simplify
the calculation. Based on (1) and (6), the information belief is
related to the number of transitions. The update formulation
for ψi is as follows:

ψi(t + 1) =

{
ll0, vi = vcur
ψi(t)+ 1, vi 6= vcur

(9)

Algorithm 1 denotes the FB-EAMCP algorithm. With-
out loss of generality, we take agent mi as an example,
where planning algorithms of other agents are the same as
Algorithm 1. In the procedure Search (lines 1-13), agent mi
samples hidden states si = [sVNei , s

I
Gi ] based on Bi(hi) at the

root node (line 3 and line 5), where ‘∼ ’ represents a sampling
of the belief state. After completing sampling (lines 5-6)
and initializing vectors ψ i,Ri (lines 7-8), it cooperates with
neighbors to compute the optimal action through the proce-
dure DecisionCoordination1 (line 10). As mentioned above,
the observation is the current state according to (3). In par-
ticular, the observation of the information state is directly

Algorithm 1 FB-VEMCP Algorithm

1 procedure Search(hi)
2 begin
3 sVi ∼ BVi (hi);
4 while termination is not meet do
5 sIGi ∼ BIi (hi);
6 si← [sVi , s

I
Gi ];

7 ψ i,Ri← ;
8 ψ i(0)← ψi(hi);
9 Simulation(si, hi, 0, ψ i,Ri);

10 a∗← DecisionCoordination1(T (hi));

11 o∗i
a∗Nei
←−− sVi ;

12 hi← hia∗i o
∗
i ;

13 return a∗i
14 procedure Simulation(si, hi, d, ψ i,Ri)
15 begin
16 if d ≥ D then
17 return 0

18 if hi /∈ Ti then
19 for aNei ∈ ANei do

20 (Bi(hiaNei ), ψ i(d+1))
aNei
←−− T (Bi(hi), ψ i(d));

21 Ti(hiaNei )←
〈Ninit ,Vinit ,Bi(hiaNei ), ψ i(d + 1)〉;

22 return Rollout(si, hi, depth);

23 if d = flag then
24 a∗← DecisionCoordination2(Ti(hi), d);
25 else a∗← πtemp(d);

26 (s′i, o
∗
i ,Ri) ∼ G(si, a∗Nei );

27 Ri(d)← Ri;
28 R′i← γ · Simulation(s′i, hia

∗
Neio
∗
i , d + 1, ψ i,Ri);

29 Count ← 1;
30 for k = 0→ D− 1 do
31 if ϕi(d) = ϕi(k) then
32 Ri← Ri + Ri(k);
33 Count ← Count + 1;

34 R′i← R′i +
Ri

Count ;
35 N (hi)← N (hi)+ 1;
36 N (hia∗Nei )← N (hia∗Nei )+ 1;

37 V (hia∗Nei )← V (hia∗Nei )+
R′i−V (hia

∗
Nei

)

N (hia∗Nei )
;

38 return R′i;

39 procedure Rollout(si, hi, d)
40 begin
41 if d ≥ D then
42 return 0

43 aNei ∼ πrollout (hi, ·);
44 (s′i, oi,Ri) ∼ G(si, aNei );
45 return Ri + γ · Rollout(s′i, hiaNeioi, d + 1)
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reflected in the immediate reward Ri (line 26). The position
state transition is deterministic according to (2) (line 11).
The observation of the position state is used to construct the
next node (line 12). This greatly reduces the number of child
nodes of the ha node.

In the procedure Simulation (lines 14-38), if hi is a new
node, then the node is added to the tree Ti by initialing param-
eters of the hiaNei node, i.e. the initial visiting count Ninit ,
the initial local value functionVinit , the local beliefBi, and the
count vector ψi (lines 18-22). Specifically, the overall initial
visiting count of the hi node isNinit (hi) =

∑
aNei

Ninit (hiaNei ).

The information belief BIi is updated according to (6), and
the count vector ψi is updated according to (9) (line 20).
In addition, if hi is not a new node, then the simulatorG draws
a sample (lines 26) after selecting the optimal action a∗ by
the procedure DecisionCoordination2 or πtemp (lines 23-25).
The global variable πtemp computed by Algorithm 2 is a set of
policies, that records temporary actions of all the agents from
depth = 0 to depth = D−1. Specifically, different local look-
ahead trees may locate in different depths when executing the
procedureDecisionCoordination2, so a global variable flag is
used to record the coordinated depth. If depth is equal to flag,
then a∗ is selected by the procedure DecisionCoordination2;
otherwise πtemp(depth) is assigned to a∗. The variable πtemp
and flag are initialized to ∅ and 0 respectively. After searching
and expending the tree, it updates the corresponding variables
(lines 29-37). In order to improve the accuracy of the evalua-
tion, it detects whether or not there are vertices with the same
information belief in a trajectory (lines 30-34). In the proce-
dure Rollout (lines 39-45), the potential long-term reward is
estimated by using random simulations (line 43).

B. VE-DC ALGORITHM
All the agents run FB-VEMCP algorithm in parallel. Two
situations are required to coordinate actions to maximize
Q(s, a) =

∑
i Qi(si, aNei ), where Qi(si, aNei ) is a local utility

function of agent mi. Here, Q(s, a) is denoted as Q(a) for
short.

The first situation is that the optimal action is selected to
perform after searching and expanding the look-ahead tree
through the procedure DecisionCoordination1. The variable
Qi(aNei ) is as follows.

Qi(aNei ) = Vi(hiaNei ) (10)

The second situation is that the optimal action is selected to
search the tree through the procedureDecisionCoordination2.
The variable Qi(aNei ) is based on upper confidence
bounds [27], which is as follows.

Qi(aNei ) = Vi(hiaNei )+ c

√
log (N (hi)+ 1)
N (hiaNei )+ 1

(11)

It seems intractable to compute the optimal actions that
maximize Q(a), as it requires enumerating the joint action
space of all agents. Fortunately, by exploiting the cooperation
graph implicit in Q(a), we can very efficiently compute the

FIGURE 4. The coordination graph for twelve-agent patrolling problem.
The connection between two agents indicates that their patrol areas are
overlapped and their actions can affect each other.

optimal action a∗. Fig. 4 shows the cooperation graph of
twelve-agent patrolling problem.

Algorithm 2 denotes the VE-DC algorithm. In the proce-
dure DecisionCoordination2 (lines 9-20), it is first in a wait
state until all agents enter the procedure (line 11). Let Q̂ be the
set of local utility functions (line 12). It then computes utility
functions of all agents based on (11) (lines 13-15). After that,
the optimal actions of all agents at current state are selected
through the procedureCoordination (line 16). Third, the vari-
able πtemp and flag are updated (lines 16-19). In addition,
the procedure DecisionCoordination1 (lines 1-8) is similar
to the DecisionCoordination2. However, it computes utility
functions of all agents based on (10) (lines 5-7).

In the procedure Coordination (lines 21-35), the core idea
is that, instead of maximizing Q(a) directly, one agent’s
action is maximized at a time. When maximizing over ai,
only summands of utility functions involving ai participate
in the maximization. We give some definitions here. Let Ĉ
denote the set of temporary utility functions; let Ci denote
the temporary utility function with index i; let Cei denote
the index set of temporary utility functions in Ĉ involving
ai; let aCei denote the joint action that affects Ci; and let
aCei\i denote the joint action, whose elements are equal to
the elements in aCei except ai.
First, it chooses an action ai that has not been eliminated

(line 24) and builds a new joint action aCei . The elements in
aCei include all the elements in aCej , j ∈ Cei and aNek , k ∈
Nei. After numerating aCei ∈ ACei and assigning aCei to the
corresponding elements in aCej and aNek , the utility func-
tion Cj(aCej ) and Qk (aNek ) are computed (line 25). Second,
it maximizesCi(aCei ) to compute the optimal actions a′i under
the constraint of aCei\i, denoted as a′i(aCei\i) (line 26). Third,
after removing Cj, j ∈ Cei and Qk , k ∈ Nei from Ĉ and
Q̂ separately, it adds Ci(aCei ) to Ĉ (lines 27-31). Fourth,
it computes the optimal joint action a∗ of all agents in the
reverse direction (lines 32-34).

C. PERFORMANCE ANALYSIS
The most desirable quality bound is to express performance
relative to POMCP. The optimality and convergence of
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Algorithm 2 VE-DC Algorithm

1 procedure DecisionCoordination1(Ti)
2 begin
3 WaitforAllTrees;
4 Q̂← ∅;
5 for mi ∈ M do
6 Qi(aNei )← Vi(hiaNei );
7 Q̂← Q̂ ∪ Qi(aNei );

8 return Coordination(Q̂)

9 procedure DecisionCoordination2(Ti, depth)
10 begin
11 WaitforAllTrees;
12 Q̂← ∅;
13 for mi ∈ M do

14 Qi(aNei ) = Vi(hiaNei )+ c
√

log (N (hi)+1)
N (hiaNei )+1

;

15 Q̂← Q̂ ∪ Qi(aNei );

16 πtemp(depth)← Coordination(Q̂);
17 if depth < D− 1 then
18 flag← depth+ 1;
19 else flag← 0;

20 return πtemp(depth)

21 procedure Coordination(Q̂)
22 begin
23 Ĉ, a∗← ∅;
24 for i = 1→ K do
25 Ci←

∑
j∈Cei

Cj(aCej |aCei )+
∑
k∈Nei

Qk (aNek |aCei );

26 a′i(aCei\i)← maxai Ci(aCei );
27 for j ∈ Cei do
28 Ĉ ← Ĉ \ Cj;

29 for k ∈ Nei do
30 Q̂← Q̂ \ Qk ;

31 Ĉ ← Ĉ ∪ Ci(aCei );

32 for i = K → 1 do
33 a∗i ← a′i(aCei\i|a

∗);
34 a∗← a∗ ∪ a∗i
35 return a∗

FB-EAMCP depend on two aspects: variable elimination
algorithm and MCTS. For the one-shot case, the variable
elimination algorithm can compute the global optimal action
in the current situation [28]. In other words, in the process
of searching and expanding the look-ahead tree, the effect
of action selections in FB-EAMCP is equivalent to that in
POMCP. On this basis, the optimality and convergence of
MCTS for online planning in partially observable scenar-
ios has been established in [20], which can be extended to
FB-EAMCP directly. That is, as long as sufficient samples
are drawn from the true belief, the global value function

computed by FB-EAMCP will converge in probability to the
optimal global value function. Therefore, FB-EAMCP has
the same optimality and convergence as POMCP. In addition,
FB-EAMCP is suitable for multi-agent systems with weakly-
coupled structures. As the cost of the variable elimination
algorithm is exponential in the induced width of the coordi-
nation graph [23].

V. EMPIRICAL EVALUATION
A response scenario after the earthquake disaster is taken into
consideration (see [29] for details). In this paper the research
is conducted in a high level and the response scenario is
modeled based on our proposed problem formulation. After
collecting and preprocessing prior information, a team of
UAVs is dispatched to the target area. Then the team of UAVs
continues to patrol their specified areas to gather information
to assist in subsequent rescue missions, such as distributing
food, excavating victims from the rubble, extinguishing fire
and providing medical support. To test the performance of
FB-VEMCP, the graphs shown in Fig. 2 and Fig. 5 are used
to model typical patrol problems.

FIGURE 5. Patrol areas for four agents and eight agents.

Given this, FB-VEMCP is compared with POMCP,
TD-FMOP,Dec-MCTS, andVE-POMCP. The POMCP algo-
rithm is the most advanced general online planning algo-
rithm. Given the true belief, actions computed by POMCP
can converge to the optimal actions for any limited hori-
zon POMDP problem. The transition-decoupled factored
belief based Monte Carlo online planning (TD-FMOP) algo-
rithm is a decentralized online planning algorithm that
combines MCTS with the max-sum algorithm. Although
TD-FMOP can guarantee the optimality for the acyclic fac-
tor graph, it cannot provide optimal guarantee when the
loop exists. Dec-MCTS is a decentralized multi-robot online
planning algorithm, where robots periodically communicate
a compressed form of trees, which are used to update the
joint distribution using a distributed optimization approach.
VE-POMCP is an extension of FB-VEMCP, the difference
between them is the way of updating beliefs. FB-VEMCP
updates beliefs based on (6), while VE-POMCP maintains
beliefs through the particle filtering, which can be applied
to problems that are difficult to express beliefs with explicit
probability distribution.

Each algorithm runs 50 time steps in a round, and runs
30 rounds for each scenario. For all scenarios, let the discount
factor γ be 0.9, and let the coefficient c in (11) be 2. The
information value set is F = {0, 1, 2, 3}, corresponding to
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the information state set I = {I1, I2, I3, I4}. The information
state transition is shown in Fig. 1. The average total reward
of each round and the average time of each decision making
are used to evaluate the performance of each algorithm. These
experiments run on a machine with 2.5 GHz dual-core CPU
and 8 GB RAM.

A. EVALUATION OF SCALABILITY
We benchmark FB-VEMCP against POMCP, TD-FMOP,
Dec-MCTS, and VE-POMCP to empirically assess the scala-
bility of algorithms, and each algorithm runs 500 simulations
in each scenario. Three scenarios are constructed, the three
environments are used to evaluate the scalability of the pro-
posed approach. which are as follows.

• Scenario A1: As shown in Fig. 5(a), the graph consists
of 18 vertices and 25 edges. Four agents are allocated
to the designated areas. Each agent with horizon 6 has
about 3 neighbors.

• Scenario A2: As shown in Fig. 5(b), the graph consists
of 25 vertices and 44 edges. Eight agents are allocated to
the designated areas, and each agent with horizon 6 has
about 3 neighbors.

• Scenario A3: As shown in Fig. 2, the graph consists
of 44 vertices and 66 edges. Twelve agents are allocated
to the designated areas, and each agent with horizon
6 has about 3 neighbors.

TABLE 1. Results (Scenario A1).

The average rewards and standard deviations for the four-
agent patrolling problem are shown in Table 1. The average
reward of FB-VEMCP is 9.97% higher than that of TD-
FMOP, and the average reward of VE-POMCP is 3.92%
higher than that of TD-FMOP. Although the average runtime
of each decision making of POMCP is much lower than that
of other algorithms (except the random algorithm), it gets the
lowest average reward in these algorithms.

Similar results are seen in the eight-agent patrolling prob-
lem, which are shown in Tabble 2. FB-VEMCP gets the high-
est average reward in these algorithms, which is 4.87% larger
than that of TD-FMOP, while FB-VEMCP and TD-FMOP
have similar average runtime. Moreover, FB-VEMCP pro-
duces a higher value than that of VE-POMCP, Dec-MCTS,
and POMCP. Although POMCP achieves a very low runtime,
the average reward is much lower than other algorithms.

Table 3 shows the results of the twelve-agent patrolling
problem. It is out of memory when conducting POMCP.
Specifically, FB-VEMCP exceeds TD-FMOP, VE-POMCP,

TABLE 2. Results (Scenario A2).

TABLE 3. Results (Scenario A3).

Dec-MCTS and the random algorithm by 8.21%, 4.89%,
7.27%, and 22.78% separately. In addition, FB-VEMCP
achieves the lowest runtime in these algorithms (except the
random algorithm).

These results clearly illustrate that FB-VEMCP can
achieve a high reward in a reasonable time. It contributes to
the correct choice when computing the optimal action after
searching and expanding the look-ahead tree, and the usage
of continuous patrol characteristics, allowing each node to
have a more accurate assessment with the same number of
samples. In weakly-coupled agents, each look-ahead tree in
FB-VEMCP has lower branching factor than that in POMCP.
Thus, FB-VEMCP performs better than POMCP with a
small number of simulations. In addition, the max-sum algo-
rithm in TD-FMOP cannot guarantee the optimality for the
acyclic factor graph, and different look-ahead trees may be
at different depths in the coordination process in TD-FMOP.
Dec-MCTS is a decentralized algorithm, where its reward and
runtime are affected by the number of interactions. Therefore,
it leads to FB-VEMCP slightly outperforming TD-FMOP and
Dec-MCTS in these scenarios.

B. EVALUATION OF HORIZON
We empirically evaluate the influence of the horizon D
in this section. As shown in Fig. 5(a), the graph consists
of 18 vertices and 25 edges, and four agents patrol in designed
areas. Four scenarios are constructed, and each algorithm runs
1000 simulations in each scenario.

• Scenario B1: The horizon is 1 time step.
• Scenario B2: The horizon is 3 time steps.
• Scenario B3: The horizon is 6 time steps.
• Scenario B4: The horizon is 10 time steps.

The average total rewards and standard deviations are tab-
ulated in Fig. 6. Specifically, FB-VEMCP and VE-POMCP
have similar rewards in these scenarios. For all scenarios,
FB-VEMCP outperforms POMCP slightly, and outperforms
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FIGURE 6. Rewards of the four-agent patrolling problem with different
horizons.

TD-FMOP by 2.40% in Scenarios B1, by 2.85% in
Scenarios B2, by 1.57% in Scenarios B3, and by 4.55% in
Scenarios B4. Additionally, FB-VEMCP exceedsDec-MCTS
ranging from 2.77% to 6.59%, and is at least 24.51% better
than the random algorithm in these scenarios.

In these scenarios, as the horizon increases, the rewards
does not increase monotonically, and each algorithm achieves
the highest rewards in Scenarios B3. Because the number
of branches in the tree will increase exponentially with the
horizon. However, the number of samples is fixed in these
scenarios, and it may lead to undersampling of the node in
the long horizon planning. Insufficient sampling of the node
results in inaccurate evaluation of the value function of the
node.

VI. CONCLUSION
In this paper, a novel approach is put forward to solve
multi-agent centralized patrolling under dynamic environ-
ments. It involves first formalizing the multi-agent patrolling
problem as the factored MPOMDP framework, and second
proposing an online planning algorithm by extending the
MCTS method. In particular, the proposed formulation is
a very general model, which is suitable for the centralized
patrolling settings and may provide a new idea for the decen-
tralized patrolling settings. The proposed algorithm is empir-
ically compared with some state-of-the-art solvers in typical
patrol scenarios. The results showed that the performance of
the proposed algorithm is remarkable with a small number
of simulations, which is suitable for agents with weakly-
coupled structure. Moreover, in practical disaster response
applications, the real-time and up-to-date situation awareness
provided by teams of UAVs can assist in the decision making
of commands. The commands only need to specify tasks for
UAVs instead of knowing the details of our algorithm. In gen-
eral, we provide a foundational step for multi-robot automatic
planning before dispatching rescues to risky environments.
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