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ABSTRACT In this paper, a novel method to design a multifunctional metasurface (MS) is proposed and
demonstrated. Inspired by shared aperture technology, the proposed MS is integrated with both radiation
and low backward scattering performance. Each MS unit cell consists of two parts, polarization conversion
surface part and radiation part. Different from traditional MS design, the proposed two parts are integrated
together, and thus, bi-functions are realized in one surface. To acquire radiation performance, the feeding
structure is added to each radiation in part by introducing an antenna design concept. The peak gain of theMS
attains 18.1 dBi andmain-beam patterns are all along the normal direction. To obtain low backward scattering
performance, the polarization of an incident electromagnetic wave is transformed by the reflected MS.
The reflected wave will have a 180◦ phase difference through rotating the polarization conversion surface
structure. Thus, two different types of MS units are arranged in chessboard array to achieve reflection sup-
pression. The radar cross section reduction band is from 3.0 to 4.3 GHz with peak values of 7.2 and 16.8 dB.
Both the simulated and experimental results prove that our method offers a feasible strategy for the
multifunctional MS design which can lead to many exciting applications in different frequency domains.

INDEX TERMS Metasurface, shared aperture technology, radiation, low backward scattering.

I. INTRODUCTION
Metasurfaces (MSs) are normally defined as two-dimensional
surface constructed by inhomogeneous arrangements of sub-
wavelength metallic or dielectric inclusions [1]–[3]. Till now,
plenty of fascinating optical and electromagnetic (EM) phe-
nomena have been generated using MS such as anomalous
refraction/reflection [4]–[6], polarization rotation [7]–[9],
orbital angular momentum (OAM) vortex waves [10]–[12],
and surface wave conversion [13]–[17]. These features can be
achieved through flexible designs and elaborate arrangements
of MS elements. With the merits of low profile, low cost and
conformal ability, MSs have received intensive exploitation,
particularly in stealth domain [18]–[21].

There are two main types of MSs which can achieve
low scattering properties. The first one is absorbing MS
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which transforms the EMwaves into heat energy and reduces
the reflection of target. This type of MS was firstly pro-
posed by Landy in 2008 and named as perfect metamate-
rial absorber (PMA) [22]. Later, various efforts on PMA
have been made to achieve wide incidence, polarization-
insensitive, tunable, and wideband absorption [23], [24].
The second one is reflective MS which can redirect the
incident waves to non-threatening space [25], [26]. A rep-
resentative MS design for this type is the combination of
artificial magnetic conductor (AMC) and perfect electric
conductor (PEC) in a chessboard configuration [27]. Based
on this method, a series of improved reflective MSs have
been designed [28], [29]. For instances, adopting two or
three different AMC elements can broaden the low scattering
bandwidth, besides, polarization conversion surfaces (PCSs)
are also used to construct the MS [30], [31]. Recently, the
research on MS has developed rapidly. Numerous novel
MSs have aroused researchers’ widespread concern, such as
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FIGURE 1. Schematic geometry of the proposed MS unit cell. Design parameters of the elements are w = 8mm, l = 10.5mm,
h1 = 3mm, h2 = 3mm, r1 = 9.6mm, r2 = 10.8mm, g1 = 2.4mm, g2 = 3.2mm, k1 = 2mm, k2 = 2.2mm.

coding and multifunctional MS. Through adopting opti-
mization algorithms and other special design method, both
low scattering property, and other multiple functions are
obtained [32]. In summary, these pioneering MSs possess
powerful abilities to achieve low scattering performance.

As one promising application, low scattering MSs could
be utilized in stealth domain, especially reducing the
reflection of antennas. Ref. [33] loaded three-layer PMA
around guidewave solt array antennas, the in-band reflec-
tion is reduced and antenna radiation property is maintained.
Ref [34] designed a low scattering partially reflected surface
(PRS)-antenna, the antenna can achieve low scattering and
high gain properties at the same time. Besides, numerous sim-
ilar references all realized antenna low scattering properties
using different types of MSs [35]–[37]. Although the above
literatures have made great progress, the MS applications
still have some defaults. For example, the MS radiation and
scattering parts are not integrated. After loading MS, antenna
aperture usually needs to be increased to ensure radiation
properties and the design complexity raises. The shared aper-
ture (SA) technology is originally used in the field of phased
arrays. Different sized antenna patches are installed in the
same aperture area thus a space-filled design is obtained [38].
The advantage of this concept is enabling the antennas to
operate at different frequency bands and polarizations, so that
a same sized physical area could obtain more properties. Sim-
ilarly, it also has great potential to design MS with integrated
radiation and low backward scattering properties using SA
technology.

Inspired by SA technology, we propose a novel MS
with integrated radiation and low backward scattering per-
formances. Each MS unit cell consists of two structures,
PCS part and radiation part. Different from traditional MS
design, the proposed two parts are integrated in one surface to
realize different functions. To acquire radiation performance,
feeding structure is added to each radiation part by intro-
ducing antenna design concept. Concurrently, the incident
EM wave polarization is transformed after irradiating each

MS units. The reflected wave will have a 180◦ phase dif-
ference only through rotating the PCS structure. To acquire
low backward scattering performance, these two different
types of MS elements (rotating PCS part or not) are designed
and arranged in a chessboard array. Both simulations and
measurements prove the correctness of the proposed SA
MS design, which can lead to many exciting applications in
different frequency domains.

II. DESIGN AND ANALYSIS OF SHARED
APERTURE METASURFACE UNIT CELL
The key step of the MS design is that a single unit cell
should possess radiation property and the ability to manip-
ulate incident waves simultaneously. Thus the SA concept is
utilized, a PCS structure and a radiation structure are inte-
grated together, sharing the same aperture and realize differ-
ent functions. The schematic of the proposed SAMS unit cell
is presented in Fig. 1. PCS part is a two-layer structure with
patterns etched on the substrate. A spilt ring resonator (SRR)
is on the top, a complementary structure is in the middle and
a metallic ground is installed on the bottom. The substrate is
FRA with dielectric constant of 2.65, the patterns are copper
with the conductivity of 5.8 × 107 S/m and the thickness
is 0.036mm. Radiation part is a single square metal patch
with a feeding structure. The unit cell is fed with 50� coaxial
probes for the purpose of impedance matching.

Numerical simulation is carried out to investigate the per-
formance of the proposedMS unit cell by usingAnsoft HFSS.
First, the polarization conversion property is analyzed. Two
Floquet ports are adopted and periodic boundary conditions
set to its four lateral sides for modeling infinite array. The
reflection coefficients for both x- and y-polarized waves are
simulated, as shown in Fig. 2(a). rxx and ryy represent the
same polarized coefficients. ryx and rxy represent conversion
coefficients.

From 2.9GHz to 4.1GHz, ryx and rxy are higher than −
2dB which indicates most incidences have been transformed.
Fig. 2(b) shows polarization conversion rates (PCRs) of the
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FIGURE 2. Polarization conversion properties of MS unit cell.
(a) Reflection coefficient for x-polarized waves, (b) polarization
conversion rate.

proposed unit cell. It can be seen the PCRs are higher than
0.6 from 2.95GHz to 4.05GHz. At 3.05GHz and 3.85GHz,
there are two peak values closing to 1.0 which indicates
almost all incident waves have been transformed. In addition,
both the reflection coefficients and PCR curves are basically
coincident under different polarized incidences. Since the
PCS part is a symmetrical structure, the results show that radi-
ation square patch has little impact on polarization conversion
properties. To further verify the analysis, current distributions
on the top and middle layers at two resonance frequency
points are investigated. As Fig. 3(a) and 3(b) show, the current
distributions on the SRR structures are stronger than those
on the square patches. This phenomenon indicates that the
SRR structures are the main factor to realize polarization con-
version properties. At these two frequency points, different
types of resonance occur. The current distribution on the top
layer is in one direction at 3.05GHz. Two ring metal patches
can be equivalent to inductances, and two gaps between
the patches can be equivalent to capacitances. At 3.85GHz,
the current direction is opposite. At present, two ring metal
patches can be equivalent to two symmetrical dipoles. Conse-
quently, we can conclude that a capacitance-inductance type
resonance occurs at 3.05GHz and a dipole type resonance
occurs at 3.85GHz. Owing to these two different resonance
forms, such wideband polarization conversion properties can
be achieved. As can be seen in Fig. 3(c) and 3(d), the current
distributions on the middle layer are different from those on
the top layer, which indicates that interaction is produced

FIGURE 3. Current distributions of MS unit cell for x-polarized waves.
(a) Top layer and (b) middle layer current distributions at 3.05GHz. (c) Top
layer and (d) middle layer current distributions at 3.85GHz.

FIGURE 4. Reflection properties of MS unit cell before and after rotation.
(a) Reflection phases and coefficients, (b) phase difference.

between them. Therefore, the correctness of the proposedMS
design is further verified.

Through rotating PCR part of the proposed MS unit cell,
an obvious phase difference will exist between the two
structures, as shown in Fig. 4(a). For x-polarized incident
wave, reflection coefficients of two curves are basically
coincident. The reason is that the designed PCS part is a
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FIGURE 5. Radiation properties among three different unit cells.
(a) Reflection coefficients. (b) 2D radiation patterns at resonant
frequencies. (c), (d), (e) 3D radiation patterns at resonant frequencies.

symmetrical structure. Reflection phases of two structures
have a difference nearly to 180◦, shown in Fig. 4(b). The
simulated results agree well with theoretical analysis [39].
Thus, the scattering properties of the whole MS array can be
manipulated through arranging these two different units into
different sequences [32].

Once the feeding structure is excited, the MS unit cell
can be regarded as an antenna element with radiation perfor-
mance. For the whole MS unit cell, the radiation part is the
main factor while the PCS part affects smaller on radiation
properties. In order to make a more detailed explanation
on radiation properties, a comparison among original MS

FIGURE 6. Schematic geometry of chessboard configuration MS array.

FIGURE 7. Radiation properties comparison between AEMS array and
reference array. (a) Reflection coefficients. (b) 2D radiation patterns at
7.7GHz and 7.8GHz. (c) Geometry of reference array. (d) Current
distributions on AEMS array at 7.7GHz. (e) Current distributions on
reference array at 7.8GHz.

unit cell, PCS part rotation unit cell and a single radiation
patch unit cell is analyzed, as shown in Fig. 5. Reflec-
tion coefficients of three units are in a basic coincidence.
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FIGURE 8. Scattering properties comparison between MS array and reference array. (a) Monostatic RCS under x-polarized incidence. (b) Monostatic
RCS under y-polarized incidence. (c) 3D scattering fields of MS array and reference array at 3.1GHz, 3.65GHz and 3.95GHz.

The resonant frequency for the single patch unit is 7.8GHz.
And for original unit and PCS rotation unit, the resonant
frequency points are all 7.78GHz. Antenna gains in normal
direction are also simulated, which are conforming to reflec-
tion coefficients. From the above analysis, it can be concluded
good impedance matching are achieved. Fig. 5(b) shows 2D
radiation patterns of three units at their resonant frequency
points in xoz and yoz planes. For all of the three units,
the beamwidths in yoz plane are slightly wider than the beam
widths in xoz plane which depends on the shape of the square

patch and the position of feeding structure. 3D radiation pat-
terns are also simulated, as shown in Fig. 5(c)-(e), we can see
that the peak radiations are achieved in the broadside direc-
tion and the three units all achieve good radiation properties.

III. RADIATION AND LOW SCATTERING PERFORMANCE
OF SHARED APERTURE METASURFACE ARRAY
As analyzed above, the proposedMS unit cell possesses good
radiation property and the ability to manipulate reflection
phases. To achieve radiation and low scattering performances

VOLUME 7, 2019 56551



C. Zhang et al.: SA MS for Bi-Functions: Radiation and Low Backward Scattering Performance

simultaneously, the famous chessboard configuration of MS
array is presented. Fig. 6 show the schematic geometry of the
proposed MS array which consists of 4 × 4 unit cells. The
whole array is divided into four regions. In region 2 and 4,
PCS parts of the units have been rotated 90◦ to have a phase
difference with those in region 1 and 3. For the proposed MS
array, reflection can be suppressed based on phase cancella-
tion principle, concurrently, good radiation performance can
be maintained due to the slight influence of PCS parts.

Radiation performances of MS array are firstly analyzed.
The comparison between the proposed MS array and a refer-
ence array is presented. As shown in Fig. 7(c), the reference
array contains 4 × 4 square patches without PCS parts.
Fig. 7(a) shows reflection coefficients of the proposed two
arrays, a random unit is selected in each region. For MS
array, four curves coincide well with each other, the res-
onant frequency point is 7.7GHz. For the reference array,
reflection coefficients values are lower and the resonant fre-
quency point is about 7.8GHz. The comparison of 2D radia-
tion patterns at resonant frequencies is depicted in Fig. 7(b).
The main-beam patterns are all along normal direction. The
peak gain of MS array is 18.1dBi while the reference array
attains 20.1dBi. Side lobe levels of MS arrays are relatively
low although they are slightly higher than those of reference
array. Current distributions of two arrays are also investi-
gated, as shown in Fig. 7(d) and 7(e). For the proposed two
arrays, intense currents are all observed on square patches at
7.7GHz and 7.8GHz. However, slight currents are produced
on PCS parts for MS array. Coupling effect occurs between
radiation patches and PCS parts.

The phenomenon also explains the reason that little dif-
ferences between MS and reference array in reflection coef-
ficients and radiation patterns. To sum up, the proposed SA
MS array performances good radiation performance.

Scattering performances of two arrays are also analyzed.
Figs. 8(a) and 8(b) show the comparison of monstatic radar
cross section (RCS) properties. It can be seen the RCS
of AEMS array has a remarkable reduction from 2.9GHz
to 4.2GHz under x-polarized incident waves. The reduc-
tion peak values attain 10.1dB and 17.2dB at 3.1GHz and
3.95GHz respectively. The results under y-polarized inci-
dences are similar with those under x-polarized incidences’,
the RCS reduction band is from 3.0GHz to 4.3GHz with peak
values of 7.2dB and 16.8dB. The reason is that MS unit PCR
value at these two points are relatively high, most reflected
waves are transformed and cancelled. To further reveal the
reason of low backward scattering properties, scattering fields
of two arrays at 3.1GHz, 3.65GHz and 3.95GHz are simulated
respectively in uv-plane (u = sinθ · cosϕ, v = sinθ · sinϕ),
as shown in Fig. 8(c). For the reference array, the main
reflected lobes are all in the normal direction with relatively
high values. However, for the AEMS array, the scattering
fields are different. At 3.95GHz, the main reflected lobes are
dispersed to four quadrants, ϕ = 45◦, 135◦, 225◦ and 315◦.
The phenomenon indicates that the reflection reduction is

mainly achieved based on phase cancellation. At 3.1GHz,
strong scattering fields are in diagonal distribution, and the
reflected lobes in normal direction are reduced effectively.
At 3.65GHz, the low backward scattering property is not
obvious. As can be seen in the fields, only a small part of
reflected energy has been dispersed to four quarters, and
the main lobe levels are relatively high. The reason is that
the unit PCR at this point is relatively low. Owing to the
symmetrical structure of AEMS unit cell, the scattering fields
under x-polarized and y-polarized incidences are basically
consistent with each other.

From the above analysis, it can be concluded that low back-
ward scattering performances of AEMS array are achieved.

FIGURE 9. Prototypes of proposed MS and reference array. (a) Fabricated
sample. (b) Test environment.

IV. SAMPLE FABRICATION AND EXPERIMENTS
To validate the performances mentioned above, we fabricated
both MS array and reference array, as shown in Fig. 9(a).
Two power dividers are exploited to equally distribute the
input power. The vector network analyzer Agilent N5230C
has been utilized to obtain the experimental data. Fig. 10(a)
gives the measured reflection coefficients of the proposed
two arrays. Similar with the simulated situation, four random
units in each region are selected. The resonant frequencies
of two arrays are almost close to 7.9GHz and 7.95GHz
respectively. The measured results agree well with simula-
tions, indicating that good impedance matching of MS array
is observed. The comparison of normalized gain between
two arrays is presented in Fig. 10(b). To eliminate noise
interference, the testing results are measured in the anechoic
chamber. It can be seen that main-beam patterns of two arrays
are all along normal direction. ForMS array, the side lobes are
slightly higher than those of reference array. The agreement
can be found between measured and simulated results.

Scattering performances of MS array for normal incident
waves are also measured. Reflection reduction properties
compared to reference array are depicted in Fig. 11. For
x-polarized incident waves, the reflection reduction band is
from 2.8GHz to 4.4GHz with peak value of 20dB. And for
y-polarized incidences, obvious reduction is from 3.0GHz
to 4.5GHz. The peak reduction value attains 19.5dB at
4.0GHz around. Measured results indicate that low backward
scattering performances are achieved. However, compared
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FIGURE 10. Measured radiation properties. (a) Reflection coefficients.
(b) Radiation patterns at 7.9GHz and 7.95GHz.

FIGURE 11. Measured reflection reduction. (a) Under x-polarized
incidences. (b) Under y-polarized incidences.

with simulations, the measured results have some enhanced
RCS points, especially in upper and lower bands of the chart
and 3.5GHz around. The error is caused by the measurement
noises and fabrication tolerance. In our future work, we will
try to overcome these problems.

V. CONCLUSION
In conclusion, we proposed a novel method to design MS in
this paper. Inspired by shared aperture technology, the MS
possesses multiple functions, including radiation and low
backward scattering performances. The MS unit consists of
PCS part and radiation part, which are integrated together
and can realize different functions. Radiation performance is
achieved through adding feeding structure to each MS unit.
Currently, two different MS units are arranged in chessboard
array to realize low backward scattering performance. Both
simulated and measured results show that good impedance
matching and radiation performance are achieved. Moreover,
the proposed MS possess low backward scattering properties
compared with a reference array. It is worth noting that
more various functions can be achieved through changing the
arrangement of MS units, such as polarization conversion,
anomalous reflection and diffusion. To sum up, this work
provides an effective method to design multifunction MS and
will lead to many exciting applications in different frequency
domains.
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