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ABSTRACT As an interdisciplinary research area, fractional circuits and systems have attracted extensive
attention of scholars and researchers for their superior performance and potential applications. The passive
realization of the fractional-order (FO) immittance function plays an important role in fractional circuits’
theory, which is useful in fractional circuit design and modeling. This paper deals with the passive synthesis
of FO three-element-kind circuits. First, the method is given for judging the immittance functions of
FO three-element-kind circuits. Then, by making use of impedance scaling and variable substitution,
the synthesis method of such an FO immittance function is proposed, which is based on the bivariate
reactance synthesis method. Finally, a procedure is proposed to realize such immittance functions using
the three-element-kind circuit. And several examples are given to illustrate the proposed method.

INDEX TERMS Fractional circuits, passive synthesis, fractional-order impedance, impedance scaling,
multivariable synthesis.

I. INTRODUCTION
In recent years, Fractional Calculus has been widely used
in modeling the dynamics of many natural phenomena,
which is because of its higher capability of providing accu-
rate description than integer dynamical systems. Applica-
tions of Fractional Calculus have been reported in many
areas [1]–[7], such as Physics, Biology, Biomedical Engi-
neering, Financial Market, Signal Processing and so on.
And in electrical engineering, the application of Fractional
Calculus has also growing, such as modeling of electrical
equipment [8]–[12] and wireless power transmission system
design [13]. Furthermore, the fractional electrical circuits
have been studied from diverse aspects, for instance: synthe-
sis of filters [14]–[16], realization of oscillators [17], stabil-
ity analysis [18]–[20], frequency domain analysis [21]–[27],
time-frequency domain analysis [28]–[32], energy effi-
ciency [33], sensitivity analysis [34], fractional-order (FO)
reconfigurable filters [35], FO resonator [36], [37], FO
general impedance converter (GIC) [38].

With the development of numerical calculations about
fractional calculus equations [39], [40], it is feasible to
simulate and analyze the FO systems using fractional models.

The associate editor coordinating the review of this manuscript and
approving it for publication was Sara Dadras.

Meanwhile, due to the progresses in fabrication of fractional
capacitors and inductors [41]–[43], the FO systems can
also be realized directly with real fractional elements [44].
At present, most of the developed FO impedances are
fractional capacitors [41], while the floating or grounded
fractional inductors can be realized by active devices like
GIC [38], operational transconductance amplifier [42], and
current carrying conveyor [43]. Obviously, both the fractional
circuits modeling and design motivate the need to study
the synthesis methods for fractional circuits. At present,
several attempts into this goal have been done. In [45], [46],
the necessary and sufficient conditions for the realization of
FO impedance function with a passive RLC biport termi-
nated one fractional element is found. By transforming the
immittance function to multivariable positive-real function,
a synthesis method for a class of FO immittance function is
proposed in [47], where the n-variable positive-real function
Z (p1, p2, · · · , pn) contains a high-order variable and n-1
one-order variables p2, p3, · · · , pn, and for i = 2, 3, · · · , n,
∂Z (p1, p2, · · · , pn) /∂pi = ± (a perfect square). The
positive-real property and passivity of the FO circuits were
discussed in [48]–[50].

In multivariable synthesis theory, Ozaki and Kasami [51]
firstly introduced the concept of positive real functions of
several variables in 1960, and then multivariable synthesis
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theory has made a great progress [52]–[54]. In the case of
bivariate, [55] can realize lossless reciprocal circuit, and arbi-
trarily reactance matrix is realizable as shown in [56]. Fur-
thermore, there are some k-variable theoretically reactance
matrix synthesis methods [57], [58].

Due to the fact that the synthesis for fractional circuits is
much more complex than that for classical circuits, the pro-
posed synthesis methods for fractional circuits are only
applicable to several kinds of specific immittance func-
tion (matrix) forms. [58] shows the synthesis of two-element-
kind network, and this paper is a continue work of [58].
This paper mainly deals with the passive synthesis of FO
immittance using three kinds of elements, where the order of
fractional elements included can be any real number between
0 and 1, and the number of fractional elements is arbitrary.

The rest of the paper is organized as follows. Some prelim-
inaries are presented in Section 2. In Section 3, the method for
judging the immittance functions of FO three-element-kind
circuits is obtained. And Section 4 elaborates the synthesis
method and specific synthesis procedure for the fractional cir-
cuits composed of three kinds of element, and several exam-
ples are presented. The conclusions are drawn in Section 5.

II. PRELIMINARIES
This section is devoted to presenting some preliminaries.

Fractional Calculus is an extension of integral order cal-
culus. At present, there are three widely used definitions of
fractional differential [3], namely Riemann-Liouville (RL),
Grünwald-Letnikov (GL), and Caputo definitions. More
details can be found in [3].

The Laplace transform of fractional differential [3] at zero
initial condition is given by

L
{
0Dαt f (t)

}
= sαF (s) (1)

where 0Dαt =
dα
dtα denotes the fractional derivative operator

of order α.
In this paper, we assume that α ∈ [0, 1].
The common fractional elements are fractional capacitor

and inductor [2].
The characteristic equation of a fractional capacitor is

iα (t) = Cα
dαuα (t)
dtα

(2)

where α ∈ (0, 1] is the order of the passive fractional capaci-
tor,Cα with unit Fsα−1 denotes the pseudo-capacitance of the
fractional capacitor, uα (t) and iα (t) are respectively the volt-
age and current of the fractional capacitor. The impedance of
the fractional capacitor in the Laplace domain equals Z (s) =
1/Cαsα . The circuit symbol of the fractional capacitor [23] is
depicted in Fig. 1(a).

The characteristic equation of a fractional inductor is

uβ (t) = Lβ
dβ iβ (t)
dtβ

(3)

where β ∈ (0, 1] is the order of the passive fractional
inductor, Lβ with unit Hsβ−1 denotes the pseudo-inductance

FIGURE 1. Symbols of fractional elements. (a) Fractional capacitor.
(b) Fractional inductor.

of the fractional inductor, uβ (t) and iβ (t) are respectively the
voltage and current of the fractional inductor. The impedance
of the fractional inductor in the Laplace domain equals
Z (s) = Lβsβ . The circuit symbol of fractional inductor [23]
is depicted in Fig. 1(b).

Fractional capacitors and fractional inductors are collec-
tively referred to as fractional reactance elements (fractances
for short). Distinct with classical reactance elements, frac-
tances are lossy when the orders of the fractional elements
are in (0, 1).
Then, the definition of multivariable positive real function

and multivariable reactance function are described below.
Definition 1 [51]: Z (p1, p2, · · · , pn) is a n-variable posi-

tive real function, if
1) Z (p1, p2, · · · , pn) is a rational real function of, and
2) ReZ ≥ 0 in the domain Repi > 0 (i = 1, 2, · · · , n).
Definition 2 [51]: Z (p1, p2, · · · , pn) is a n-variable reac-

tance function, if
1) Z (p1, p2, · · · , pn) a n-variable positive real function,

and
2) Z (p1, p2, · · · , pn) = −Z (−p1,−p2, · · · ,−pn).
In this paper, the order of fractional element referred to as

the element-order. The network that the element-orders are
all the same is called the fractional commensurate network
(commensurate network for short). A network only composed
of fractances is called a FO reactance network. Differently
with the reactance network, the FO reactance network is lossy
when the orders of the fractional elements are in (0, 1).

III. JUDGEMENT METHOD OF IMMITTANCE FOR FO
THREE-ELEMENT-KIND CIRCUITS
This section discusses the method for judging the immittance
functions of FO three-element-kind circuits. The method is
obtained mainly in view of scaling impedance and variable
substitution.

Fractional three-element-kind networks have up to three
different element-orders, and thus can be classified into
three kinds of networks: three element-orders networks, for
example Lβ1Lβ2Cα , LβCα1Cα2, Lβ1Lβ2Lβ3, and Cα1Cα2Cα3
networks, two element-orders networks such as RLβCα ,
RLβ1Lβ2, RCα1Cα2, LβLαCα and LβCβCα networks, and
commensurate networks like RLβCβ networks.
Theorem: By specific impedance scaling and variable

substitution, the impedance function of FO n-element-kind
circuit Z (s) can be converted into an reactance function of
up to (n-1) variables.

Proof: For a passive circuit with n kinds of elements,
without loss of generality, we set the elements’ value to

58308 VOLUME 7, 2019



G. Liang, J. Hao: Passive Synthesis of Immittance for FO Three-Element-Kind Circuit

be 1, then the impedances of each kind of element are
sγ1 , sγ2 , · · · , sγn respectively, where −1 ≤ γ1 < · · · < γi <

· · · < γj < · · · < γn ≤ 1.
With the scaling parameter sγ , where

γ = −
(
γi + γj

)
/2, (i, j = 1, 2, · · · , n; i 6= j) (4)

the elements whose impedance are sγi and sγj can be trans-
formed into elements of order

(
γj − γi

)
/2, whose impedance

are s(γi−γj)/2 and s(γj−γi)/2. For these two kinds of elements,
we can substitute them with variable pi = s(γj−γi)/2. The
other kinds of elements can be represented by up to n-2 vari-
ables. Thus, after scaling the impedance levels of the elements
and variable substitutions, the impedance function of network
is transformed into a reactance function up to (n-1) variables.
Remark: The impedance function of FO three-element-

kind circuit can be converted into a bivariate reactance
function by suitable impedance scaling and variable substi-
tution. And there are three scaling parameters available.

Then we show the judgment method based on the remark.
The method contains the following three steps,
Step 1 Figure out scaling parameter based on the element-

orders.
Step 2 Determine if the impedance function can be

transformed to a bivariate reactance function.
Step 3 Determine whether it is a fractional three-element-

kind network.
For a impedance Z (sτ1 , sτ2 , sτ3) of the three

element-orders network, set γi = ±τi, i = 1, 2, 3, choosing
the scaling parameter sγ as s−(γ1+γ2)/2, s−(γ1+γ3)/2, and
s−(γ2+γ3)/2. Then using these scaling parameters and vari-
able substitution, transform sγ Z (sτ1 , sτ2 , sτ3) to a bivariate
reactance function Z (p1, p2). If there are three types of
scaling parameter and variable substitution that can lead a
bivariate reactance function, it should be a fractional three-
element-kind network. Moreover, if the three scaling param-
eters are γ01, γ02, γ03, then γ1, γ2, γ3 can be represented as
γ1 = −γ01 − γ02 + γ03,

γ2 = −γ01 + γ02 − γ03, γ3 = γ01 − γ02 − γ03.

For two element-orders networks, let τ3 = 0, above
method also works. As for commensurate networks, it can
be determined just using variable substitution. After the vari-
able substitution p = sβ , if the impedance of a RLβCβ
network is positive real but is not a RL,RC, or LC function
in p-plane, the network should be a fractional three-element-
kind network.

It is worth mentioning that through the synthesis method
in the next section, as long as we get a bivariate reactance
function with suitable scaling impedance and variable substi-
tution, the implementation of such function can be completed.
Example 1: Given the impedance function

Z (s) =
sτ1+2τ2+τ3 + sτ2+τ3 + 2sτ1+τ2 + 1

s2τ2+τ3 + 2sτ2
(5)

It can be observed that there are three types of scaling
parameter and variable substitution to transform (5) into a

bivariate reactance function if we set γ1 = τ1, γ2 = −τ2,
γ3 = τ3.
1) According to the Theorem, we scaling the impedance

levels of the elements with parameter sγ = s−(γ3+γ2)/2. Then
we have

sγ Z (s) =
sτ1+2τ2+τ3 + sτ2+τ3 + 2sτ1+τ2 + 1

s
3(τ2+τ3)

2 + 2s
τ2+τ3

2

Let p1 = s(γ3−γ2)/2, p2 = sγ1−(γ3+γ2)/2, we get a bivariate
function from sγ Z (s),

Z (p1, p2) =
p31p2 + p

2
1 + 2p1p2 + 1

p31 + 2p1
(6)

Obviously, Z (p1, p2) = sγ Z (s), and it is a bivariate
reactance function of p1 and p2.
The other two types of scaling parameter and variable

substitution are as follows,
2) sγ = s−(γ1+γ2)/2, p1 = s(γ2−γ1)/2, p2 = sγ3−(γ1+γ2)/2

3) sγ = s−(γ1+γ3)/2, p1 = s(γ3−γ1)/2, p2 = sγ2−(γ1+γ3)/2

and hence it is a fractional three-element-kind network.

IV. PASSIVE SYNTHESIS OF FO THREE-ELEMENT-KIND
CIRCUITS
In this section, we shall first show the synthesis method for
FO three-element-kind circuit. Then, the specific synthesis
procedure for the fractional circuits composed of three kinds
of elements is given.

A. SYNTHESIS METHOD
After getting the bivariate reactance function with suitable
transformation, we synthesis the bivariate reactance function
as a bivariate reactance network. Then, by inversely transfor-
mation, the passive fractional network is obtained.

The Lemma 1 and Lemma 2 show that a bivariate reactance
function Z (p1, p2) can be realized as a bivariate reactance
network.
Lemma 1 [55]: A bivariate reactance function Z (p1, p2)

can be decomposed as

Z (p1, p2) = Z1 (p1)+ Z2 (p2)+ Z0 (p1, p2) (7)

where Z1 and Z2 are reactance functions in p1 and p2,
respectively, and Z0 is a bivariate reactance function with no
p-independent or s-independent poles.
Lemma 2 [56]: Every bivariate reactance function

Z0 (p1, p2) can be realized as the impedance seen at the first
one-ports of a lossless (1+k)-port consisting of reactance in
the p1-plane terminated at its last k ports with unit inductors in
p2-plane. Furthermore, such a realization uses the minimum
possible number of reactance.

The synthesis procedure of Z (p1, p2) is shown as follows,

1) Decompose Z (p1, p2) as (x). And realize the univariate
reactance function Z1 and Z2 using classical synthesis
method 59].

2) Synthesize Z0 (p1, p2).
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Expand Z0 (p1, p2) in a Laurent series:

Z0 (p1, p2) = A−1 (p1)+
∞∑
l=0

Al (p1) p
−(k+1)
2 ,

Find g (p1, p2), the least common denominator of elements
in Z0 (p1, p2) and express it in the form

g (p1, p2) =
r∑

k=0

ak (p1) p
r−k
2 .

Form the (r × r) matrix Nr−1 (p1), defined by

Nr−1 =


A0 · · · Ar−1
−A1 · · · −Ar
...

. . .
...

(−1)r−1 Ar−1 · · · (−1)r−1 A2r−2

.
Factor N̂r−1(p1) = a2r0 (p1)Nr−1(p1), a polynomial matrix,

as

N̂r−1(p1) = M(p1)MT (−p1)

Unless simultaneously, a0 (p1) = −a0 (−p1) and r is odd,
in which case factor −N̂r−1(P1). The factorization must be
such that M is a (k × r) polynomial matrix with k = rank
of Nr−1 (p1) and M̃, the left inverse of M analytic in the
open right plane. The existence of such a factorization is
guaranteed by [56].

PartitionM (p1) into (1× k) blocks,

M (p1) =
[
M0 (p1) · · · M r−1 (p1)

]
Form the (r × r) matrix � (p1), defined by

� (p1) =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

−
ar
a0

−
ar−1
a0

−
ar−2
a0

· · · −
a1
a0

.

It can be verified that with

z11 = A−1 (p1) = Z0 (p1,∞) ,

z21 =
M0 (p1)
ar0 (p1)

, z12 (p1) = −zT21 (−p1) ,

and

z22 = M̃
T
(p1)� (−p1)MT (−p1) ,

where M̃
T
(p1) denotes the left inverse ofMT ,

Z0 (p1, p2) can be decomposed as follows:

Z0 (p1, p2) = z11 (p1)− z12 (p1) [z22 (p1)+ p2Ek ]−1 z21 (p1)

Then, Z0 (p1, p2) is realizable as in Fig. 2.
(3) Connect all three networks in series as shown in Fig. 3.
The given Z (p1, p2) is thus realized as a passive bivariate

network.

FIGURE 2. Realization of Z0
(
p1, p2

)
.

FIGURE 3. Realization of Z
(
p1, p2

)
.

Combining the Remark, Lemma 1, and Lemma 2,
the immitance function of a fractional three-element-kind
network can always be realized as a passive bivariate reac-
tance network. Then, by inversely transformation, a frac-
tional three-element-kind network can be obtained. And it is
passive.

B. SYNTHESIS PROCEDURE
The specific implementation steps of the FO three-element-
kind circuit are given below,

1) According to the element-order of Z (s), find possible
scaling parameters and variable substitutions.

2) Transform Z (s) into Z (p1, p2) by suitable impedance
scaling and variable substitution, and Z (p1, p2) =
sγ Z (s).

3) Realize Z (p1, p2) as a passive bivariate reactance
network.

4) Obtain the passive FO three-element-kind circuit cor-
responding to Z (s) by inversely transformation for the
bivariate reactance network.

And the process of synthesizing FO three-element-kind
network is shown in Fig. 4.

Continue to Example 1, we finish the realization of (5).
Example 2: Consider the bivariate reactance function,

Z (p1, p2) =
p31p2 + p

2
1 + 2p1p2 + 1

p31 + 2p1
(8)

Realize (8) as a passive bivariate reactance network,
as shown in Fig. 5.

By using p1 = s(τ3+τ2)/2, p2 = sτ1−(τ3−τ2)/2, we get a
network as Fig. 6. Then by means of s−γ == s−(τ2−τ3)/2,
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FIGURE 4. Process of the synthesis method.

FIGURE 5. Realization of (8) in p-plane.

FIGURE 6. Realization of (8) in s-plane.

FIGURE 7. Realization of (5) in s-plane.

the passive FO three-element-kind circuit corresponding to
Z (s) is obtained. The result is Fig. 7.
In [60], the approximation result of some supercapaci-

tors requires a fractional-order three-element-kind network
to describe [60]–[62]. The synthesis for such supercapacitors
are shown in Example 3.
Example 3:Given a two element-order impedance function

Z (s) =
3sα+0.5 + sα + 4s0.5 + 1

sα+0.5 + s0.5
(9)

For the sake of simplicity, set α = 0.9. Then, choosing
sγ = s0.45 and p1 = s0.45, p2 = s0.05, we have a bivariate
reactance function,

Z (p1, p2) =
3p31p2 + 4p1p2 + p21 + 1

p21p2 + p2
(10)

FIGURE 8. Realization of (10) in p-plane.

FIGURE 9. Realization of (10) in s-plane.

FIGURE 10. Realization of (9) in s-plane.

FIGURE 11. Voltage excitation. (a) Sinusoidal steady-state voltage.
(b) Transient voltage.

The realization of (10) is shown in Fig. 8. By using p1 =
s0.45, p2 = s0.05, we get the network drawn in Fig. 9. Then,
with the scaling parameter s−γ = s−0.45, the passive network
of (9) is obtained, which is shown in Fig. 10.

In order to valid the results of the paper, we set γ1 = 0.2,
γ2 = 0.3, γ3 = 0.7 in Example 2, and two voltage exci-
tations that shown in Fig. 11 are applied to fractional order
impedance function and fractional order network respec-
tively, then gets two voltages by frequency domain analysis.

The simulation of circuits in Example 2 and 3 are shown
in Fig. 12 and 13 respectively. The ‘‘Function Calcula-
tion’’ means mathematical calculation of fractional order
impedance function Z (s) based on I (s) = U (s) /Z (s); ‘‘Cir-
cuit Simulation’’ means fractional order network port-voltage
obtained by modified nodal approach. In Fig. 12 and 13,
‘‘Function Calculation’’ and ‘‘Circuit Simulation’’ are con-
sistent, the results of two synthesis networks are correct.
Example 4: Consider the impedance function

Z (s) =
s2τ1+2τ2 + sτ1+2τ2 + sτ1 + 1
sτ1+2τ2 + sτ1+τ2 + sτ2 + 1

(11)

By choosing sγ = s−τ1/2 and p1 = sτ1/2, p2 = sτ2+(τ1/2),
we can get the bivariate reactance function,

Z (p1, p2) = sγ Z (s) =

(
p21 + 1

) (
p22 + 1

)
(p1 + p2) (p1p2 + 1)

(12)
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FIGURE 12. Port-current response of Example 2. (a) Sinusoidal
steady-state voltage. (b) Transient voltage.

FIGURE 13. Port-current response of Example 3. (a) Sinusoidal
steady-state voltage. (b) Transient voltage.

Thenwe synthesis Z (p1, p2). The impedancematrixZ (p1)
is obtained using the method in section 4.

The Z (p1) can be verified to be lossless. According to
Lemma 2, Z (p1, p2) in (12) can be realized as a impedance
seen at the first one port and terminated at its last two ports

Z (p1) =



p21 + 1

2p1

p21 + 1
√
2p1

−
p21 + 1
√
2p1

p21 + 1
√
2p1

p21 + 1

2p1
−
(p1 + 1)2

2p1

−
p21 + 1
√
2p1
−
(p1 − 1)2

2p1

p21 + 1

2p1


by unit p2-plane inductors.
After that, by making use of p1 = sτ1/2, p2 = sτ2+(τ1/2),

the passive network of (12) is obtained. Finally, with the
scaling parameter s−γ == sτ1/2, we get the passive FO
circuit of (11).

As for the commensurate networks composed of three
kinds of elements, their immittance function can be realized
with classical synthesis method [59].

V. CONCLUSIONS
Passive synthesis of the FO three-element-kind circuits is
discussed in this paper. The FO three-element-kind circuits
are more diverse than integer-order three-element-kind cir-
cuits. It can be classified into 3 kinds of networks: three
element-orders networks, for example Lβ1Lβ2Cα , LβCα1Cα2,
Lβ1Lβ2Lβ3, and Cα1Cα2Cα3 networks, two element-orders
networks such as RLβCα , RLβ1Lβ2, RCα1Cα2, LβLαCα and
LβCβCα networks, and commensurate network like RLβCβ
network.

A method for judging the immittance functions of FO
three-element-kind circuits is given. Then, a passive synthesis
method is proposed for fractional circuits contain three kinds
of elements. Also, a specific synthesis procedure is given.

The investigation in this paper further enriched the synthesis
methods of the fractional electrical networks.
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