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ABSTRACT In compressed sensing (CS), the absolute value of the inner product of signal and atom
(or dictionary) is used to select atom (or dictionary); the atoms (or dictionaries) with larger absolute values
of inner product are selected to decompose and reconstruct signals. This characteristic usually makes it
impossible to distinguish the edges of objects (or targets) in some complex cases, especially when the density
of objects is very high. For example: let signal x1 = [· · · 00110110 · · ·]T , x2 = [· · · 001110100 · · ·]T ; ψ1,
ψ2, ψ3 and ψ4 denote several sparse basis matrices (i.e., sparse dictionaries); ψ1i = [· · · 00000100 · · ·]T ,
ψ2j = [· · · 00110000 · · ·]T , ψ3k = [· · · 00111000 · · ·]T , and ψ4l = [· · · 00111110 · · ·]T are the sparse bases
(i.e., atoms) from these sparse basis matrices (i.e., dictionaries), respectively. For signal x1, ψ4l (or ψ4) is
selected instead of ψ2j (or ψ2); likewise, for x2, ψ4l (or ψ4) will be selected instead of ψ3j(or ψ3) and ψ1i
(or ψ1). This causes the edge of the object to be unrecognizable. Another example is in lp regularization,
it is not necessarily the optimal case: the smaller the value of ‖9−1d x‖0, the better the sparse basis matrix
(i.e., dictionary), or the larger the weighing parameter. At present, the inner product is used to process
almost all signals in CS. Choosing the dictionary that matches the signal best rather than the dictionary
with the maximum inner product value can reconstruct the signal more accurately. In order to overcome
the above shortcoming, we propose a fully automatic radar image processing algorithm of CS based on
arbitrary block statistical histogram and dynamic dictionary. We use arbitrary block statistical histogram to
calculate the non-zero block numbers of different sizes, which can better choose the appropriate sparse base
(or dictionary) for the signal. Furthermore, the better measurement vector y can be obtained, and the signal
can be reconstructedmore accurately than the state-of-the-art methods at the receiving end. To realize the pro-
posed method, we construct objective functions and flow charts for noiseless and noisy signals, respectively.
In our method, for noiseless signal, discarding the sub-images that do not contain objects can reduce running
time; for noisy signal, according to the theory of wavelet, choosing the appropriate wavelet (i.e., wavelet
basis) can usually suppress noise. Our proposed algorithm can overcome the above shortcoming of CS in
using the absolute value of the inner product, reduce running time, suppressnoise, and improve the signal-to-
noise ratio (SNR). The simulation results show that our method is superior to the state-of-the-art methods.

INDEX TERMS
Compressed sensing (CS), inner product, shortcoming, arbitrary block statistical histogram, dynamic
dictionary, stagewise orthogonal matching pursuit algorithm (StOMP).

I. INTRODUCTION
In signal processing, the precondition of applying CS [1] is
that the signal is sparse, or the signal can be transformed into

The associate editor coordinating the review of this manuscript and
approving it for publication was Khalid Aamir.

sparse signal by some transformation. Because not all images
are sparse in nature, when CS is used to process non-sparse
signals, sparse transform is needed to transform the signals
into sparse signals. The common sparse transforms of signal
include discrete cosine transform (DCT), wavelet, curvelet,
overcomplete dictionary decomposition, etc. Wavelet basis is
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the natural sparse basis of signal, and its effect is very good.
Generally speaking, with the increase of wavelet decompo-
sition levels in a certain range, the SNR of signal will be
improved gradually. Signal decomposition and reconstruc-
tion methods are mainly classified into three categories:
basis pursuit (BP) [2], [3], greedy method [4]–[7] and other
methods [8]–[10].

A. BASIS PURSUIT
At present, much attention is given to underdetermined
inverse problems in academic and industry communities
because of their many potential applications, such as com-
pressed imaging for radar [11], [12], and other meth-
ods [13]–[17]. CS can reconstruct high-dimensional signal
from under-determined equation

y = 8x + n (1)

where y ∈ CM×1 is the measurement vector; 8 ∈ CM×N ,
M << N is a given measurement matrix; x is the estimated
signal and n ∈ CN×1 represents the noise term. The recon-
struction problem can be solved well theoretically using the
so-called l0 regularization described as

x̂l0 = argmin
x

{
γ ‖y−8x‖22 + λ ‖x‖0

}
, (2)

in which ‖x‖0 = | supp(x)| denotes the l0-norm that counts
the number of non-zero components. If the signal x is not
sparse, a sparse transformation dictionary 9 ∈ RN×N is
needed to transform x into a sparse signal. The l0-norm reg-
ularized optimization problem in (2) is an NP problem [18].
As a relaxed method, the l1-norm regularization is the most
popular alternative. However, the alternative of l1 regular-
ization can only obtain a suboptimal solution [19]. The
lp(0 < p < 1) quasi-norm regularization [20], [21] is used
which can take advantage of more sparse information, espe-
cially in the presence of strong noise interference. When
p ∈ (1/2, 1], the lp regularization will yields a sparser
solution. Hence l1/2 regularization is often regarded as a typ-
ical case for discussion in lp-norm regularization. Recently
the half thresholding algorithms are proposed to solve the
non-convex l1/2 regularization problem [22], [23]. A CS
signal reconstruction using l0 norm regularization least mean
fourth algorithms is present in [24], which based on stochastic
gradient to reduce complexity can effectively mitigate cer-
tain impulsive noise. A recovery method of block-structured
sparse signal using block-sparse adaptive algorithms via
dynamic grouping is proposed in [25], which classify the
block signals s[i](n) into three sets; and three correspond-
ing regularization parameters are given to recover the signal
respectively. In [26], a multiple sub-wavelet-dictionaries-
based adaptively-weighted iterative half thresholding algo-
rithm is proposed (MUSAI-L1/2); it further exploits the prior
knowledge of the estimated signal for sparse recovery based
on the strategy of multiple sub-wavelet-dictionaries. It use the
fact that the values of ‖9dx‖ will vary across the dictionary
9d , where9d , d = 1, 2, 3, · · · , denote the wavelet dictionar-
ies of different waveforms. E.g.,91 uses ‘db1’ wavelet bases,

92 uses ‘db2’,93 uses ‘db3’, · · · . The optimization strategy1

is described as

x̂d,l1/2 = argmin
x

{
γ ‖8x − y‖22 +

D∑
d=1

λd ‖9dx‖
1/2
1/2

}
, (3)

in which a suitable regularization parameter λd is used to
weight the proposed sub-wavelet-dictionary l1/2- regulariza-
tion, where

λ
(t+1)
d ←

Ld

ε +
∥∥9dx(t)

∥∥1/2
1/2

, (4)

t is the number of iterations for a given x.
A method of CS radar imaging with magnitude sparse rep-

resentation is proposed in [27], which presents an improved
framework to handle the magnitude and phase of the scene
separately. In [28], compressed image sensing by jointly
leveraging multi-scale heterogeneous priors for the inter-
net of multimedia things is proposed, which proposes an
image reconstruction algorithm by jointly leveraging multi-
scale (local and global) heterogeneous (statistical and struc-
tural) priors of natural images, named jointly leveraging
statistical and structural priors for CS image reconstruction
(JLSSP-CS). In [29], a method of inexact gradient projection
and fast data driven CS is proposed. A method of wavelet
tree support detection for CS (magnetic resonance imaging)
MRI reconstruction is proposed in [30], in which iterative
weighting is applied to parent-child pairs in order to preserve
fine details in the reconstructed outputs.

B. GREEDY AND OTHER METHODS
On the other hand, block sparse signals are studied. The block
sparsity signal means non-zero entries of x are distributed in
the form of blocks in a signal vector (see Figure 1 in which
three kinds of sparsity patterns are depicted: same size block
sparsity, arbitrary block sparsity, and arbitrary sparsity).

FIGURE 1. Diagram of different sparse vectors. Each colored square
stands for one non-zero entry. (a) Same size block sparse signal.
(b) Arbitrary block sparse signal. (c) Arbitrary sparse signal.

In this paper, we define that it is a special form of arbitrary
block sparse signal that the size of non-zero block is 1.
In practice, most of the man-made signals conform to the
block sparsity pattern, such as cognitive radio [31], [32], neu-
romagnetic imaging [33], andwideband communication [34].

1In order tomaintain the consistency of the representation ofmathematical
symbols, in Formula (3), should be expressed as in this paper. However, in
order to respect references, when citing the formulas of references, we have
not changed them in this paper.
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Therefore, many algorithms [35], [36], [37]–[40] focus on
the block-sparse reconstruction (BSR). Nevertheless, almost
all of them have a very strict requirement that the target signal
should have the same size blocks. Block sparse signal recon-
struction based on block sparse adaptive filtering algorithms
are proposed in [41], [42], and good results are achieved
under different sparsity. In [43], arbitrary block-sparse sig-
nal reconstruction based on incomplete single measurement
vector is proposed, which has good performance; they use a
fixed dictionary in signal processing.An algorithm of on-chip
neural data compression based on CS with sparse sensing
matrices is proposed in [44], which aims at measurement
matrices to reduce area and total power consumption.

A method of fast super-resolution ultrasound imaging with
CS reconstruction method and single plane wave transmis-
sion is proposed in [45]. In [46], a method of binary matrices
for CS is proposed, it proposes a new performance parameter
the minimal column degree d which performs better than the
known coherence parameter, namely the maximum correla-
tion between normalized columns; it has good recovery per-
formance. It is also for sensing matrix A in formula y = Ax.

A method of adaptive matrix design for boosting CS is
proposed in [47]. The aim of this paper is to make a step
further in the field of encoder-side optimization. In formula
y = Ax = Aψθ , it aims at designing sensing matrix A.

C. PROBLEM AND OUR CONTRIBUTIONS
The absolute value of the inner product of CS is used to
select atoms (or dictionaries) or set weighting parameters
of regularization terms in almost all the above methods.
Atoms (or dictionaries) with larger absolute values are used
to decompose and reconstruct signals. When the density of
small objects is very high, this makes it difficult to rec-
ognize the edges of small targets. For example: let signal
x1 = [00110110 · · ·]T x2 = [00111010 · · ·]T ; ψ1, ψ2, ψ3
and ψ4 are several sparse basis matrices (i.e., sparse dictio-
naries); ψ1i = [00000100 · · ·]T , ψ2j = [00110000 · · ·]T ,
ψ3k = [00111000 · · ·]T and ψ4l = [00111110 · · ·]T

are the sparse bases (i.e., atoms) of these sparse basis
matrices (i.e., dictionaries) respectively. For signal x1, ψ4l
(or ψ4) is selected instead of ψ2j (or ψ2); likewise, for
x2, ψ4l (or ψ4) is selected instead of ψ3j (or ψ3) and ψ1i
(or ψ1). This causes the edge of the object to be unrec-
ognizable. Another example is in lp regularization, it is
not necessarily the optimal case: the smaller the value∥∥∥9−1d x

∥∥∥1/2
1/2

, the better the sparse basis matrix (i.e., dictio-

nary), or the larger the weighing parameter. Choosing the
dictionary that matches the signal best rather than the dictio-
nary with the maximum value can reconstruct the signal more
accurately.

In marine radar images, people are more concerned about
the size and edge of the object (or target) (e.g., boat, ship,
island, etc.) than the magnitude of pixel in object (or
target). And maritime radar image usually has binarization
characteristics.

In view of the above situations, combing the concepts
of arbitrary block sparse signal and multiple sub-wavelet-
dictionaries, we propose a fully automatic radar image pro-
cessing algorithm of CS based on arbitrary block statistical
histogram and dynamic dictionary. The main contributions of
our work include:

1) We propose a fully automatic radar image processing
algorithm of CS based on arbitrary block statistical histogram
and dynamic dictionary, which can overcome the above short-
coming of CS in using the absolute value of the inner product.

2) We construct objective functions for noiseless and noisy
signals respectively to determine which method will be used
to each sub-image.

3) Through the simulation experiments of various radar
images under different SNR, we get the optimal binarization
threshold which can eliminate the noise interference in estab-
lishing arbitrary block statistical histogram.

4) We establish the arbitrary block statistical histogram
eliminated noise interference, which can quickly and effi-
ciently recognize the local characteristics of sub-images and
choose the appropriate sparse base (or dictionary) for signals.

5) To our knowledge, we first introduce the statistical
histogram of arbitrary non-zero blocks into maritime radar
images of CS.

6) Through simulation, we prove that Haar wavelet is
usually more effective than other wavelets in maritime radar
image processing.

The algorithm we proposed can reduce running time, sup-
press noise and improve the SNR of images than state of the
art methods. Simulation results are shown to demonstrate the
validity of the method we proposed.

The remainder of the paper is organized as follows. In the
next section, several existence works and a reconstruction
method. In Section III, mathematical theory of our proposed
method is presented. The method we proposed is elaborated
in Section IV. Section V is simulation results. Finally, we con-
clude in Section VI.

II. SEVERAL EXISTENCE WORKS AND
A RECONSTRUCTION METHOD
A. SEVERAL EXISTENCE WORKS
1) MUSAI-L1/2:MULTIPLE SUB-WAVELETDICTIONARIES-
BASED ADAPTIVELY-WEIGHTED ITERATIVE HALF
THRESHOLDING ALGORITHM FOR
COMPRESSIVE IMAGING
The Multiple MUSAI-L1/2[27] utilizes a suitable regular-
ization parameter λd to weight the proposed sub-wavelet-
dictionary L1/2-regularizer; the optimization strategy is
described as

_xd,l1/2 = argmin
x
{γ ‖8x − y‖ 22 +

∑D

d=1
λd ‖ψdx‖

1/2
1/2

}
,

(5)

in which ψd , d = 1, 2, · · · , denote sub-wavelet-dictionaries,
λd , d = 1, 2, · · · , denote the regularization param-
eters for each L1/2-regularizer of ‖ψdx‖

1/2
1/2. And the
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sub-wavelet-dictionaries based λ1/2-regularizer RMUSAI(x)
can be described as

RMUSAI (x)=
D∑
d=1

λd‖ψdx‖
1/2
1/2

= λ1‖ψ1x‖
1/2
1/2+ λ2‖ψ2x‖

1/2
1/2+ · · ·+ λD‖ψDx‖

1/2
1/2

(6)

The MUSAI-L1/2 algorithm for solving is

x t+1 = argmin γ ‖8x − y‖22 +
∑D

d=1
λd ‖ψdx‖

1/2
1/2. (7)

The detailed steps of the algorithm are as follows:
• Input: the sub-wavelet dictionaries {ψd }Dd=1, the mea-
surement y, the measurement matrix 8; Ld ; γ = 1;
ε > 0;

• Initialization: t=0; x1 = 0, ε = 0.01; τ = 1−ε
‖8‖2

; λ1d = 1;
• for t = 1, 2, 3, · · · ;

• x t+1← argmin γ ‖8x − y‖22 +
D∑
d=1

λd ‖ψdx‖
1/2
1/2;

• compute λ(t+1)d ←
Ld

ε+‖ψd x(t)‖
1/2
1/2

;

• end;
• Output x t ;
The adaptive weighting parameter λd,1/2 plays a key role

in the optimization progress, which not only weight the
contribution of each regularization term, but also control
the tradeoff between the fidelity and prior knowledge term.
The method usually can obtain the optimal solution when the
measured value y is known.

However, according to the characteristics of maritime radar
images, local feature may be single. For example, there are
only a lot of small targets with very high density in a sub-
image. The smaller the value of

∥∥∥9−1d x
∥∥∥
0
, the larger the

weighing parameter; it makes the boundary of the object
unrecognizable; of course, it may reduce the SNR. Our
method first uses statistical histogram of arbitrary non-zero
block to judge the local characteristics of the marine image,
so as to better select sparse basis dictionary and get an
optimal measurement vector y in signal sampling. As long
as the signal satisfies the reconstruction condition of phase
diagram [48], it usually can be better reconstructed at the
receiving end. It also can reduce running time.

2) ARBITRARY BLOCK-SPARSE SIGNAL RECONSTRUCTION
BASED ON INCOMPLETE SINGLE MEASUREMENT
VECTOR (BMP)
BMP [44] estimates the sparsity of the signal, and provides
the relationship among the step size, sparsity and sizes of the
non-zero blocks. And it utilizes the RIP instead of block-RIP
to analyze the behavior of BMP. The BMP gives the condi-
tions to ensure the recovery of the signal and can improve
the SNR.

But this method uses the absolute value of the inner product
to select atoms, it chooses the larger absolute values of inner

product to decompose and reconstruct signals. If there are
only a lot of small targets with very high density, it also makes
the boundary of the object unrecognizable. And multiple
sub-dictionaries are not used; this shows that the method has
room to further improve the SNR.

Ourmethod does not need to estimate the sparsity. In signal
sampling, we use statistical histogram to judge the local
characteristics of the signal, so as to select a suitable sparse
basis (or dictionary) and get a better measurement value y,
which can better reconstruct the signal at the receiving end.

3) ADAPTIVE MATRIX DESIGN FOR BOOSTING
COMPRESSED SENSING
A method of adaptive matrix design for boosting CS is pro-
posed in [47]. The aim of this paper is tomake a step further in
the field of encoder-side optimization. In formula y = Ax =
Aψθ , it aims at designing sensing matrix A and proposes two
novel methods. The first approach (Nearly Orthogonal CS) is
based on a geometric constraint enforcing diversity between
compressed measurements. NeO-CS relies on off-line proce-
dures to tune sensing matrix A to signal X. Then the sec-
ond approach is described: the alignment of the rows of A
with directions of x is achieved by looking at the m rows
that, among M candidates (with M > m), have the largest
energy. They refer to this technique as Maximum-Energy
CS (Max-CS). The main advantage of the Maximum-Energy
approach is the adaptability of the sensing procedure to each
signal instance without any requirement on the knowledge of
the statistic of input signal class. In other words, Max-CS is
a run-time self-adapting CS encoder.

These methods have obvious advantages when the energy
of the sensing end is limited. When we compare these meth-
ods, we regard them as a method, namely, Adaptive Matrix
Design (AMD); and only compare with the better results of
them.

4) WAVELET TREE SUPPORT DETECTION FOR COMPRESSED
SENSING MRI RECONSTRUCTION
Amethod of wavelet tree support detection for CS (magnetic
resonance imaging) MRI reconstruction is proposed in [31].
In [31], A priori knowledge of the signal/image support based
on its statistical and structural information in the transformed
domain improves the quality of CS reconstruction. Hidden
Markov tree models the wavelet domain support of magnetic
resonance images obtained from under sampled k-space data
very well. With the support information, parent-child pairs
in the wavelet tree are detected accurately; then iterative
weighting is applied to parent-child pairs in order to preserve
fine details in the reconstructed outputs. And hence, iterative
regularization problems for CS-based magnetic resonance
imaging reconstruction are solved with high throughputs.

Because this method is very good and there are similarities
betweenmarine radar image andMRI image, so our proposed
method compared with it.
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FIGURE 2. Overall flow chart of the method proposed in this paper.

B. A RECONSTRUCTION METHOD
In order to process the real-time image sequence, this paper
uses Stagewise OMP [48] to reconstruct the signal.

Stagewise OMP doesn’t need to know sparsity k.
In MATLAB program, the Stagewise OMP function is
described as follows: [theta]=CS_StOMP (y, A, S, Th),
where y is the measurement vector, A is the sensing matrix,
S is the maximum number of StOMP iterations to perform,
Th is the threshold parameter; The default value of S is 10;
Th = ts · σs; ts takes values in the range ts ∈ [2, 3], and the
default value is 2.5.

If the signal is not sparse, the reconstructed signal becomes
worse. It can be transformed into sparse signal by wavelet
transform, and thus satisfy the reconstruction condition of
Stagewise OMP.

There are usually the following input and output variables:
Input:
(1) The sensing matrix is A = ϕφ,A ∈ RM×N .
(2) y denotes the observation vector, where y ∈ RM×1.
(3) The iteration number is S.
(4) Ts is the threshold parameter.
Output:
(1) The estimated coefficient of signal sparse representation.
(2) The residual is rs = y− Asθ̂s, rs ∈ RM×1.
Let’s assume that: rt denotes the residual, t denotes the

number of iteration, ϕ is the empty set. J0 is the new index
(serial number) set of ‘large’ coordinates obtained in each
iteration. 3t is the union of all index sets J0 after t itera-
tions. aj denotes the j column of A. At denotes the column
set selected from A according to the index set 3t . θt is a
column vector of Lt × 1 dimension. Symbol ∪ represents
union. 〈, 〉 represents the inner product of the vector. And
abs represents the modulus (absolute value). The steps of
Stagewise OMP reconstruction algorithm are as follows:

Initialization: r0 = y,30 = ϕ,A0 = ϕ, t = 1.
(1) Calculate u = abs[AT rt−1] (i.e., calculate〈

rt−1, aj
〉
, 1 ≤ j ≤ N ), select the values of u that are greater

than the threshold Th. The corresponding column number j
of A of these values consist the set J0 (i.e. column number
set).

(2) Let 30 = 3t ∪ J0,At = At−1 ∪ aj, (for all j ∈ J0); if
3t = 3t−1 (i.e., no new column is selected), stop iteration
and enter step (7);

(3) Find the least square solution of equation y = Atθt :
_

θ t = argmin
θt

‖y− Atθt‖ =
(
ATt At

)−1 ATt y
(4) Update residual rt = y−At

_

θ t = y−At
(
ATt At

)−1 ATt y;
(5) t = t + 1, if t ≤ S, return to step (2) and continue

iteration. If T > S or residual rt = 0, stop iteration and enter
step (7);

(6) Reconstruct all non-zero terms of
_

θ at3t , whose values
are

_

θ t obtained by the last iteration.

III. MATHEMATICAL THEORY OF
OUR PROPOSED METHOD
In CS, mathematical formula can be expressed as

y = 8x + n, (8)

where y ∈ CM×1 is the measurement vector; 8 ∈ CM×N ,
M << N, is a given measurement matrix; and n ∈ CN×1

is the noise term. If the signal is not sparse, a sparse trans-
formation matrix is needed to transform the input signal x
into a sparse signal. Assuming thatψ is a sparse basis matrix,
the sparse transformation is shown in formula (9).

x = ψθ (9)

At present, the inner product is used to choose sparse basis
matrices (i.e., dictionaries) for almost all signals; atoms (or
dictionaries) with larger absolute value of inner product
will be selected to decompose and reconstruct signals. For
example

if max
{
|〈ψT

i1.x〉|, |〈ψ
T
i1.x〉|, · · · , |〈ψ

T
i1.x〉|

}
= |〈ψT

i1.x〉|,

(10)

ψii will be selected to decompose and reconstruct the sig-
nal x; in formula (10), ψi is a sparse matrix, ψij is a sparse
basis (i.e., atom). The sparse representation of signal x is as
follows:

x = ψ.θ =
K∑
m−1

ψim.θm. (11)

The smaller the K value, the better the effect of sparse repre-
sentation; this is what CS always pursues.

A. PROBLEMS
But in some special cases, this causes the edges of the objects
to be unrecognizable, especially when the density of objects
is very high.

1) For example, let signal x1 = [11011000 · · · ]T , x2 =
[11101000 · · ·]T , x1, x2 ∈ RN×1; ψ1 ∈ RN×M , ψ2 ∈

RN×M , · · · , ψ6 ∈ RN×M (M and N are positive integers,
usually M = N) are sparse basis matrices (i.e., dictionaries)
with the base whose size of non-zero blocks are 1, 2, · · · , 6,
respectively; ψ = [10000000 · · · ]T , ψ = [11000000 · · · ]T ,
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ψ = [11100000 · · · ]T and ψ = [10000000 · · · ]T , · · · ,ψ =
[11111110 · · · ]T are the sparse bases (i.e., atoms) from these
sparse basis matrices (i.e., dictionaries) respectively. For sig-
nal x1,ψ5i (orψ5) is selected instead ofψ2j (orψ2); likewise,
for x2, ψ5m (or ψ5) is selected instead of ψ1i (or ψ1) and ψ3k
(or ψ3).

2) Another example is in lp regularization. When there is
more than one dictionary for people to choose from,

if

min
{∥∥∥9−11 x

∥∥∥
p
,

∥∥∥9−12 x
∥∥∥
p
, · · · ,

∥∥∥9−1n x
∥∥∥
p

}
=

∥∥∥9−1j x
∥∥∥
p

(12)

the dictionary 9j will be selected to decompose and recon-
struct signal x; but in some special cases, this is not the best
choice.

3) The third example is multiple dictionaries in lp regular-
ization. As shown in Formula 13,

x̂ = argmin
x

{
γ ‖8x − y‖pp +

D∑
d=1

λd

∥∥∥9−1d x
∥∥∥p
p

}
(13)

it is not necessarily the optimal case: the smaller the value

of
∥∥∥9−1d x

∥∥∥1/2
1/2

, the larger the weighting parameter. In some

special cases, for example, if the local density of small objects
is very high, it is usually occur that the most appropriate
sparse dictionary cannot have the largest weighting param-
eter. Choosing the dictionary that matches the signal best
rather than the dictionary with the maximum sparsity can
reconstruct the signal more accurately.

B. SOLUTION
In order to overcome the above shortcomings, according to
the characteristics of maritime radar images, we propose
the method of calculating the percentages of different size
non-zero blocks and choosing the appropriate sparse base (or
dictionary). The percentage of some size non-zero blocks is

p(i) =
N (i)

K1×K2∑
i=2

N (i)

, (14)

where N(i), i = 1, 2, 3, · · · , denote the number of blocks
containing i consecutive non-zero elements,K1 andK2 are the
numbers of rows and columns of image pixels, respectively.
The corresponding distribution function is as formula (15),

F(c) = F(1 ≤ i ≤ c) =

c∑
i=1

N (i)

K1×K2∑
i=1

N (i)

(15)

where c is a constant; c is usually considered as the classifi-
cation threshold constant for the size of non-zero blocks.

The precondition for the application of our proposed
method is that the signal is binary. Although radar image
has binarization characteristics, it is usually not binarized

image; so the appropriate binarization threshold Th is needed
to binarize the image for judgment, and then calculate the
percentages (or distribution function) of some size non-zero
blocks.

The principle of selecting sparse base (or dictionary) is
usually as follows

d ≤ ‖ψc‖0 ord ≈ ‖ψc‖0 , (16)

where d is the size of non-zero block, ψc is a sparse base
(atom) of the sparse dictionary.

IV. METHOD PROPOSED in THIS PAPER
To overcome the shortcoming of CS in using inner product,
we proposes an image processing method of CS based on
arbitrary block statistical histogram and dynamic dictionary.
When the small targets are very dense, our method can avoid
erroneously choosing the larger sparse base (or dictionary)
and avoid erroneously setting regularization parameters, so as
to better identify the edges of the small targets and improve
the SNR.

In order to implement our method, several experiments
are needed to get the relevant threshold parameters or
conclusions.

To select the appropriate sparse base (or dictionary), clas-
sification threshold constants are needed to determine which
sparse base (or dictionary) is the most appropriate choice.
So we use arbitrary block statistical histogram to obtain the
statistic numbers of various size non-zero blocks, which can
be used to generate the classification threshold constants; but
building arbitrary block statistical histograms need binary
threshold Th. Through simulation experiments, we get the
appropriate binary threshold Th and corresponding SNR,
which can eliminate noise interference in establishing arbi-
trary block statistical histogram. Arbitrary block statistical
histogram can also reflects the local characteristics of sub-
images, based on which we construct the objective functions
for the noiseless and noisy signals respectively.

For different dynamic image sequences, adaptive noise
detection method is used to detect whether the signal is a
noisy signal or not firstly; and then one of the methods is
chosen. The overall flow chart is as follows:

The rest of this chapter is divided into three parts: A. sev-
eral experiments and results; B. The flow chart and objective
function for noiseless signal; C. The flow chart and objective
function for noisy signal.

A. SEVERAL EXPERIMENTS AND RESULTS
1) In order to better classify and process signals, we define
two constants a1 and b1 as classification thresholds, where
a1 < b1. The two constants will be given specific values from
the following simulation experiments.

For example, some percentages of non-zero blocks of
the images in Figure 3 are shown in Table 1. In Figure 3,
(a) denotes the image in the upper left corner, (b) denotes
the image in the upper right corner, (c) is the image in the
lower left corner, (d) is the image in the lower right corner.
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FIGURE 3. Some images without targets.

TABLE 1. Percentages of some non-zero blocks.

Let N(i) denote the number of blocks containing i consecutive
non-zero elements, where i = 1, 2, 3, · · · , K1 and K2 are the
rows and columns of image pixels, respectively, F(i ≤ 2) =
N (1)+N (2)
K1×K2∑
i=1

N (i)

denotes the percentage of non-zero blocks whose

size is not greater than 2, F(i ≤ 4) = N (1)+N (2)+N (3)+N (4)
K1×K2∑
i=1

N (i)

denotes the percentage of non-zero blocks whose size is not
greater than 4;

The corresponding percentages of some non-zero blocks
of images in Figure 4 are shown in Table 2.

TABLE 2. Percentages of some non-zero blocks.

In order to obtain appropriate classification thresholds,
we have done a lot of experiments with various radar
images. Then we get the reasonable classification thresholds
a1 and b1, which are 3% and 6% respectively. The selection
principle of classification threshold is that as long as there is
an object (e.g., ship, boat or island), the method will strive to
detect it.

2) For noise signal, in order to eliminate the interference
of noise in arbitrary block statistical histogram which is used
to judge the local characteristics of sub-images, we have

FIGURE 4. Some images containing targets.

done a lot of simulation experiments with a large number
of various radar images under different SNR and thresholds.
In order to get accurate raw data, we do not use threshold
de-noising (e.g., adaptive threshold de-noising) in the sim-
ulation experiments. Finally, the appropriate threshold Th
is obtained. Take Figure (e) of Figure 4 as an example, let
F(i<=2)=N(1)+N(2), F(i<=4)=N(1)+N(2)+N(3)+N(4),
F(i<=2) represents the number of non-zero blocks with sizes
of 1 and 2, similarly, F(i<=4) is the number of non-zero
blocks with sizes of 1, 2, 3 and 4. Our simulation results are
shown in Table 3. We only show the simulation results when
the binarization threshold Th=25, 38 and 50, which is about
10%, 15% and 20% of the maximum pixel value respectively
(assuming that the maximum pixel amplitude of the images
is 255).

From Table 3, it can be seen that the interference of noise
in statistical histogram can be removed when Th = 50
and SNR ≥ 13dB; if the threshold is less than 50 and the
corresponding SNR is less than 13 dB, it is not applicable for
noise signals, because statistical values of non-zero blocks
fluctuate considerably. A large number of simulation exper-
iments based on different marine radar images also validate
the above conclusions.

3) In order to reduce the running time and better choose
different methods according to different local characteris-
tics, an image is divided into several sub-images [49]. Let
sub-image S(i, j) ∈ RN×N , where N is positive integer,
the maximum decomposition level of sub-image is L, the ref-
erence table for the relationship between the image size and
the maximum decomposition level is shown in Table 4.

If the size of the sub-image is too small, there will be block
effect, which will make the SNR worse.

1) EFFECT OF DIFFERENT WAVELETS ON RADAR IMAGES
We simulate different wavelets to find the most suitable
wavelet for maritime radar image processing. The simulation
results are shown in Figure 5 and Figure 6.
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TABLE 3. Some non-zero blocks statistics of several images under different SNR. (a) Binarization threshold Th=25. (b) Binarization threshold Th=38.
(c) Binarization threshold Th=50.

TABLE 4. Relationship reference table of the image size and the
maximum decomposition level.

In Figure 5, the wavelets used in the first row above from
left to right are haar,db1 and db2; the wavelets used in the sec-
ond row from left to right are db3,db4 and db5; the third row
are db6, sym1 and sym2.

In Figure 6, the wavelets used in the first row from left
to right are haar,sym3 and bior2.4; the wavelets used in
the second row from left to right are bior4.4, coif1 and, coif2;
the third row are coif3, coif4 and coif5.

From the comparisons, we can see that Haar wavelet is
usually the best among all kinds of wavelets in maritime radar
image processing.

FIGURE 5. Comparisons of image processing effects with different
wavelets.

B. THE FLOW CHART AND OBJECTIVE FUNCTION
FOR NOISELESS SIGNAL
The flow chart of themethodwe proposed for noiseless signal
is shown in Figure 7.
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FIGURE 6. Comparisons of image processing effects with different
wavelets.

Firstly, a frame image S is divided into M rows and M
columns, the size of each sub-image is K∗K. and each sub-
image S(i, j) is binarized respectively, where the threshold of
binarization is usually 0; of course, other smaller values can
also be set as the binarization threshold according to specific
circumstances.

Let B(i, j) denotes the binary matrix of S(i, j), then each
B(i, j) is transformed into a column vector C(i,j). In each
column vector C(i,j), we define that a single non-zero ele-
ment (entry) is counted as a block of size 1. Similarly, if sev-
eral non-zero elements are connected sequentially, as long as
they are not separated by zero, these non-zero elements are
counted as a block. According to the column vector C(i,j),
the statistical histogram of arbitrary block is established for
sub-image S(i, j). In statistical histogram, let N(i) denote
the number of non-zero blocks with the size of i, where
i = 1, 2, 3, · · · .
Taking Figure (e) of Figure 4 as an example, divide it

into 4 rows and 4 columns. The statistical histogram of each

sub-image is shown in Figure 8. Due to the limited space of
the paper, each statistical histogram cannot be fully displayed
in Figure 9.

According to the statistical histogram, better matched
sparse bases (or dictionaries) are selected respectively. Then a
better measurement vector y is obtained at the sender. Finally,
the original image S is reconstructed by using Stagewise
OMP at the receiving end. The objective function based on
statistical histogram is elaborated in the following paragraph.

Let A=

 0 . . . 0
...
. . .

...

0 · · · 0


K×K

. If
K×K∑
i=1

N (i) = 0, the bsub-

image S(i, j) is a zero matrix; It is discarded directly at the
sender and reconstructed into a zero matrix at the receiving

end, i.e. S(i,j)=A=

 0 . . . 0
...
. . .

...

0 · · · 0


K×K

.

If
K×K∑
i=1

N (i) 6= 0, the percentages of some N(i) which

will be used are calculated according to the formula p(i) =
N (i)

K×K∑
i=1

N (i)
, i = 1, 2, 3, 4 · · · . The distribution function of

some blocks whose sizes are in a certain range is F(i|a ≤

i ≤ b) =
i=b∑
i=a

p(i). Then F(i|a ≤ i ≤ b) is com-

pared with classification thresholds to select the appropriate
sparse base (or dictionary). The classification thresholds
set in this paper are mainly for marine radar images. For
noiseless signals, the objective function we constructed is
shown in formula (17), as shown at the bottom of this
page. Of course, according to different application objects
(or environments), people can adjust the thresholds by
themselves.

In formula (17), the set of dynamic dictionary is composed
of 4-level wavelet sparse basis matrix (dictionary), 5-level

F(i) =



F(i|
K×K∑
i=1

N (i) = 0), Discardingsub-image S(i,j) directly, and recover it at the receiving end.

F(i|
K×K∑
i=1

N (i) 6= 0)



F(i|1 ≤ i ≤ 2) =
i=2∑
i=1

p(i) ≥ 3%.Using6− level wavelet sparse basis matrix (dictionary).

F(i|1 ≤ i ≤ 2) =
i=2∑
i=1

p(i) < 3% , and F(i|1 ≤ i ≤ 4)

=

i=4∑
i=1

p(i) ≥ 6%.Using5− level wavelet sparse basis matrix (dictionary).

F(i|1 ≤ i ≤ 2) =
i=2∑
i=1

p(i) < 3% , and F(i|1 ≤ i ≤ 4)

=

i=4∑
i=1

p(i) < 6%.Using4− level wavelet sparse basis matrix (dictionary).

(17)
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FIGURE 7. Flow chart of the method proposed in this paper for noiseless image.

wavelet dictionary, and 6-level wavelet dictionary of Haar.
4-level wavelet sparse basis matrix (dictionary) consists of 1,
2, 3,4-layer of wavelet sparse bases, and other dictionaries are
similar to it.

C. THE FLOW CHART AND OBJECTIVE FUNCTION
FOR NOISY SIGNAL
Firstly, threshold de-noising (e.g., adaptive threshold de-
noising) is applied to the noisy image S, and the image
is divided into several sub-images. Then each sub-image is
converted into binary matrix B by using threshold Th=50 (or
0.2Am). Am is the maximum amplitude of the signal. If the
maximum amplitude of the signal is 255, the threshold is
usually 50; otherwise, the threshold is 0.2Am. According to
the binary matrix B, the statistical histogram of arbitrary
block is established. N(i) denotes the number of non-zero
blocks whose size is i, where i = 1, 2, 3, · · · .

The flow chart of processing noisy signal proposed in this
paper is similar to that of noiseless signal. In order to avoid

omitting weak signals, when
K×K∑
i=1

N (i) = 0, 3-level wavelet

dictionary is used to process the corresponding sub-image.
The flow chart of the method proposed in this paper for noisy
signal is shown in Figure 10.

2) In noisy environments, the objective function we con-
structed is as follows (18), as shown at the bottom of the next
page.

D. ADVANTAGES AND LIMITS OF OUR METHOD
The method we proposed is a fully automatic method for
radar image processing based on statistical histogram of arbi-
trary blocks and dynamic dictionary, which can overcome
the shortcoming of CS in using inner product. The objective
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FIGURE 8. Divide an image into several sub-images.

functions we constructed can quickly and efficiently recog-
nize the local characteristics of sub-images, so as to better
select sparse basis dictionary and get an optimalmeasurement
vector y in signal sampling. As long as the signal satisfies the
reconstruction condition of phase diagram [48], it usually can
be better reconstructed at the receiving end. It also can reduce
running time than other methods. In addition, for noisy signal,
our method can eliminate the interference of noise in judging
local characteristics by arbitrary blocks statistical histogram.

Our method is only suitable for maritime radar images and
other similar images which have binary characteristics; it is
usually not suitable for processing natural images.

V. SIMULATION RESULTS
In this paper, we select a frame of dynamic image for simu-
lation experiment. Taking Figure 11 as an example, we carry
out simulation experiments in noiseless and noisy environ-
ments respectively. The image has 512 rows and 512 columns,

FIGURE 9. Histograms of sub-images in FIGURE 8.

which is divided into 4 rows and 4 columns. The pixels of
each sub-image are 128 × 128. The range of pixel values
is 0-255.

A. NOISELESS
In the noiseless environment, we propose a fully automatic
method for recognizing the local features of sub-images
based on statistical histogram of arbitrary blocks. According
to the statistical histogram, different methods are chosen
for different sub-images. A better measurement vector y is
obtained at the sender; and a relatively clear image will be
obtained at the receiving end. The SNR of the proposed
method is usually bigger than state of the art methods of CS
in processing radar images. Taking Figure 11 as an example,
we carried out a simulation experiment with it. The SNR of
eachmethod at different sampling ratio is shown in Figure 12.

As can be seen from Figure 12, the performance of Adap-
tive Matrix Design method (AMD) is very good when the
sampling ratio is less than 0.4, because it adaptively designs
the sensing matrix (i.e., measurement matrix) according to

F(i) =



F(i|
K×K∑
i=1

N (i) = 0), Using3− level waveletsparse basis matrix (dictionary).

F(i|
K×K∑
i=1

N (i) 6= 0) =



F(i|1 ≤ i ≤ 2) =
i=2∑
i=1

p(i) ≥ 3%.Using6− level wavelet sparse basis matrix (dictionary).

F(i|1 ≤ i ≤ 2) =
i=2∑
i=1

p(i) < 3% , and F(i|1 ≤ i ≤ 4)

=

i=4∑
i=1

p(i) ≥ 6%.Using5− level wavelet sparse basis matrix (dictionary).

F(i|1 ≤ i ≤ 2) =
i=2∑
i=1

p(i) < 3% , and F(i|1 ≤ i ≤ 4)

=

i=4∑
i=1

p(i) < 6%.Using4− level wavelet sparse basis matrix (dictionary).

.

(18)
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FIGURE 10. Flow chart of the method proposed in this paper for noisy signal.

the signal. When the sampling rate is equal to or greater
than 0.4, the measurement matrix can usually reconstruct the
signal well. Under these circumstances, the sparse matrix and
theweighted optimization strategy usually play themajor role
in reconstructing signal. So the method of Wavelet Tree Sup-
port Detection is superior to others other method. However,
this method also has the shortcoming of using the maximum
inner product; when the density of small targets is very high,

it usually causes the edges of small targets unrecognizable.
Our method overcomes this shortcoming in maritime radar
image processing, so our method is superior to the other
methods.

Since marine radar images are usually sparse, several of
the sub-images S(i, j) are usually zero matrices, which are
discarded directly at the sender and recovered into zeromatrix
at the receiving end. Consequently, for marine radar images,
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FIGURE 11. An ideal maritime radar image.

FIGURE 12. SNR curves of each method at different sampling ratio.

the proposed method commonly takes less time than the
other methods. The running time of each method at different
sampling ratio is shown in Table 5.

TABLE 5. Running time of different method at different sampling ratio.

B. NOISE
Our method can eliminate the interference of noise in distin-
guishing local characteristics by statistical histogram, so that
sparse basis (or dictionary) can be selected better according to
the local characteristics of the image, and better measurement
vector y can be obtained, which provides favorable conditions
for obtaining high quality reconstructed signal at the receiv-
ing end.

Suppose the maximum pixel value of the image is 255. The
interference of noise in statistical histogram can be removed
when Th = 50 and SNR ≥ 13dB; Assuming that the SNR of
the signal is 16 dB, the SNR curves of the several methods at
different sampling ratio are shown in Figure 13.

FIGURE 13. SNR curves of reconstructed signal at different sampling
ratios.

The curves of Figure 13 are similar to those without noise,
so we will not elaborate on them here. When the sampling
rate is 0.5 and SNR=16dB, the reconstruction images of
several methods is shown in Figure 14. And the SNR curves
of reconstructed signals with different input SNR are shown
in Figure 15.

As can be seen from Figure 14, because our method
chooses the appropriate sparse base (or dictionary), the image

TABLE 6. Running time of different methods under different sampling
ratios.
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FIGURE 14. Comparison of the methods at SNR=16 dB.

FIGURE 15. Comparison of the methods at sampling ratio is 0.5.

is much clearer than other methods when the targets are very
dense.

As can be seen from Figure 15, threshold de-noising
(e.g., adaptive threshold de-noising) is usually effective when
the SNR of the signal is low; but when small targets are
very dense, the effect of threshold de-noising (e.g., adaptive
threshold de-noising) is not obvious when the SNR of signal
is high. The running time of each method is shown in Table 6.

Radar image is about 24 frames per minute, so the pro-
cessing time of each frame is about 2.5 seconds. From the

FIGURE 16. SNR curves of reconstructed signals with adaptive threshold
de-noising.

table 6 it can be seen that our method can process real-time
radar image. If other methods also use threshold de-noising
(adaptive threshold de-noising), the SNR curves are shown
in Figure 16.

As can be seen from the above, our method overcomes the
shortcoming of CS in using absolute value of inner product
for selecting atoms (or dictionaries). Our method not only
improves the SNR, but also has less running time, and thus
can process dynamic radar image in real time.
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VI. CONCLUSIONS
In this paper, according to the characteristics of maritime
radar images, we propose a fully automatic radar image pro-
cessing algorithm of CS based on arbitrary block statistical
histogram and dynamic dictionary. The method we proposed
can overcome the shortcoming of CS in using the absolute
value of the inner product for selecting atoms (or dictionar-
ies) in processing maritime radar images. And the objective
functions we construct can quickly and efficiently select
optimal sparse basis matrix (i.e., dictionary) to decompose
and reconstruct signals. Then the better measurement vector
y can be obtained, and the signal can be reconstructed more
accurately than state of the art methods at the receiving end.
It also can reduce running time, suppress noise and improve
SNR. Simulation results show that our method is superior to
state of the art methods.
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